反比例函数比例系数k的几何意1

合集下载

八年级数学下册 11.1 反比例函数 反比例函数比例系数k的几何意义是什么素材 (新版)苏科版

八年级数学下册 11.1 反比例函数 反比例函数比例系数k的几何意义是什么素材 (新版)苏科版

反比例函数比例系数k的几何意义是什么?
难易度:★★★★
关键词:反比例函数
答案:
在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|。

在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂
足以及坐标原点所构成的三角形的面积是,且保持不变。

【举一反三】
典例:设P是函数 y=在第一象限的图象上任意一点,点P关于原点的对称点为P′,过P作PA平行于y轴,过P′作P′A平行于x轴,PA与P′A交于A点,则△PAP′的面积()
A、等于2
B、等于4
C、等于8
D、随P点的变化而变化
思路导引:设P的坐标为(m,n),因为点P关于原点的对称点为P′,P ′的坐标为(-m,-n);因为P与A关于x轴对称,故A的坐标为(m,-n);而mn=4,则△PAP′的面
积为•PA•P′A=2 mn=8 .设P的坐标为(m,n),∵P是函数 y=在第一象限的图象上任意一点,∴m•n=4.∵点P关于原点的对称点为P′,∴P '的坐标为(-m,-n);∵P
与A关于x轴对称,∴A的坐标为(m,-n);∴△PAP'的面积= •PA•P′A=2 mn=8 .故选C.
标准答案:C。

反比例函数中比例系数k的几何意义

反比例函数中比例系数k的几何意义

反思小结
在反比例函数 y 10 的图象上,有一系列点A1,A2, x A3…..An,An+1,若A1横坐标为2,且以后每点的 横坐标与它前一个点的横坐标的差都为2. 现分别 过点A1,A2,A3…..An,An+1作X轴与Y轴的垂线 段,构成若干个矩形如图10所示,将图中阴影部 分的面积从左到右依次记为S1、S2、S3、…Sn, 5 5 15 2 5 2 (5 _____, ) 则S1=________, S +S +S =____ S1+S2 2 1 2 3 4 2 5 10 n 2 (5 ) +S3+….+Sn=________________.( 用n的代数式表 n 1 n 1 A 示)
C
S SOAD SABD SBCD SOCD 4 1 4
达标测试
已知几何图形的面积S,求比例系数k
5、如图,已知双曲线 (k>0) 经过矩形OABC边AB的中点F,交BC于点E, 且四边形OEBF的面积为2,则k的值为( B )。
y
y
k x
A 1
所以
B 2
C 4
S OAB 4
O
y
已知几何图形的面积S,求比例系数k k y 变式、如图,已知双曲线 x ( k>0 )经
B
D
C E A
x

SOAB SOBC SOAC

S ODE 1 S OAB 1 4 k 3 2
1 k 2
相似三角形的面积比 等于相似比的平方 k 4;
k 0 k 4
k 0 k 4
4 y x
达标测试
4、如图,在平面直角坐标系中, 点O为原点,菱形OABC的对角线 OB在x轴上,顶点A在反比例函数 2 的图像上,求菱形的面积。 y B

中考数学复习考点知识归类讲解12 反比例函数比例系数k的几何意义

中考数学复习考点知识归类讲解12 反比例函数比例系数k的几何意义

中考数学复习考点知识归类讲解 专题12 反比例函数比例系数k 的几何意义知识对接考点一、反比例函数比例系数k 的几何意义(1)意义:从反比例函数y =(k≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|. (2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k <0. 例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3y x=或3y x =-专项训练 一、单选题1.如图,已知反比例函数2y x=-的图像上有一点P ,过点P 作PA x ⊥轴,垂足为点A ,则POA 的面积是()A.2 B.1 C.1-D.122.如图,在平面直角坐标系中,A,B是反比例函数kyx=在第一象限的图象上的两点,且其横坐标分别为1,4,若AOB的面积为54,则k的值为()A.23B.1C.2D.1543.若图中反比例函数的表达式均为4yx=,则阴影面积为4的有()A.1个B.2个C.3个D.4个4.如图,点A是反比例函数4yx=-图象上的一个动点,过点A作AB⊥x轴,AC⊥y轴,垂足分别为B,C,则矩形ABOC的面积为()A .-4B .2C .4D .85.如图,等腰ABC 中,5AB AC ==,8BC =,点B 在y 轴上,//BC x 轴,反比例函数k y x=(0k >,0x >)的图象经过点A ,交BC 于点D .若AB BD =,则k 的值为()A .60B .48C .36D .206.在平面直角从标系中,30°的直角三角尺直角顶点与坐标原点重合,双曲线11k y x=(x >0),经过点B ,双曲线22k y x=(x <0),经过点C ,则12k k =( )A.﹣3 B.3 C.D7.如图,A、B是双曲线y=kx图象上的两点,过A点作AC⊥x轴于点C,交OB于点D,BD=2OD,且ADO的面积为8,则DCO的面积为()A.12B.1 C.32D.28.如图,平行于y轴的直线l分别与反比例函数kyx=(x>0)和1yx=-(x>0)的图象交于M、N两点,点P是y轴上一动点,若△PMN的面积为2,则k的值为()A.2 B.3 C.4 D.59.如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数y3=x(x>0)和y6=x-(x>0)的图象交于B、A两点.若点C是y轴上任意一点,则△ABC的面积为()A .3B .6C .9D .9210.如图.在平面直角坐标系中,△AOB 的面积为278,BA 垂直x 轴于点A ,OB 与双曲线y =k x相交于点C ,且BC ∶OC =1∶2,则k 的值为()A .﹣3B .﹣94C .3D .92二、填空题11.如图,平面直角坐标系中,O 是坐标原点,点A 是反比例函数()0k y k x=≠图象上的一点,过点A 分别作AM x ⊥轴于点M ,AN y ⊥轴于点N .若四边形AMON 的面积为12,则k 的值是__________.12.如图,在反比例函数3yx=的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数kyx=的图象上运动,tan∠CAB=2,则k的值为_____13.如图,点P在反比例函数4yx=-的图像上,过点P作PA x⊥轴于点A,则POA的面积是_______.14.如图所示,反比例函数kyx=(0k≠,0x>)的图像经过矩形OABC的对角线AC的中点D .若矩形OABC 的面积为8,则k 的值为________.15.如图,点A 与点B 分别在函数11(0)k y k x =>与220)k y k x=<(的图象上,线段AB 的中点M 在y 轴上.若△AOB 的面积为3,则12k k -的值是___.三、解答题16.如图,一次函数122y x =-的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点且PC 为AOB 的中位线,PC 的延长线交反比例函数ky x=(0k >)的图象于点Q ,32OQCS=.(1)求A 点和B 点的坐标; (2)求k 的值和Q 点的坐标.17.点O 为平面直角坐标系的原点,点A 、C 在反比例函数a y x=的图象上,点B 、D 在反比例函数b y x=的图象上,且0a b >>.(1)若点A 的坐标为()6,4,点B 恰好为OA 的中点,过点A 作AN x ⊥轴于点N ,交b y x=的图象于点P . ①请求出a 、b 的值; ②试求OBP 的面积.(2)若////AB CD x 轴,32CD AB ==,AB 与CD 间的距离为6,试说明-a b 的值是否为某一固定值?如果是定值,试求出这个定值;若不是定值,请说明理由.18.如图,点C 在反比例函数y 1=x的图象上,CA ∥y 轴,交反比例函数y 3=x的图象于点A ,CB ∥x 轴,交反比例函数y 3=x的图象于点B ,连结AB 、OA 和OB ,已知CA =2,则△ABO 的面积为__.19.如图是反比例函数2yx=与反比例函数在第一象限中的图象,点P是4yx=图象上一动点,PA⊥X轴于点A,交函数2yx=图象于点C,PB⊥Y轴于点B,交函数2yx=图象于点D,点D的横坐标为a.(1)用字母a表示点P的坐标;(2)求四边形ODPC的面积;(3)连接DC交X轴于点E,连接DA、PE,求证:四边形DAEP是平行四边形.20.如图,点A(﹣2,y1)、B(﹣6,y2)在反比例函数y=kx(k<0)的图象上,AC⊥x轴,BD⊥y轴,垂足分别为C、D,AC与BD相交于点E.(1)根据图象直接写出y1、y2的大小关系,并通过计算加以验证;(2)结合以上信息,从①四边形OCED的面积为2,②BE=2AE这两个条件中任选一个作为补充条件,求k 的值.你选择的条件是(只填序号). 21.如图,一次函数()20y kx k k =-≠的图象与反比例函数1(10)m y m x-=-≠的图象交于点C ,与x 轴交于点A ,过点C 作CB y ⊥轴,垂足为B ,若3ABC S =△.(1)求点A 的坐标及m 的值;(2)若AB =22.如图,过C 点的直线y =﹣12x ﹣2与x 轴,y 轴分别交于点A ,B 两点,且BC =AB ,过点C 作CH ⊥x 轴,垂足为点H ,交反比例函数y =k x(x >0)的图象于点D ,连接OD ,△ODH 的面积为6(1)求k 值和点D 的坐标;(2)如图,连接BD ,OC ,点E 在直线y =﹣12x ﹣2上,且位于第二象限内,若△BDE 的面积是△OCD 面积的2倍,求点E 的坐标.11 / 11 23.如图,直线l 分别交x 轴,y 轴于A 、B 两点,交反比例函数(0)k y k x =≠的图象于P 、Q 两点.若2AB BP =,且AOB 的面积为4(1)求k 的值;(2)当点P 的横坐标为1-时,求POQ △的面积.。

反比例函数中K的几何意义

反比例函数中K的几何意义

反比例函数中K的几何意义
在反比例函数中,K表示比例系数或常数,也被称为反比例常数。


是用来确定两个变量之间反比关系的重要参数。

反比例函数的一般形式为:y=K/x,其中K表示比例系数。

K的几何意义可以通过分析反比例函数的图像得出。

反比例函数的图
像是一个双曲线,特点是曲线趋向于两个坐标轴。

下面将详细讨论K的几
何意义。

1.K的符号对于曲线的位置以及开口方向具有重要影响。

如果K为正数,那么曲线将位于第一和第三象限,并且开口方向为右上和左下。

如果
K为负数,那么曲线将位于第二和第四象限,并且开口方向为左上和右下。

2.K的绝对值越大,曲线就越“陡峭”。

当K增大时,曲线将更加接
近于坐标轴,并且在原点附近的斜率会越来越大。

反之,当K变小时,曲
线将更加平缓,斜率将减小。

3.K决定了特定坐标点的函数值。

例如,在函数y=K/x中,当x为K 时,y的值将为1、这是因为x与y成反比关系,而K是这种关系的常数。

4.K还决定了曲线相对于坐标轴的位置。

具体而言,当K增大时,曲
线将向坐标轴移动,而当K减小时,曲线将远离坐标轴。

总之,K代表了反比例函数中的比例系数或常数,它对于函数的位置、开口方向、陡峭程度以及特定坐标点的函数值都具有重要影响。

通过对K
的分析,我们可以更好地理解和解释反比例函数的几何特征。

反比例K的几何意义

反比例K的几何意义

反比例函数比例系数k 的几何意义知识梳理:如图所示,过双曲线)0(k≠=k xy 上任一点),(y x P 作x 轴、y 轴的垂线PM 、PN,垂足为M 、N ,所得矩形PMON 的面积S=PM •PN=|y|•|x|.,y xk=∴||k S k xy ==,。

反比例函数图像上任意一点“对应的直角三角形的面积”S=21│k │ 反比例函数图像上任意一点“对应的矩形的面积”S=│k │这就说明,过双曲线上任意一点作x 轴、y 轴的垂线,所得到的矩形的面积为常数|k|。

这是系数k 几何意义,明确了k 的几何意义,会给解题带来许多方便。

典例精析专题一 K 值与面积直接应用 例1:已知如图,A 是反比例函数ky x=的图象上的一点,AB 丄x 轴于点B ,且△ABO 的面积是3,则k 的值是( )A 、3B 、﹣3C 、6D 、﹣6变式练习1:如图,点P 是反比例函数6y x=图象上的一点,则矩形PEOF 的面积是 .变式练习2: 如图:点A 在双曲线 ky x=上,AB 丄x 轴于B ,且△AOB 的面积S △AOB =2,则k= .变式练习3:如图,A 是反比例函数图象上一点,过点A 作AB ⊥y 轴于点B ,点P 在x 轴上:△ABP的面积为2,则这个反比例函数的解析式为______________.OABxy:变式练习4:如图反比例函数4y x=-的图象与直线13y x =-的交点为A ,B ,过点A 作y 轴的平行线与过点B 作x 轴的平行线相交于点C ,则ABC △的面积为( ) A .8 B .6C .4D .2B 为双曲线x12-y =上的点,AD ⊥x 轴于D,BC ⊥y 轴于点C ,则四边形ABCD 的面积为 。

例2:如图1所示,直线l 与双曲线)0(ky >=k x交A 、B 两点,P 是AB 上的点,试比较⊿AOC 的面积S 1,⊿BOD 的面积S 2,⊿POE 的面积S 3的大小: 。

《反比例函数中比例系数k的几何意义》优课一等奖教案

《反比例函数中比例系数k的几何意义》优课一等奖教案

?反比例函数中比例系数k 的几何意义?教学设计 本微课通过研究反比例函数()0≠=k xk y 中k 的几何意义,来解决反比例函数与面积类综合问题,能更好地考察学生灵活运用数学知识的能力及对数学思想方法掌握的情况,进一步让学生感悟数形结合分析数学问题的意识,培养学生把实际问题中的文字语言、符号语言、图形语言进展“互译〞并 “转换〞成有效的解题信息链,培养学生建立合理适宜的数学模型去解决实际问题的能力和方法。

教学目标:1、理解和掌握反比例函数()0≠=k xk y 中k 的几何意义 2、能灵活运用函数图象和性质解决一些较综合的问题学情分析:学生已有对一次函数和反比例函数关系式和图象认识的根底,再通过研究反比例函数()0≠=k xk y 中k 的几何意义,可以进一步唤醒学生数形结合分析数学问题的意识,培养学生把实际问题中的文字语言、符号语言、图形语言进展互译转换并形成有效的解题信息链,并通过建立合理适宜的数学模型,顺利解决问题的能力和方法。

教学重点、难点:1.重点:理解并掌握反比例函数 〔k ≠0〕中k 的几何意义;并能利用它们解决一些综合问题2.难点:通过反比例函数与矩形面积的对应关系渗透数形结合思想,感受理解反比例函数的比例系数 k 、函数解析式和函数图形之间的内在联系,并通过建立反比例函数模型解决实际几何问题。

教学过程:一、反比例函数中k 的几何意义xk y =y x B A P (m ,n )O 反比例函数()0≠=k xk y ,点),(n m P 是图像上的任意一点. (1)过点P 分别做x 轴和y 轴的垂线,垂足分别为点A ,B,那么 k n m nm OB OA S OAPB =⋅=⋅=⋅=矩形结论:任意一点横纵坐标的乘积是一个定值.〔2〕过点P 分别做x 轴和y 轴的垂线,垂足分别为点A ,B,连接OP,那么k n m n m AP OA S OAP 21212121=⋅=⋅=⋅=∆结论:k S S OBP OAP 21==∆∆通过构造学生熟悉的特殊多边形,并把k 值构造成特殊多边形的面积,从而可以发现过反比例函数()0≠=k xk y 的图象上任一点P 〔m,n 〕向x 轴、y 轴作垂线段,与x 轴、y 轴所围成的矩形面积k n m S OAPB =⋅=矩形,△OAP 和△OBP 面积k S S OBP OAP 21==∆∆让学生通过此题让学生感悟k 值与反比例函数图象的一一对应关系,核心感悟:k 值确定,图象确定,进而图形上从任意一点向坐标轴构造的特殊图象面积确定;图象确定或者图形上从任意一点向坐标轴构造的特殊图象面积确定, 那么k 值也随之确定。

反比例函数中K的几何意义(太乙学校)

反比例函数中K的几何意义(太乙学校)

—3 x
y
A
B
C
y2
y1
O
x
:等积变换
反比例函数y=m/x与一次函数y=kx+b 交于点A(1,8),和B(4,2),则三角形AOB
的面积是__1_5_____ y
A
B
o
x
:掌握设而不求
4
y c1
BP D
A c2
x
O
E
:中点坐标的运用
2
oA
x
过反比例函数图象上任一点P分别作x轴、y轴的垂线,垂足 分别为A,B,它们与坐标轴形成的矩形面积是不变的.
如图,若反比例函数
y
=
k x
的图象过点A,矩形ABOC
的面积为4,则k= - 4
如图,点A是反比例函数图象上一点, 过点A作AB⊥y轴于点B,点C、D在x轴上, 且BC∥AD,四边形ABCD的面积为3,则这 个反比例函数的解析式为 y = 3
若四边形ABCD为矩形,则矩形ABCD的面
3 积为___________
任如意图一,点点,AA是B∥反x比轴例交函反数比例y =函2x 数(xy>=0)的3 的图图象象上 于点B,以AB为边作平行四边形ABCD,x 其中
C、D在轴上,则S平行四边形ABCD为( D )
y
A. 2
y=3 x
y= 2 x
x
x
A和点B.若点C 是x轴上任意一点,连接AC、BC,则△ABC的面
积为 ( A )ຫໍສະໝຸດ A.3B.4C.5
D.6
利用等积变换解决问题
8,双曲线y1 ,y2在第一象限的图象如图所
示.已知y1﹦—x1 , 过y1上的任意一点A作X轴的平

6.2(3)反比例函数中比例系数K的几何意义

6.2(3)反比例函数中比例系数K的几何意义
五【目标评定】1.知道平行四边行的判定方法。
已知□有点知□不知□
2.会用“对角线互相平分的四边形是平行四边形”。
已会□有点会□不会□
【作业】作业本:A组:基础练习+综合运用
B组:基础练习+综合运用部分至少选一道,
C组:基础练习+综合运用部分可选做
(1)求点P的坐标;
(2)若△POQ的面积为8,求k的值.
3.如图1,矩形AOBC的面积为4,反比例函数 的图象的一支经过矩形对角线的交点P,则该反比例函数的解析式是。
图1图2
4.如图2,反比例函数 (x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k=。
1.概念认知:两坐标轴和过反比例函数 图象上的一点作两坐标轴的垂线段围成的矩形面积=
2.自我检测:
①如图1,已知点A在反比例函数 图像上,过点A作AC⊥X轴于C,过点A作AB⊥Y轴于B,则矩形ABOC的面积=
图1图2
②如图2,反比例函数 的图象上有一点A,AB平行于x轴交y轴于点B,△ABO的面积是1,则反比例函数的解析式是:
②如图2,已知直线a∥b,则⊿ABC和⊿ABD的面积大小关系是
③如图3,已知AD是⊿ABC一边上的中线,则⊿ABD和⊿ACD的面积大小关系是
图1图2图3
2.画一画,想一想:
①如图4,已知反比例函数 图像经过点A(1,2),则K=;
过点A作AB⊥X轴于B,过点A作AC⊥Y轴于C,四边形ACOB是形,AC=,AB=,四边形ACOB的面积是
3.【主题一展示】两人小对子交流与分享。ቤተ መጻሕፍቲ ባይዱ序如下:
①就【自研自探】的相关问题的解决交换意见;
②由C组展示“概念认知”和“自我检测”
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数比例系数k 的几何意义
反比例函数y= k/x (k≠0)中比例系数k 的几何意义,即过双曲线y=k/x (k≠0)上任意一点引x 轴、y 轴垂线
,所得矩形面积为│k │
1、如图,反比例函数4y x
=-的图象与直线1
3
y x =-
的交点为A ,B ,过点A 作y 轴的平行线与过点B 作x
轴的平行线相交于点C ,则ABC △的面积为( ) A .8
B .6
C 2、如图,点A 是y 轴正半轴上的一个定点,点B 是反比例函数y = 2
x
(x >0)图象上的一个动点,当点B 的纵坐标逐渐减小时,△OAB 的面积将( )
A .逐渐增大
B .逐渐减小
C .不变
D .先增大后减小
3、如图12,A 、B 是函数2y x
=的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积
记为S ,则( ) A . 2S =
B . 4S = C
4、如图,已知双曲线)0k (x
k y >=
经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若
△OBC 的面积为3,则k =____________.
5、如图5所示,P 1(x 1,y 1)、P 2(x 2,y 2),……P n (x n ,y n )在函数y=
x
9(x >0)的图象上,△OP 1A 1,
△P 2A 1A 2,△P 3A 2A 3……△P n A n -1A n ……都是等腰直角三角形,斜边OA 1,A 1A 2……A n-1A n ,都在x 轴上,则y 1+y 2+…y n = 。

6、如图,已知点A 、B 在双曲线x
k y =
(x >0)上,AC ⊥x 轴于点C ,BD ⊥y 轴于点D ,AC 与BD 交于点
P ,P 是AC 的中点,若△ABP 的面积为3,则k = . 7、如图,在第一象限内,点P (2,3),M ()2,a 是双曲线)0(≠=k x
k y 上的两点,PA ⊥x 轴于点A,MB ⊥x
轴于点B,PA 与OM 交于点C,则△OAC 的面积为
第3题
第5题图 第6题图
8、如图,若正方形OABC 的顶点B 和正方形ADEF 的顶点E 都在函数 1y x
=(0x >)的图象上,则点E
的坐


9、如图,点A 、B 是双曲线3y x
=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则
12S S +=

10、如图,已知双曲线(0)k y k x
=
<经过直角三角形OAB 斜边OA 的中点D ,
且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为 ( ) A .12 B .9 C .6 D .4
11、如图,A 是反比例函数图象上一点,过点A 作AB ⊥y 轴于点B ,点P 在x 轴上,△ABP 的面积为2,
则这个反比例函数的解析式为
12、如图,已知在直角梯形AOBC 中,AC ∥OB ,CB ⊥OB ,OB =18,BC =12,AC =9,对角线OC 、AB
交于点D ,点E 、F 、G 分别是CD 、BD 、BC 的中点.以O 为原点,直线OB 为x 轴建立平面直角坐标系,则G 、E 、D 、F 四个点中与点A 在同一反比例函数图象上的是(A ) A .点G B .点E C .点D D .点F 13、已知点A 在双曲线y=
6x
上,且OA=4,过A 作AC ⊥x 轴于C ,OA 的垂直平分线交OC 于B .(1)则
△AOC 的面积= ,(2)△ABC 的周长为
14、如图,一次函数y ax b =+的图象与x 轴,y 轴交于A ,B 两点,与反比例函数k
y x
=
的图象相交于C ,D 两点,分别过C ,D 两点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE .有下列四个结论:
①△CEF 与△DEF 的面积相等;
②△AOB ∽△FOE ;
③△DCE ≌△CDF ; ④AC BD =. 其中正确的结论是 .(把你认为正确结论的序号都填上)
(第11题)
第8题图
9题图。

相关文档
最新文档