红外避障小车讲解
避障小车原理

避障小车原理
避障小车是一种能够自主避免障碍物的智能车辆,其原理在于使用多个传感器来感知周围环境,然后根据传感器的反馈进行决策和控制。
首先,避障小车通常会搭载红外线传感器或超声波传感器,这些传感器能够测量到前方障碍物离小车的距离。
通过读取传感器的数据,小车可以得知前方是否存在障碍物以及距离障碍物的距离。
接下来,小车会根据传感器的数据进行决策。
如果传感器检测到前方有障碍物并且距离较近,小车就需要采取避让策略。
常见的避让策略包括停车、后退、向左或向右转向等。
这些决策通常是通过嵌入式系统中的逻辑电路或者控制算法实现的,可以根据不同的情况进行相应的操作。
最后,小车会根据决策的结果进行控制,以实现避障的目标。
例如,如果决策是向左转向,则小车会通过电机控制左轮向前转动,从而实现左转的动作。
通过控制车轮的旋转方向和速度,小车可以在避开障碍物的同时保持前进的方向。
除了红外线传感器和超声波传感器外,还有其他一些传感器也可以用于避障小车,例如激光雷达和摄像头等。
这些传感器能够提供更为精确的环境感知数据,从而使小车能够更准确地判断障碍物的位置和形状,进而做出更合理的避让决策。
总体来说,避障小车的原理是通过感知、决策和控制三个步骤
来实现自主避障。
这种技术可以广泛应用于无人驾驶汽车、机器人以及其他需要自主避障功能的智能设备中。
红外避障小车原理介绍及制作PPT课件

零件图
连杆
连 杆
设计
比例 图号 数量 共 张
第 张
绘图 审核
组别
第9组
零件图
电机支架
电机支架
设计
比例 图号 数量 共 张
第 张
绘图 审核
组别
第9组
五、软件设计
程序流程图:
Y
N
二、系统结构框图
三、硬件设计
系统总设计电路图如下图
各部分电路图及说明
单片机最小系统 L298电机控制驱动:
各部分电路图
光耦电路 电机保护电路
各部分电路图及说明
模拟电源
四、机械部分
总的装配图如下图:
零件图
车身板
车 身 板
设计
比例
图号 数量 共 张
第 张
智能避障小车
一、概述
设计背景:针对高危环境下对无人化作业的要求,
机器人在复杂地形中行进时自动避障及恶劣环境中 无人驾驶汽车的物资运输,自动避障是一项必不可 少也是最基本的功能设计。另外,市场现在的遥控 玩具小车遇到障碍物时不能自动避开障碍,需人工 手动把玩具车拿开,若加入自动避障功能可省去人 工操作。 功能:本品基于红外传感系统,采用红外传感器实 现前方障碍物检测,来实现自动检测前方障碍物, 并能通过单片机控制舵机实现左、右转弯来避开障 碍物。 应用场合及市场前景:可用于恶劣地理环境中无人 驾驶汽车的物资运输,及玩具小车的自动避障,可 见,自动避障车的应用前景广泛。
智能小车红外避障原理

智能小车红外避障原理
红外避障原理是利用红外线探测传感器检测车辆前方物体的距离,从而避免碰撞。
红外线探测传感器是一种能够感知物体距离的传感器,它可以将前方物体反射回来的红外线信号转化为电信号,从而实现对前方距离的测量。
在智能小车中,通常会使用多个红外线探测传感器分别放置在车体前方的左右两侧以及正前方。
当有障碍物出现在传感器的探测范围内时,传感器会感知到物体的距离并将信号传回中央处理器。
中央处理器会根据传感器的信号控制车体转向或停止行驶,从而实现避开障碍物的目的。
除了红外线探测传感器,智能小车还可以搭载其他类型的传感器,如超声波传感器、激光雷达等,以实现更加精准的避障功能。
总之,红外避障原理是智能小车实现自主行驶的重要手段之一,它可以使车辆在遇到障碍物时迅速反应并避开,从而保障了智能小车的安全性和稳定性。
- 1 -。
红外避障模块原理

红外避障模块原理
红外避障模块是一种常用于智能小车、机器人等设备上的传感器模块,它能够
通过红外线来检测前方是否有障碍物,并向控制系统发送信号,从而实现避障功能。
那么,红外避障模块是如何实现这一功能的呢?接下来,我们将从原理方面进行详细介绍。
首先,红外避障模块由红外发射器和红外接收器组成。
红外发射器会发射一束
红外线,而红外接收器则会接收这束红外线。
当没有障碍物时,发射器发出的红外线会直接被接收器接收到;当有障碍物挡住红外线时,接收器就无法接收到完整的红外线。
这样,通过检测接收到的红外线的强弱,就可以判断前方是否有障碍物以及障碍物的距离。
其次,红外避障模块通过测量红外线的反射情况来判断障碍物的距离。
红外线
遇到障碍物后会发生反射,而红外接收器接收到的反射红外线的强度与距离成反比。
因此,通过测量接收到的红外线的强度,就可以间接地得知障碍物与红外避障模块的距离。
最后,红外避障模块通过处理接收到的红外信号来实现障碍物的识别。
一般来说,红外避障模块会将接收到的红外信号转换成数字信号,然后通过比较信号的强度来判断前方是否有障碍物以及障碍物的距离。
在实际应用中,可以根据具体情况设置不同的阈值,从而实现对不同距离障碍物的识别。
总的来说,红外避障模块通过发射和接收红外线,测量反射红外线的强度,并
处理接收到的红外信号,来实现对障碍物的检测和识别。
它在智能小车、机器人等设备中发挥着重要作用,为这些设备的自主避障功能提供了技术支持。
希望通过本文的介绍,能够让大家对红外避障模块的原理有一个更加清晰的理解。
论文-红外避障小车

第一章绪论1.1 引言自第一台工业机器人诞生以来,机器人的发展已经遍及机械、电子、冶金、交通、宇航、国防等领域。
近年来机器人的智能水平不断提高,并且迅速地改变着人们的生活方式。
人们在不断探讨、改造、认识自然的过程中,制造能替代人劳动的机器一直是人类的梦想。
由于在科学探索和紧急抢险中经常会遇到对与一些危险或人类不能直接到达的地域的探测,这些就需要用机器人来完成。
随着科技的发展,对于未知空间和人类所不能直接到达的地域的探索逐步成为热门,这就使机器人的自动避障有了重大的意义。
而在机器人在复杂地形中行进时自动避障是一项必不可少也是最基本的功能,因此,自动避障系统的研发就应运而生。
自动避障小车可以作为地域探索机器人和紧急抢险机器人的运动系统,让机器人在行进中自动避过障碍物,所以我们的自动避障小车就是基于这一目标而设计的的,该智能小车可以作为机器人的典型代表,它可以分为三大组成部分:传感器检测部分、执行部分、CPU,本次的设计中采用的技术主要有通过编程来控制小车的速度、传感器的有效应用、新型芯片的采用等等。
智能作为现代的新发明,是以后的发展方向,他可以按照预先设定的模式在一个环境里自动的运作,不需要人为的管理,可应用于科学勘探等等的用途。
所以我们的机器人不仅仅可以实现自动避障功能,还可以扩到展循迹等功能,感知导引线和障碍物等多个方面。
1.2 设计任务1.2.1 设计思想本系统要求自行设计制作一个智能小车,该小车在前进的过程中能够检测到前方障碍并自动避开,达到避障的效果。
我的设计思想是采用C8051F310单片机为控制核心,利用位置传感器检测道路上的障碍,通过采集数据并处理后由单片机产生PWM波驱动直流电机对车进行转向和行动控制,控制电动小汽车的自动避障,快慢速行驶,以及自动停车。
1.2.2 功能概述根据题目中的设计要求,本系统主要由微控制器模块、避障模块、直流电机及其驱动模块电源模块等构成。
本系统的方框图如图1-2-2所示:图1-1 系统方框图微控制器模块:通过采用C8051F310作为微控制器接受传感器部分收集到的外部信息进行处理,并将结果输出到电机驱动模块控制电机运行。
智能小车红外循迹

引言:智能小车红外循迹技术是一种基于红外传感器的自动导航技术,它可以使小车能够根据外界环境发出的红外信号进行导航,实现自动巡航。
本文将从红外循迹技术的原理、应用场景、具体实现方法、优缺点以及未来发展等方面详细讨论。
概述:红外循迹技术是智能小车领域中的重要技术之一,通过红外传感器感知地面上的红外信号,从而确定小车的行驶路径。
该技术常用于自动导航和避障等场景中,具有较高的可靠性和稳定性。
下面将详细探讨智能小车红外循迹技术的相关内容。
正文内容:一、红外循迹技术的原理1.红外传感器的工作原理2.红外信号与地面的交互3.红外循迹算法的实现二、红外循迹技术的应用场景1.工业自动化领域中的应用2.家庭服务中的应用3.自动驾驶车辆中的应用三、智能小车红外循迹技术的具体实现方法1.硬件方案1.1红外传感器选择与安装1.2控制模块设计与搭建1.3电源管理与供电设计2.软件方案2.1红外信号的数据处理2.2循迹算法的设计与实现2.3控制系统的编程与调试四、智能小车红外循迹技术的优缺点1.优点1.1精确度高1.2反应速度快1.3成本较低2.缺点2.1受环境因素影响较大2.2对于不同地面的适应性较差2.3容易受到干扰五、智能小车红外循迹技术的未来发展1.红外循迹技术在自动驾驶领域的应用前景2.其他导航技术与红外循迹技术的结合3.红外传感器的性能改进与创新总结:智能小车红外循迹技术是一种基于红外传感器的自动导航技术,其原理是通过感知地面上的红外信号来确定小车的行驶路径。
红外循迹技术广泛应用于工业自动化、家庭服务和自动驾驶车辆等领域。
该技术具有精度高、反应速度快以及成本低的优点,但也存在受环境因素影响较大、对不同地面适应性差以及易受干扰等缺点。
未来,红外循迹技术在自动驾驶领域的应用前景广阔,并且可以通过与其他导航技术的结合以及红外传感器的性能改进与创新来进一步提升其应用效果和可靠性。
红外避障原理

红外避障原理
红外避障技术是一种利用红外线传感器来检测前方障碍物并进行相应控制的技术。
它主要应用于智能家居、智能车辆、机器人等领域,通过红外线传感器的工作原理,实现对障碍物的检测和避让,从而提高设备的智能化和安全性。
红外线传感器是通过发射红外线来探测周围环境的传感器,它的工作原理是利用红外线的反射和吸收特性。
当红外线遇到障碍物时,会被障碍物反射或吸收,传感器接收到的信号就会发生变化,从而判断出是否有障碍物存在。
在红外避障技术中,通常会使用红外发射器和红外接收器配合工作。
红外发射器会发射一束红外线,然后红外接收器会接收到反射回来的红外线。
通过测量反射回来的红外线的强度和时间,就可以判断出障碍物的距离和位置。
红外避障技术的原理比较简单,但是在实际应用中需要考虑一些因素。
首先是环境因素,不同的环境会对红外线的传播产生影响,比如光照强度、温度等因素都会影响红外线的传播和接收。
其次是障碍物的特性,不同的材质和颜色的障碍物对红外线的反射和吸收也会有所不同。
为了提高红外避障技术的准确性和稳定性,通常会采用一些辅助手段,比如滤波器、增益控制、信号处理等技术来对传感器的信号进行处理和优化。
同时,还可以通过多传感器融合的方式来提高避障系统的性能,比如结合超声波、激光雷达等传感器来实现更精准的障碍物检测和定位。
总的来说,红外避障技术是一种简单而有效的障碍物检测和避让技术,它通过利用红外线传感器的工作原理,实现对障碍物的快速检测和响应。
在未来的智能化领域,红外避障技术将会得到更广泛的应用和发展。
红外避障小车原理介绍

红外避障小车原理介绍
红外避障小车是一种利用红外线传感器进行避障操作的智能小车。
其原理基于红外线传感器的工作原理,通过发射红外线并接收反射回来的信号来判断前方是否有障碍物。
红外线传感器是一种能够感受和测量红外线辐射的装置。
它通过发射红外线并利用接收器接收反射回来的红外线信号,然后将信号转换成电信号进行处理。
在红外避障小车中,通常会使用多个红外线传感器分布在小车的前方。
当红外线传感器发射的红外线信号被障碍物反射回来时,传感器接收到的信号强度会发生变化。
通过测量信号强度的变化,可以判断前方是否存在障碍物。
如果信号强度足够高,表示前方没有障碍物;而如果信号强度较弱,表示前方有障碍物。
基于这样的原理,红外避障小车可以实现自主避障的功能。
当小车前方的红外线传感器检测到障碍物时,控制系统会立即做出响应,比如停下或者转向以规避障碍物。
通过不断地检测和响应,小车可以在遇到障碍物时自动调整行驶路径,避免碰撞。
红外避障小车的原理简单而有效,广泛应用于自动导航、智能机器人等领域。
它可以提高小车的可靠性和安全性,使其能够自主地在复杂环境中行驶。
同时,红外线传感器也具有较低的成本和易于使用的特点,使得红外避障小车成为一种受欢迎的智能设备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目的:本毕业设计是红外蔽障小车的设计,通过设计使学生系统的熟悉和掌握单片机控制系统设计方面的内容体系、开发流程和程序设计,培养学生具有综合运用所学的理论知识去开拓创新及解决实际问题的能力。
培养学生掌握设计题的思想和方法,树立严肃认真的工作作风、培养学生调查研究、查阅技术文献、资料、手册以及编写技术文献的能力。
同时是为了掌握电路设计的方法和技巧。
如何将学习到的理论知识运用到实际当中去,怎样能够活学活用,深入的了解电子元器件的使用方法,了解各种元器件的基本用途和方法,能够灵活敏捷的判断电路中出现的故障,学会独立设计电路,积累更多的设计经验,加强焊接能力和技巧,完成基本的要求。
并能完美的完成这次实训。
目录一、任务书...............................P1二、引言..............................P2二、要求与发挥...........................P4三、设计摘要.............................P6四、模块方案比较.......................P71.避障模块2.驱动模块3.控制模块五、程序设计.........................P91.程序流程图2.程序编写六、工作原理.........................P13七、结论............................P13八、参考文献........................P14九、毕业设计(论文)成绩评定表.....P15任务:利用单片机、红外实现避障,要求具有下述功能:1.小车前进可以避开(前、左、右)20cm的障碍物;2.实现下车前进时,不碰障碍物;3.具有声音播报功能。
引言随着微电子技术的不断发展,微处理器芯片的集成程度越来越高,单片机已可以在一块芯片上同时集成CPU、存储器、定时器、并行和串行接口、看门狗、前置放大器、A/D转换器、D/A转换器等多种电路,这就很容易将计算机技术与测量控制技术结合,组成智能化测量控制系统。
这种技术促使机器人技术也有了突飞猛进的发展,目前人们已经完全可以设计并制造出具有某些特殊功能的简易智能小车。
发挥:1.利用超声波测距2.红外寻迹可以控制小车行走的路迹3.红外发射接收器,用遥控来控制小车的行走方向工作日程安排:设计(论文)要求:要求提供以下设计资料,并装订成册:1.摘要(所做的设计如有特别之处);2.单片机外部接线图,以及其它相关的电路图;3.单片机控制电路元件明细表;4.完整的程序资料,驱动电路的程序及注解;5.电气元件明细表;6.操作原理简要说明;7.在实验室进行模拟调试所需的补充资料;8.模拟调试的结果是否满足控制要求(要有老师的鉴定结论和签名)。
学生开始执行任务书日期 200 年月日指导教师签名:年月日学生送交毕业设计(论文)日期: 200 年月日教研室主任签名:年月日学生签名:年月日摘要针对题目的要求,我们设计了一款简易的红外避障小车。
该电路设计分别以驱动模块,单片机控制显示模块组成。
为了达到题目的要求,我们以ATMEGA16-L为核心控制器件,以LM298驱动电机控制系统和红外监测系统设计而成。
关键词:ATMEGA16-L;红外避障检测电路;驱动电路。
整体构思:一.模块方案比较1.壁障模块在壁障模块中,可以选择超声波壁障。
其优点是反应速度灵敏,距离远,受外界干扰小。
但是,在本设计中,题目所要求是距离是20cm,如果利用超声波传感器进行壁障的话,由于空间小声波在小空间不同方向里会进行多次反射,左右前后的传感器之间相互干扰,使控制中心不能明确判断出那个方位遇到了障碍物,从而动作紊乱,不能实现要求。
使用红外接收头和发射管配合,利用38k频率解决灵敏度问题。
38K调制和发射电路。
使用一个定时器的快速PWM模式产生38K调制信号,通过剩余的四个施密特触发器(有2个已经用在光电编码部分)缓冲,推动8050三极管和红外发光管来发射已经调制的红外线。
其中2个1N4148接单片机IO脚,控制左右红外发光管轮流发射。
后面串接的可见光LED是为了方便用户调试而设置的,让用户知道当前是否在发射红外线。
通过调节PWM的占空比,调节红外发光管的亮度,从而实现调节感知障碍物距离的功能。
但是实际测试结果不尽人意。
灵敏度太高。
加衰减电路比较麻烦,调试不易。
且价格也贵。
利用红外传感器,其优点是对近距离的障碍物反应速度灵敏,不同方位的传感器之间信号不会相互干扰,造成误动作。
缺点是距离近,易受到自然光的干扰。
经过两种传感器性能对比与题目要求的综合考虑分析,最终选择红外传感器作为小车的眼睛,进行壁障。
LM567是一种廉价的音频锁相环集成电路,利用它可以构造性能较好的反射式光电传感器。
如下页图所示,由LM567的内部振荡器提供方波信号,点亮探头的LED,由探头的光敏管接收反射光。
经三极管放大,转换成电压信号后送到LM567的内部鉴相器2(输出鉴相器)同步解调,然后由LM567内部的比较器转换为数字输出。
并联负反馈放大电路有着稳定的增益和低的输入阻抗,能消除光敏管结电容的影响,获得良好的高频特性。
100R电位器用于调节放大器增益以调节灵敏度。
这个电路的缺点是当多个探头同时使用时因为频率接近,一旦相邻单元的光斑出现部分重合就会有差拍干扰造成输出抖动。
另外,567输出鉴相器的参考信号是从振荡电容端引出的,与发射和接收信号几乎是正交的,解调效率非常低,前级需要高倍放大。
意探头的连线要短,如果连线较长要分别屏蔽,最好把电路板跟探头做在一起。
否则发射管连线上大幅度的脉冲信号会感应耦合到接收端,导致在没有接收光的情况下也误认为收到了光信号,这种同频干扰无法用电路板上的设计来消除电路图如下图:但为了使用方便,改用成品。
(成品如下图)2.驱动模块在电机驱动模块中,由于电机的功率不大,我们可以选择使用电桥驱动,电路图如下:其优点是电路简单,成本高。
但是由于缺少保护电路,只要控制出现错误,就很容易烧坏晶体管,晶体管的价格也不菲,便宜货又电流太小,不足以承受小车的功率,使整个电路瘫痪。
然而,使用集成电路LM298,由于集成程度高,内包含稳定的数字电路,就算在编写程序的时候错误或者其他原因使控制端口同时输出通过一种电平,不容易烧坏芯片,使整个电路瘫痪。
同时芯片还有使能端,容易控制,且稳定。
特有的PWN调制功能端,使电机更容易控制。
也使得程序在减速的过程特别是保持左右电机速度平衡的程序编写上变得更加简洁容易。
15脚Multiwatt封装的L298N,内部同样4通道逻辑驱动电路。
可以方便的驱动两个直流电机,或一个两相步进电机。
L298N可接受标准TTL逻辑电平信号VSS,VSS可接4.5~7 V 电压。
4脚VS接电源电压,VS电压范围VIH为+2.5~46 V。
输出电流可达2.5 A,可驱动电感性负载。
1脚和15脚下管的发射极分别单独引出以便接入电流采样电阻,形成电流传感信号。
L298可驱动2个电动机,OUT1,OUT2和OUT3,OUT4之间可分别接电动机,本实验装置我们选用驱动一台电动机。
5,7,10,12脚接输入控制电平,控制电机的正反转。
EnA,EnB接控制使能端,控制电机的停转。
经过综合分析考虑,最终决定使用LM298作为本设计的驱动芯片。
其电路连接图如下:3.控制模块我们经常使用的单片机要AT89S51,ATMEGA16-1,凌阳单片机等。
在我们的应用中,用到最多的就是AT89S51和ATMEGA16-1。
AT89S51比较通用,能使用C语言进行程序的编写,方便阅读。
但是,其集成程度低,功能单一,需要使用到其它功能时,只能通过扩展外电路来实现,使得整个电路复杂,成本高,稳定性低。
同时,I/O口输出功率小,一般器件都需要加驱动才能够正常使用。
而ATMEGA16-L集成程度高,内集成了A/D等其它功能模块,在进行电路设计时,可以大大节省了成本,提高了整体电路稳定性。
同时输出功率大,一般器件无需驱动电路,就可以直接使用。
ATmega16是基于增强的AVR RISC结构的低功耗8 位CMOS微控制器。
由于其先进的指令集以及单时钟周期指令执行时间,ATmega16的数据吞吐率高达1 MIPS/MHz,从而可以缓减系统在功耗和处理速度之间的矛盾。
ATmega16 AVR 内核具有丰富的指令集和32 个通用工作寄存器。
所有的寄存器都直接与算逻单元(ALU) 相连接,使得一条指令可以在一个时钟周期内同时访问两个独立的寄存器。
这种结构大大提高了代码效率,并且具有比普通的CISC 微控制器最高至10 倍的数据吞吐率。
因此选用高性能的ATmega16 AVR单片机进行设计,以下是控制板的电路。
其电路连接图如下:此图为AVR ATmega16L的原理图。
二.程序设计1.程序流程图上电运行后,放到没有障碍物的空地上,小车直走。
当前方没有障碍物的的时候车就一直直走。
如果前方遇到障碍物,则小车做左转运动。
直至前方没有障碍物,这时小车恢复直走。
如果前方有障碍物的时候,左边同时也有障碍物,则小车右转。
直至左边没有障碍物或者前方没有障碍物。
这时小车恢复左转,或者直走。
如果前面没有障碍物,则先执行直走。
如果前方,左方,右方均有障碍物,则小车后退,直至前方,左方,右方任一方向没有障碍,则此时小车开始以前方,左方,右方的优先级开始执行转向。
也就是说如果前方没有障碍物,即使其他任意方向都有障碍则小车依然直走,如果前方有障碍,左边没有则右转,前方左方都有障碍,则小车右转。
否则小车后退。
2.程序编写作原理当检测到障碍物时,红外光敏二极管接收到反射回来红外光,其输出立即发生高低点平转换,该信号经放大器放大后送到单片机进行分析处理。
然后将处理后的结果发送到电机驱动模块,进行校正。
控制其向右转,向左转和后退。
避障与寻迹的设计原理是相同的,区别在于传感器的灵敏度不同,蔽障的灵敏度要比寻迹的灵敏度高,只要小车前方有障碍物,红外线通过障碍物反射到光敏管,传感器输出低点平,发送到单片机进行处理,然后单片机处理后驱动lm298去控制小车运行和方向。
四结论1.本设计制作完成了题目要求的基本部分,达到了预期的目标。
我们通过各种方案的讨论及尝试,再经过多次的整体软硬件结合的调试,不断地对系统进行优化,小车完成了各项功能。
参考文献《单片机应用技术》《单片机原理与应用》《8051单片机程序设计与实例》《MCS-51单片机实验指导》《单片机c语言指导》毕业设计(论文)成绩评定表。