164236_【荐】2015年八年级下期末考试数学试题及答案
2015八年级(下)期末数学试卷附答案

八年级(下)期末数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1.若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠﹣1 D.a≠02.分式方程的解为()A.x=1 B.x=2 C.x=3 D.x=43.若△ABC的周长是12cm,则△ABC三条中位线围成的三角形的周长为()A.24cm B.6cm C.4cm D.3cm4.矩形的长为x,宽为y,面积为16,则y与x之间的函数关系用图象表示大致为()A.B.C.D.5.如图,反比例函数的图象经过点A(﹣1,﹣2).则当x>1时,函数值y的取值范围是()A.y>1 B.0<y<l C.y>2 D.0<y<26.已知如图,A是反比例函数的图象上的一点,AB丄x轴于点B,且△ABO的面积是3,则k的值是()A.3 B.﹣3 C.6 D.﹣67.下面是四位同学解方程过程中去分母的一步,其中正确的是()A.2+x=x﹣1 B.2﹣x=1 C.2+x=1﹣x D.2﹣x=x﹣18.点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A、B、C、D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有()A.1个B.2个C.3个D.4个9.如图,菱形OABC的顶点B在y轴上,顶点C的坐标为(﹣2,1),若反比例函数y=(x>0)的图象经过点A,则k的值为()A.2 B.1 C.﹣1 D.﹣210.某中学足球队的18名队员的年龄情况如下表:年龄(单位:岁)14 15 16 17 18人数 3 6 4 4 1则这些队员年龄的众数和中位数分别是()A.15,15 B.15,15.5 C.15,16 D.16,1511.如图,△ABC中,AB=AC=13,BC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.16.5 B.18 C.23 D.2612.如图.矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F 处,折痕为AE,且EF=3.则AB的长为()A.3 B.4 C.5 D.6二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将答案直接填在答题卷中对应的横线上.13.若分式的值为0,则x=.14.今年年初,我国有的城市受雾霾天气的影响,PM2.5超标,对人体健康影响很大.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,富含大量的有毒、有害物质.将0.0000025用科学记数法表示为.15.若函数是反比例函数,且图象在第二、四象限内,则m的值是.16.一个平行四边形的一边长是3,两条对角线的长分别是4和,则此平行四边形的面积为.17.已知一个样本:﹣1,0,2,x,3,其平均数是2,则这个样本的方差s2=.(提示:方差公式为s2=.)18.一个水池装一个进水管和三个同样的出水管.先打开进水管,等水池储存一些水后,再打开出水管(进水管不关闭).若同时打开2个进水管,那么5小时后水池空;若同时打开3个出水管,则3小时后水池空.那么出水管比进水管晚开小时.三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.19.计算:(﹣1)2013+﹣|﹣2|+(2013﹣π)0﹣﹣.20.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.21.先化简,再求值.其中x=2.22.为了改善生态环境,防止水土流失,某村计划在荒坡上种480棵树,由于青年志愿者的支援,每日比原计划多种,结果提前4天完成任务,原计划每天种多少棵树?23.春兰集团对应聘者甲、乙、丙进行面试,并从专业知识、工作经验、仪表形象三方面给应聘者打分,每一方面满分20分,最后的打分制成条形统计图(如图).(1)利用图中提供的信息,在专业知识方面3人得分的极差是多少?在工作经验方面3人得分的众数是多少?在仪表形象方面谁最有优势?(2)如果专业知识、工作经验、仪表形象三个方面的重要性之比为10:7:3,那么作为人事主管,你应该录用哪一位应聘者为什么?(3)在(2)的条件下,你对落聘者有何建议?24.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.求证:BE=AE+CD.(提示:解答需作辅助线哟!)五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.25.如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)、B(﹣4,0).(1)求经过点C的反比例函数的解析式;(2)设P是(1)中所求函数图象上一点,以P、O、A顶点的三角形的面积与△COD的面积相等.求点P的坐标.26.如图,在直角坐标系中,四边形OABC的OA,OC两边分别在x,y轴上,OA∥BC,BC=15cm,A点坐标为(16,0),C点坐标为(0,4).点P,Q分别从C,A同时出发,点P以2cm/s的速度由C向B运动,点Q以4cm/s的速度由A向O运动,当点Q到达点O时,点P也停止运动,设运动时间为t秒(0≤t≤4).(1)求当t为多少时?四边形PQAB为平行四边形;(2)求当t为多少时?PQ所在直线将四边形OABC分成左右两部分的面积比为1:2;(3)直接写出在(2)的情况下,直线PQ的函数关系式.参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1.若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠﹣1 D.a≠0考点:分式有意义的条件.专题:计算题.分析:根据分式有意义的条件进行解答.解答:解:∵分式有意义,∴a+1≠0,∴a≠﹣1.故选C.点评:本题考查了分式有意义的条件,要从以下两个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;2.分式方程的解为()A.x=1 B.x=2 C.x=3 D.x=4考点:解分式方程.分析:首先分式两边同时乘以最简公分母2x(x﹣1)去分母,再移项合并同类项即可得到x的值,然后要检验.解答:解:,去分母得:3x﹣3=2x,移项得:3x﹣2x=3,合并同类项得:x=3,检验:把x=3代入最简公分母2x(x﹣1)=12≠0,故x=3是原方程的解,故原方程的解为:X=3,故选:C.点评:此题主要考查了分式方程的解法,关键是找到最简公分母去分母,注意不要忘记检验,这是同学们最容易出错的地方.3.若△ABC的周长是12cm,则△ABC三条中位线围成的三角形的周长为()A.24cm B.6cm C.4cm D.3cm考点:三角形中位线定理.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得△ABC的周长等于三条中位线围成的三角形的周长的2倍,然后代入数据计算即可得解.解答:解:∵△ABC的周长是12cm,∴△ABC三条中位线围成的三角形的周长=×12=6(cm).故选B.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键.4.矩形的长为x,宽为y,面积为16,则y与x之间的函数关系用图象表示大致为()A.B.C.D.考点:反比例函数的应用;反比例函数的图象.分析:首先由矩形的面积公式,得出它的长y与宽x之间的函数关系式,然后根据函数的图象性质作答.注意本题中自变量x的取值范围.解答:解:由矩形的面积16=xy,可知它的长y与宽x之间的函数关系式为y=(x>0),是反比例函数图象,且其图象在第一象限.故选C.点评:本题考查了反比例函数的应用,注意反比例函数y=的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.5.如图,反比例函数的图象经过点A(﹣1,﹣2).则当x>1时,函数值y的取值范围是()A.y>1 B.0<y<l C.y>2 D.0<y<2考点:反比例函数的图象;反比例函数图象上点的坐标特征.专题:压轴题;数形结合.分析:先根据反比例函数的图象过点A(﹣1,﹣2),利用数形结合求出x<﹣1时y的取值范围,再由反比例函数的图象关于原点对称的特点即可求出答案.解答:解:∵反比例函数的图象过点A(﹣1,﹣2),∴由函数图象可知,x<﹣1时,﹣2<y<0,∴当x>1时,0<y<2.故选:D.点评:本题考查的是反比例函数的性质及其图象,能利用数形结合求出x<﹣1时y的取值范围是解答此题的关键.6.已知如图,A是反比例函数的图象上的一点,AB丄x轴于点B,且△ABO的面积是3,则k的值是()A.3 B.﹣3 C.6 D.﹣6考点:反比例函数系数k的几何意义.分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.解答:解:根据题意可知:S△AOB=|k|=3,又反比例函数的图象位于第一象限,k>0,则k=6.故选:C.点评:本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.7.下面是四位同学解方程过程中去分母的一步,其中正确的是()A.2+x=x﹣1 B.2﹣x=1 C.2+x=1﹣x D.2﹣x=x﹣1考点:解分式方程.分析:去分母根据的是等式的性质2,方程的两边乘以最简公分母,即可将分式方程转化为整式方程.解答:解:方程的两边同乘(x﹣1),得2﹣x=x﹣1.故选D.点评:本题主要考查了等式的性质和解分式方程,注意:去分母时,不要漏乘不含分母的项.8.点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A、B、C、D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有()A.1个B.2个C.3个D.4个考点:平行四边形的判定.专题:几何图形问题.分析:根据平面的性质和平行四边形的判定求解.解答:解:由题意画出图形,在一个平面内,不在同一条直线上的三点,与D点恰能构成一个平行四边形,符合这样条件的点D有3个.故选:C.点评:解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联系.注意图形结合的解题思想.9.如图,菱形OABC的顶点B在y轴上,顶点C的坐标为(﹣2,1),若反比例函数y=(x>0)的图象经过点A,则k的值为()A.2 B.1 C.﹣1 D.﹣2考点:反比例函数图象上点的坐标特征;菱形的性质.专题:计算题.分析:根据菱形的性质,点A与点C关于OB对称,而OB在y轴上,则可得到A(2,1),然后根据反比例函数图象上点的坐标特征求k的值.解答:解:∵菱形OABC的顶点B在y轴上,∴点A和点C关于y轴对称,∴A(2,1),∴k=2×1=2.故选A.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了菱形的性质.10.某中学足球队的18名队员的年龄情况如下表:年龄(单位:岁)14 15 16 17 18人数 3 6 4 4 1则这些队员年龄的众数和中位数分别是()A.15,15 B.15,15.5 C.15,16 D.16,15考点:众数;中位数.专题:常规题型.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解答:解:根据图表数据,同一年龄人数最多的是15岁,共6人,所以众数是15,18名队员中,按照年龄从大到小排列,第9名队员的年龄是15岁,第10名队员的年龄是16岁,所以,中位数是=15.5.故选B.点评:本题考查了确定一组数据的中位数和众数的能力,众数是出现次数最多的数据,一组数据的众数可能有不止一个,找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数不一定是这组数据中的数.11.如图,△ABC中,AB=AC=13,BC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.16.5 B.18 C.23 D.26考点:直角三角形斜边上的中线;等腰三角形的性质.分析:根据等腰三角形三线合一的性质可得AD⊥BC,DC=,再根据直角三角形的性质可得DE=EC==6.5,然后可得答案.解答:解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,DC=,∵BC=10,∴DC=5,∵点E为AC的中点,∴DE=EC==6.5,∴△CDE的周长为:DC+EC+DE=13+5=18,故选:B.点评:此题主要考查了等腰三角形的性质,以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.12.如图.矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F 处,折痕为AE,且EF=3.则AB的长为()A.3 B.4 C.5 D.6考点:翻折变换(折叠问题);勾股定理.专题:压轴题;探究型.分析:先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.解答:解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8﹣3=5,在Rt△CEF中,CF===4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故选:D.点评:本题考查的是翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将答案直接填在答题卷中对应的横线上.13.若分式的值为0,则x=1.考点:分式的值为零的条件.专题:计算题.分析:分式的值是0的条件是:分子为0,分母不为0.解答:解:∵x﹣1=0,∴x=1,当x=1,时x+3≠0,∴当x=1时,分式的值是0.故答案为1.点评:分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.14.今年年初,我国有的城市受雾霾天气的影响,PM2.5超标,对人体健康影响很大.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,富含大量的有毒、有害物质.将0.0000025用科学记数法表示为 2.5×10﹣6.考点:科学记数法—表示较小的数.分析:绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.0000025=2.5×10﹣6;故答案为:2.5×10﹣6.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15.若函数是反比例函数,且图象在第二、四象限内,则m的值是﹣2.考点:反比例函数的性质;反比例函数的定义.专题:计算题.分析:根据反比例函数的定义可知m2﹣5=﹣1,又图象在第二、四象限,所以m+1<0,两式联立方程组求解即可.解答:解:∵函数是反比例函数,且图象在第二、四象限内,∴,解得m=±2且m<﹣1,∴m=﹣2.故答案为:﹣2.点评:本题考查了反比例函数的定义及图象性质.反比例函数解析式的一般形式(k≠0),也可转化为y=kx﹣1(k≠0)的形式,注意自变量x的次数是﹣1;当k>0时,反比例函数图象在一、三象限,当k<0时,反比例函数图象在第二、四象限内.16.一个平行四边形的一边长是3,两条对角线的长分别是4和,则此平行四边形的面积为4.考点:菱形的判定与性质;勾股定理的逆定理.分析:根据勾股定理的逆定理可得对角线互相垂直,然后根据菱形性质可求出面积.解答:解:解:∵平行四边形两条对角线互相平分,∴它们的一半分别为2和,∵22+()2=32,∴两条对角线互相垂直,∴这个四边形是菱形,∴S=4×2=4.故答案为:4.点评:本题考查了菱形的判定与性质,利用了对角线互相垂直的平行四边形是菱形,菱形的面积是对角线乘积的一半.17.已知一个样本:﹣1,0,2,x,3,其平均数是2,则这个样本的方差s2=6.(提示:方差公式为s2=.)考点:方差.分析:先由平均数公式求得x的值,再由方差公式求解.解答:解:∵平均数=(﹣1+2+3+x+0)÷5=2∴﹣1+2+3+x+0=10,x=6∴方差S2=[(﹣1﹣2)2+(0﹣2)2+(2﹣2)2+(6﹣2)2+(3﹣2)2]÷5=6.故答案为6.点评:本题考查方差的定义.它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.一个水池装一个进水管和三个同样的出水管.先打开进水管,等水池储存一些水后,再打开出水管(进水管不关闭).若同时打开2个进水管,那么5小时后水池空;若同时打开3个出水管,则3小时后水池空.那么出水管比进水管晚开15小时.考点:分式方程的应用.分析:设出水管比进水管晚开x小时,进水管进水的速度为a 米3/时,出水管的出水速度为b米3/时,根据题意可得,一个进水管(x+5)小时进的水量=两个出水管5个小时的出水量,一个进水管(x+3)小时进的水量=三个出水管3个小时的出水量,据此列方程组求解.解答:解:设出水管比进水管晚开x小时,进水管进水的速度为a 米3/时,出水管的出水速度为b米3/时,由题意得,,两式相除,得:,解得:x=15,经检验,x=15是原分式方程的解.故答案为:15.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,根据题意设出适当的未知数,找出等量关系,列方程求解,注意检验.三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.19.计算:(﹣1)2013+﹣|﹣2|+(2013﹣π)0﹣﹣.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:原式第一项利用乘方的意义计算,第二项利用二次根式性质化简,第三项利用零指数幂法则计算,第四项利用负整数指数幂法则计算,最后一项利用立方根定义计算即可得到结果.解答:解:原式=﹣1+3﹣2+1﹣3+4=2.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.考点:平行四边形的判定与性质.专题:探究型.分析:根据CE∥AB,DE交AC于点O,且OA=OC,求证△ADO≌△ECO,然后求证四边形ADCE 是平行四边形,即可得出结论.解答:解:猜想线段CD与线段AE的大小关系和位置关系是:相等且平行.理由:∵CE∥AB,∴∠DAO=∠ECO,∵在△ADO和△ECO中∴△ADO≌△ECO(ASA),∴AD=CE,∴四边形ADCE是平行四边形,∴CD AE.点评:此题主要考查了平行四边形的判定与性质等知识点的理解和掌握,解答此题的关键是求证△ADO≌△ECO,然后可得证四边形ADCE是平行四边形,即可得出结论.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.21.先化简,再求值.其中x=2.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x=2代入进行计算即可.解答:解:原式=[﹣]•=•=•=.当x=2时,原式==.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.22.为了改善生态环境,防止水土流失,某村计划在荒坡上种480棵树,由于青年志愿者的支援,每日比原计划多种,结果提前4天完成任务,原计划每天种多少棵树?考点:分式方程的应用.分析:根据:原计划完成任务的天数﹣实际完成任务的天数=4,列方程即可.解答:解:设原计划每天种x棵树,据题意得,,解得x=30,经检验得出:x=30是原方程的解.答:原计划每天种30棵树.点评:此题主要考查了分式方程的应用,合理地建立等量关系,列出方程是解题关键.23.春兰集团对应聘者甲、乙、丙进行面试,并从专业知识、工作经验、仪表形象三方面给应聘者打分,每一方面满分20分,最后的打分制成条形统计图(如图).(1)利用图中提供的信息,在专业知识方面3人得分的极差是多少?在工作经验方面3人得分的众数是多少?在仪表形象方面谁最有优势?(2)如果专业知识、工作经验、仪表形象三个方面的重要性之比为10:7:3,那么作为人事主管,你应该录用哪一位应聘者为什么?(3)在(2)的条件下,你对落聘者有何建议?考点:加权平均数;条形统计图;众数;极差.专题:图表型.分析:运用极差、众数、平均数的定义并结合条形统计图来分析和解决题目.解答:解:(1)专业知识方面3人得分极差是18﹣14=4分,工作经验方面3人得分的众数是15,在仪表形象方面丙最有优势;(2)甲得分:14×0.5+17×0.35+12×0.15=14.75分;乙得分:18×0.5+15×0.35+11×0.15=15.9分;丙得分:16×0.5+15×0.35+14×0.15=15.35分,∴应录用乙;(3)对甲而言,应加强专业知识的学习,同时要注意自己的仪表形象.对丙而言,三方面都要努力.重点在工作经验和仪表形象.点评:本题考查了从统计图中获取信息的能力和计算加权平均数的能力.24.如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.求证:BE=AE+CD.(提示:解答需作辅助线哟!)考点:全等三角形的判定与性质;矩形的判定与性质.专题:证明题.分析:作CF⊥BE,垂足为F,得出矩形CFED,求出∠CBF=∠A,根据AAS证△BAE≌△CBF,推出BF=AE即可.解答:证明:作CF⊥BE,垂足为F,∵BE⊥AD,∴∠AEB=90°,∴∠FED=∠D=∠CFE=90°,∴四边形EFCD为矩形,∴CD=EF,∵∠FED=∠D=∠CFE=90°,∠CBE+∠ABE=90°,∠BAE+∠ABE=90°,∴∠BAE=∠CBF,在△BAE和△CBF中,,∴△BAE≌△CBF(AAS),∴BF=AE,∴BE=BF+FE=AE+CD.点评:本题考查了全等三角形的性质和判定,矩形的判定和性质的应用,关键是求出△BAE≌△CBF,主要考查学生运用性质进行推理的能力.五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.25.如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)、B(﹣4,0).(1)求经过点C的反比例函数的解析式;(2)设P是(1)中所求函数图象上一点,以P、O、A顶点的三角形的面积与△COD的面积相等.求点P的坐标.考点:反比例函数综合题.专题:数形结合.分析:(1)根据菱形的性质可得菱形的边长,进而可得点C的坐标,代入反比例函数解析式可得所求的解析式;(2)设出点P的坐标,易得△COD的面积,利用点P的横坐标表示出△PAO的面积,那么可得点P的横坐标,就求得了点P的坐标.解答:解:(1)由题意知,OA=3,OB=4在Rt△AOB中,AB=∵四边形ABCD为菱形∴AD=BC=AB=5,∴C(﹣4,﹣5).设经过点C的反比例函数的解析式为(k≠0),则=﹣5,解得k=20.故所求的反比例函数的解析式为.(2)设P(x,y)∵AD=AB=5,OA=3,∴OD=2,S△COD=即,∴|x|=,∴当x=时,y==,当x=﹣时,y==﹣∴P()或().点评:综合考查反比例函数及菱形的性质,注意:根据菱形的性质得到点C的坐标;点P的横坐标的有两种情况.26.如图,在直角坐标系中,四边形OABC的OA,OC两边分别在x,y轴上,OA∥BC,BC=15cm,A点坐标为(16,0),C点坐标为(0,4).点P,Q分别从C,A同时出发,点P以2cm/s的速度由C向B运动,点Q以4cm/s的速度由A向O运动,当点Q到达点O时,点P也停止运动,设运动时间为t秒(0≤t≤4).(1)求当t为多少时?四边形PQAB为平行四边形;(2)求当t为多少时?PQ所在直线将四边形OABC分成左右两部分的面积比为1:2;(3)直接写出在(2)的情况下,直线PQ的函数关系式.考点:一次函数综合题.分析:(1)根据平行四边形PQAB的对边相等的性质得到关于t的方程,通过解方程求得t的值;(2)由题意得到:OC=4cm,OA=16cm.利用梯形的面积公式求得S梯形OABC=62(cm2),S四边形PQOC=,结合限制性条件“PQ所在直线将四边形OABC分成左右两部分的面积比为1:2”列出关于t的方程,通过解方程来求t的值;(3)根据(2)中求得的t的值可以得到点P、Q的坐标,则利用待定系数法来求直线PQ的解析式.解答:解:(1)ts后,BP=(15﹣2t)cm,AQ=4t cm.由BP=AQ,得15﹣2t=4t,t=2.5(s).又∵OA∥BC,∴当t=2.5s时,四边形PQAB为平行四边形.(2)∵点C坐标为(0,4),点A坐标为(16,0),∴OC=4cm,OA=16cm.∴S梯形OABC=(OA+BC)•OC=×(16+15)×4=62(cm2).∵t秒后,PC=2tcm,OQ=(16﹣4t)cm,∴S四边形PQOC=,又∵PQ所在直线将四边形OABC分成左右两部分的面积比为1:2,∴,解得(s).当(s)时,直线PQ将四边形OABC分成左右两部分的面积比为1:2.(3)当s时,P(,4),Q(,0).设直线PQ的解析式为:y=kx+b(k≠0),则,解得所以,此时直线PQ的函数关系式为.点评:本题考查了一次函数综合题,解题时,利用了梯形的面积公式、待定系数法求一次函数的解析式、平行四边形的判定定理等知识点,题中运用动点的运动速度与运动时间求出相关线段的长是解题的关键.。
2015新人教版八年级下册数学期末试卷及答案

2015年八年级数学(下) 期末调研检测试卷(含答案)一、选择题(本题共10小题,满分共30分) 1.二次根式21、12 、30 、x+2 、240x 、22y x +中,最简二次根式有( )个。
A 、1 个B 、2 个C 、3 个D 、4个 2.若式子23x x --有意义,则x 的取值范围为( ).A 、x≥2B 、x≠3C 、x≥2或x≠3D 、x≥2且x≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .1113,4,5222C .3,4, 5D .114,7,822 4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( )(A )AC=BD ,AB ∥CD ,AB=CD (B )AD ∥BC ,∠A=∠C (C )AO=BO=CO=DO ,AC ⊥BD (D )AO=CO ,BO=DO ,AB=BC5、如图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∠1=( )1FEDCBAA .40°B .50°C .60°D .80°6、表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( )7.如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >28、 在方差公式()()()[]2222121xx x x x x nS n -++-+-= 中,下列说法不正确的是( )A. n 是样本的容量B. n x 是样本个体C. x 是样本平均数D. S 是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47(B )众数是42(C )中位数是58(D )每月阅读数量超过40的有4个月10、如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54B .52C .53D .65二、填空题(本题共10小题,满分共30分)M PFE CBAB C A D O11.48-133-⎛⎫ ⎪ ⎪⎝⎭+)13(3--30-23-=12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )13. 平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD = cm 。
【最新】苏科版八年级数学下册期末试卷及答案

2015~ 学年第二学期初二数学期末试卷试卷分值130;知识涵盖:八下全部内容;一、选择题(本题共10小题,每小题3分,共30分) 1.(2015•黑龙江)下列图形中,既是轴对称图形又是中心对称图形的是…………( ) 2.(2015•济宁)要使二次根式2x -有意义,x 必须满足……………………( ) A .x ≤2 ;B .x ≥2; C .x >2; D .x <2;3.下列运算错误的是………………………………………………( ) A .236⨯=;B .1222=; C .222355+=; D .()244-=;4. (2015•盐城)下列事件中,是必然事件的为………………………………………( )A .3天内会下雨;B .打开电视机,正在播放广告;C .367人中至少有2人公历生日相同;D .某妇产医院里,下一个出生的婴儿是女孩; 5.如图,□ABCD 的周长是22㎝,△ABC 的周长是17㎝,则AC 的长为…………………( ) A .5cm ; B .6cm ; C .7cm ; D .8cm ;6. 为了解中学生获取资讯的主要渠道,随机抽取50名中学生进行问卷调查,调查问卷设置了“A :报纸,B :电视,C :网络,D :身边的人,E :其他”五个选项(五项中必选且只能选一项),根据调查结果绘制了如下的条形图.该调查的调查方式及图中a 的值分别是…( )A .全面调查;26 ;B .全面调查;24;C .抽样调查;26;D .抽样调查;24 ;7. (2015•营口)若关于x 的分式方程2233x mx x++=--有增根,则m 的值是………( ) A .m=-1; B .m=0;C .m=3 ;D .m=0或m=3;8. 如果点A (-2,1y ),B (-1,2y ),C (2,3y )都在反比例函数ky x=(k >0)的图象上,那么1y ,2y ,3y 的大小关系是………………………………………………( )A. B. C. D. 第5题图 第6题图 第9题图A .1y <3y <2yB .2y <1y <3yC .1y <2y <3yD .3y <2y <1y ; 9. (2015春•南长区期末)如图,点P 是反比例函数6y x=(x >0)的图象上的任意一点,过点P 分别作两坐标轴的垂线,与坐标轴构成矩形OAPB ,点D 是矩形OAPB 内任意一点,连接DA 、DB 、DP 、DO ,则图中阴影部分的面积是……………………………………( ) A .1; B .2; C .3; D .4. 10.如图,在坐标系中放置一菱形OABC ,已知∠ABC=60°,点B 在y 轴上,OA=1.将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60°,连续翻转2015次,点B 的落点依次为1B ,2B ,3B ,…,则2015B 的坐标为……………………………………………………………( )A .(1343,0);B .(1342,0);C .31343.5,2⎛⎫ ⎪ ⎪⎝⎭D .31342.5,2⎛⎫ ⎪ ⎪⎝⎭;二、填空题:(本题共8小题,每小题3分,共24分)11.了解我市中学生的视力情况,从我市不同地域,不同年级中抽取1000名中学生进行视力测试,在这个问题中的样本是 . 12.当x = 时,分式3x x-的值为零. 13. 如图,在△ABC 中,点D 在BC 上,BD=AB ,BM ⊥AD 于点M ,N 是AC 的中点,连接MN .若AB=5,BC=8,则MN= .14. 已知在同一坐标系中,某正比例函数与某反比例函数的图象交于A ,B 两点,若点A 的坐标为(-1,4),则点B 的坐标为 . 15. 已知最简二次根式21a +与7可以合并,则a 的值是 . 16. 关于x 的方程112ax x +=--的解是正数,则a 的取值范围是 .17.如图,菱形ABCD 中,AB=4,∠A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为 .第10题图 第13题图第17题图 第18题图18. 如图,双曲线ky x=(k >0)经过矩形OABC 的边BC 的中点E ,交AB 于点D ,若梯形ODBC 的面积为3,则双曲线的解析式为 . 三、解答题:(本大题76分) 19.计算:(本题满分16分)(11+-; (2)22931694x x x x x -+-÷-++;(3-+; (41÷⨯;20. (本题满分5分) 解方程:31111x x-=--;21. (本题满分5分)先化简,再求值:35222a a a a -⎛⎫÷+- ⎪--⎝⎭;其中3a =;22.(本题满分7分)如图,在菱形ABCD 中,AB=2,∠DAB=60°,点E 是AD 边的中点,点M 是AB 边上的一个动点(不与点A 重合),延长ME 交CD 的延长线于点N ,连接MD ,AN . (1)求证:四边形AMDN 是平行四边形.(2)当AM 的值为何值时,四边形AMDN 是矩形?请说明理由. 23.(本题满分5分)某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的图表.根据以上信息完成下列问题:(1)统计表中的m= ,n= ,并补全条形统计图; (2)扇形统计图中“C 组”所对应的圆心角的度数是 ;(3)已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.24. (本题满分7分)已知12y y y =-,1y 与x 成反比例,2y 与(x-2)成正比例,并且当x=3时,y=5,当x=1时,y=-1.(1)求y 关于x 的函数关系式; (2)当x=14时,求y 的值.25.(本题满分6分)(2015.泉州)如图,在平面直角坐标系中,已知A )3,1,B (2,0),O (0,0),反比例函数ky x=的图象经过点A . (1)求k 的值; (2)将△AOB 绕点O 逆时针旋转60°,得到△COD ,其中点A 与点C 对应,点B 与点D 对应,试判断点D 是否在该反比例函数的图象上.26.(本题满分6分)某水果店的老板用1200元购进一批杨梅,很快售完,老板又用2500元购进第二批杨梅,所购件数是第一批的二倍,但进价比第一批每件多5元. (1)第一批杨梅每件进价多少元?(2)老板以每件150元的价格销售第二批杨梅,售出80%后,为了尽快售完,决定打折促销,要使得第二批杨梅的销售利润不少于320元,剩余的杨梅每件售完至少打几折?27.(本题满分9分)(2014•巴中) 如图,在平面直角坐标系xOy 中,已知四边形DOBC 是矩形,且D (0,4),B (6,0).若反比例函数1k y x=(x >0)的图象经过线段OC 的中点A ,交DC 于点E ,交BC 于点F .设直线EF 的解析式为2y k x b =+.(1)求反比例函数和直线EF 的解析式; (2)求△OEF 的面积;(3)请结合图象直接写出不等式120k k x b x+->的解集.28. (本题满分9分)如图,在菱形ABCD 中,AB=4cm ,∠BAD=60°.动点E 、F 分别从点B 、D 同时出发,以1cm/s 的速度向点A 、C 运动,连接AF 、CE ,取AF 、CE 的中点G 、H ,连接GE 、FH .设运动的时间为ts (0<t <4). (1)求证:AF ∥CE ;(2)当t 为何值时,四边形EHFG 为菱形;(3)试探究:是否存在某个时刻t ,使四边形EHFG 为矩形,若存在,求出t 的值,若不存在,请说明理由.2015~ 学年第二学期初二数学期末综合试卷参考答案 一、 选择题:1.A ;2.B ;3.C ;4.C ;5.B ;6.D ;7.A ;8.B ;9.C ;10.D ; 二、填空题:11.1000名中学生的视力情况;12.3;13. 32;14.(1,-4);15.3;16. 1a >-且12a ≠-;17. 18. 2y x=;三、解答题:19.(1)1;(2)73x --;(3)0;(4)2+20. 5x =;21.132a =+; 22. (1)证明:∵四边形ABCD 是菱形,∴ND ∥AM ,∴∠NDE=∠MAE ,∠DNE=∠AME , ∵点E 是AD 中点,∴DE=AE , 在△NDE 和△MAE 中,∠NDE =∠MAE ,∠DNE =∠AME ,DE =AE , ∴△NDE ≌△MAE (AAS ),∴ND=MA ,∴四边形AMDN 是平行四边形; (2)AM=1.理由如下:∵四边形ABCD 是菱形,∴AD=AB=2,∵平行四边形AMDN 是矩形,∴DM ⊥AB ,即∠DMA=90°,∵∠DAB=60°,∴∠ADM=30°,∴AM= 12AD=1.23.(1)30,20;(2)90°;(3)450;24.(1)()342y x x =+-;(2)5;25.(1(2)(D 在该反比例函数的图像上;26. 解:(1)设第一批杨梅每件进价x 元,则 1200250025x x ⨯=+,解得 x=120. 经检验,x=120是原方程的根.答:第一批杨梅每件进价为120元; (2)设剩余的杨梅每件售价打y 折.则:2500125×150×80%+2500125×150×(1-80%)×0.1y-2500≥320,解得 y ≥7.答:剩余的杨梅每件售价至少打7折. 27.(1)解:(1)∵四边形DOBC 是矩形,且D (0,4),B (6,0), ∴C 点坐标为(6,4),∵点A 为线段OC 的中点,∴A 点坐标为(3,2),∴k1=3×2=6,∴反比例函数解析式为6y x=;把x=6代入6y x =得y=1,则F 点的坐标为(6,1); 把y=4代入6y x =得x=32,则E 点坐标为(32,4),把F (6,1)、E (32,4)代入y=k2x+b 得 2261342k b k b +=⎧⎪⎨+=⎪⎩,解得2235k b ⎧=-⎪⎨⎪=⎩,∴直线EF 的解析式为253y x =-+; (2)△OEF 的面积=S 矩形BCDO-S △ODE-S △OBF-S △CEF=454; (3)由图象得:362x <<; 28. (1)证明:∵动点E 、F 同时运动且速度相等, ∴DF=BE ,∵四边形ABCD 是菱形,∴∠B=∠D ,AD=BC ,AB ∥DC ,在△ADF 与△CBE 中,DF =BE ,∠B =∠D ,AD =BC ,∴△ADF ≌△CBE ,∴∠DFA=∠BEC , ∵AB ∥DC ,∴∠DFA=∠FAB ,∴∠FAB=∠BEC ,∴AF ∥CE ; (2)过D 作DM ⊥AB 于M ,连接GH ,EF ,∴DF=BE=t , ∵AF ∥CE ,AB ∥CD ,∴四边形AECF 是平行四边形,∵G 、H 是AF 、CE 的中点,∴GH ∥AB ,∵四边形EGFH 是菱形, ∴GH ⊥EF ,∴EF ⊥AB ,∠FEM=90°,∵DM ⊥AB ,∴DM ∥EF ,∴四边形DMEF 是矩形,∴ME=DF=t ,∵AD=4,∠DAB=60°,DM ⊥AB ,∴AM=12AD=2,∴BE=4-2-t=t ,∴t=1,(3)不存在,假设存在某个时刻t ,使四边形EHFG 为矩形, ∵四边形EHFG 为矩形,∴EF=GH , ∴22EF GH =,即()(()2222234t t -+=-,解得t=0,0<t <4,∴与原题设矛盾,∴不存在某个时刻t ,使四边形EHFG 为矩形.。
2015年八年级数学(下)期末试卷带答案

2015年八年级数学(下)期末考试卷考试时间:120分钟 总分:120分 命题:Mr. Xiong 一、选择题 (10×3′=30分)1、已知a<b 且ab ≠0,化简二次根式b a 3-的正确结果是( ) A. -a ab - B.-a ab C.a ab D.a ab -2、三角形的三边长a 、b 、c ,由下列条件不能判断它是直角三角形的是( ) A. a:b:c=7:16:14 B.222c b a =-C.2a =(b+c)(b-c)D.a:b:c=15:9:123、如图,在矩形纸片ABCD 中,AB=5CM ,BC=10CM ,CD 上有一点E ,ED=2cm ,AD 上有一点P ,PD=3cm ,过点P 作PF ⊥AD ,交BC 于点F ,将纸片折叠,使点P 与点E 重合,折痕与PF 交于点Q ,则PQ 的长是( ). A.413 cm B.3cm C.2cm D.27cm 4、5、已知a-b=2+3,b-c=3-2,则ac bc ab c b a ---++222的值为( ) A 、310 B 、123 C 、10 D 、156、数据10,10,x ,8的众数与平均数相同,那么这组数的中位数是()A .10 B .8C .12D .47、已知每一个小时有一列速度相同的动车从甲地开往乙地,图中OA 、MN 分别是第一列动车和第二列动车离甲地的路程S (km )与运行时间t (h )的函数图象,折线DB ﹣BC是一列从乙地开往甲地速度为100km/h 的普通快车距甲地的路程S (km )与运行时间t (h )的函数图象.以下说法错误的是( )第3题8、已知一次函数y=(2k-1)x-k 的图像不经过第一象限,则k 的取值范围是( )A. 21 kB. 0<k<21C. 0≤k<21D. 0≤k ≤219、如图所示,一个圆柱高为8cm ,底面圆的半径为5cm ,则从圆柱左下角A 点出发.沿圆柱体表面到右上角B 点的最短路程为( )A .B.C.D .以上都不对10、如图所示.直线y=x+2与y 轴相交于点A ,OB 1=OA ,以OB 1为底边作等腰三角形A 1OB 1,顶点A 1在直线y=x+2上,△A 1OB 1记作第一个等腰三角形;然后过B 1作平行于OA 1的直线B 1A 2与直线y=x+2相交于点A 2,再以B 1A 2为腰作等腰三角形A 2B 1B 2,记作第二个等腰三角形;同样过B 2作平行于OA 1的直线B 2A 3与直钱y=x+2相交于点A 3,再以B 2A 3为腰作等腰三角形A 3B 2B 3,记作第三个等腰三角形;依此类推,则等腰三角形A 10B 9B 10的面积为( )A .3•48 B .3•49 C .3•410 D .3•411 二、填空题(每小题3分,共24分)11、已知2753n 是整数,则正整数n 的最小值是_____________.12、如图,正方形ABCD 的边长为4,点P 在DC 边上且DP=1,点Q 是AC 上一动点,则DQ+PQ 的最小值为______.A . 普通快车比第一列动车晚发车0.5hB . 普通快车比第一列动车晚到达终点1.5hC . 第二列动车出发后1h 与普通快车相遇D .普通快车与迎面的相邻两动车相遇的时间间隔为0.7h第7题第十题图13、如图,把矩形纸片OABC 放入平面直角坐标系中,使OA 、OC 分别落在x 轴,y 轴上,顶点O 与原点O 重合连接AC ,将矩形纸片OABC 沿AC 折叠,使点B 落在D 的位置,若B (1, 2)则点D 的坐标为_____________.14、如图,直线y=kx+b 经过A (-1,2)、B (-2, 0)两点,则0≤kx+b ≤-2x 的解集是____________.15、若a ,b ,c ,是直角三角形的三条边长,斜边c 上的高的长是h ,给出下列结论:(1)以a 2,b 2,c 2的长为边的三条线段能组成一个三角形;(2)以,,的长为边的三条线段能组成一个三角形; (3)以a +b ,c +h ,h 的长为边的三条线段能组成直角三角形;(4)以,,的长为边的三条线段能组成直角三角形;(5)以,,的长为边的三条线段能组成直角三角形.其中正确结论的序号为________.16、甲、乙、丙3人用擂台赛形式进行训练,每局2人进行单打比赛,另1人当裁判,每一局的输方去当下一局的裁判,而由原来的裁判向胜者挑战.半天训练结束时发现甲共打了12局,乙共打了21局,而丙共当裁判8局.设甲丙交手a 局,乙丙交手b 局,甲乙交手c 局,则4a ﹣1+b ﹣2c 0=________,a-2, b-15, c-5三数的方差为________.17、一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH 的边长为2米,坡角∠A=30°,∠B=90°,BC=8米.当正方形DEFH 运动到什么位置,即当AE=________米时,有222BC AE DC +=.18、小王、小阳两人同时从甲、乙两地出发相向而行,小王先到达乙地后原地休息,她们二人的距离y (km )与步行的时间x (h )之间的函数关系的图像如图所示,则直线AB 的解析式为______________________. 三、解答题(共66分) 19、(6分)计算x x xx x 23)3221286÷+-(20、如图,三角形ABC 为等边三角形,D 、F 分别为BC 、AC 上的一点,且CD=BF,以AD 为边作等边三角形ADE 。
2015年八下期末数学测试题及答案

八年级下册数学期末试卷注意事项:1.本试卷满分150分,考试用时120分钟.2.答题前,考生务必将班级、姓名、考试号等填写在答题卷相应的位置上. 3.考生答题必须在答题卷上,答在试卷和草稿纸上一律无效. 一、选择题(每小题3分,共24分.每题有且只有一个答案正确) 1.若53=b a ,则b b a +的值是 ( ▲ )A .53B .58C .85D .232. 如图,天平右盘中的每个砝码的质量都是1克, 则物体A 的质量m 克的取值范围表示在数轴上 为 ( ▲ )A. B. C. D.3. 下列命题中,有几个真命题 ( ▲ ) ①同位角相等 ②直角三角形的两个锐角互余 ③平行四边形的对角线互相平分且相等 ④对顶角相等A. 1个 B . 2个 C. 3个 D. 4个 4. 若反比例函数xm y 2+=的图象在各个象限内y 随着x 的增大而增大,则m 的取值范围是( ▲ ) A .2-<mB .2->mC .2<mD .2>m5. 在一个不透明的盒子里有形状、大小完全相同的黄球2个、红球3个、白球4个,从盒子里任意摸出1个球,摸到红球的概率是 ( ▲ )A.92 B. 94 C. 32 D. 31 6. 如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC 相似的是 ( ▲ )A .B .C .D .ABC7. 如果不等式组⎩⎨⎧≥<m x x 5有解,那么m 的取值范围是 ( ▲ ) A .5>m B. 5<m C.5≥m D. 5≤m8. 如图,在矩形ABCD 中,AB =4cm ,AD =12cm ,点P 在AD 边上以每秒l cm 的速度从点A 向点D 运动,点Q 在BC 边上,以每秒4cm 的速度从点C 出发,在CB 间往返..运动,两个点同时出发,当点P 到达点D 时停止(同时点Q 也停止),在这段时间内,线段PQ 有多少次平行于AB ? ( ▲ )A .1B .2C .3D .4二、填空题(每小题3分,共30分)将答案填写在题中横线上. 9.当m = ▲ 时,分式22m m --的值为零. 10. 命题“全等三角形的面积相等”的逆命题是 ▲11.在比例尺为1∶1 00 000的地图上,量得甲、乙两地的距离是15cm ,则两地的实际距离 ▲ km .12. 如图是一种贝壳的俯视图,点C 分线段AB 近似于黄金分割(AC > BC ).已知AB =10cm ,则AC 的长约为 ▲ cm .(结果精确到0.1cm )13. 扬州市义务教育学业质量监测实施方案如下:3、4、5年级在语文、数学、英语3个科目中各抽1个科目进行测试,各年级测试科目不同.对于4年级学生,抽到数学科目的概率为 ▲ .14. 如图,使△AOB ∽△COD ,则还需添加一个条件是: ▲ (写一个即可)ODCBA第12题图 第14题图15. 若关于x 的分式方程xm x x -=--525无解,则m 的值为____▲_____16. 如图,△ABC 中,∠B =90°,AB =6,BC =8,将△ABC 沿DE 折叠,使点C 落在AB •边上的C ′处,并且C ′D ∥BC ,则CD 的长是 ▲17. 某单位向一所希望小学赠送1080件文具,现用A 、B 两种不同的包装箱进行包装,已知每个B 型包装箱比A 型包装箱多装15件文具,单独使用B 型包装箱比单独使用A 型包装箱可少用12个.设A 型包装箱每个可以装x 件文具,根据题意列方程为 ▲ .18. 如图,双曲线2(0)y x x=>经过四边形OABC 的顶点A 、C ,∠ABC =90°,OC 平分OA 与x 轴正半轴的夹角,AB ∥x 轴,将△ABC 沿AC 翻折后得到△AB 'C ,B '点落在OA 上,则四边形OABC的面积是 ▲三、解答题(本大题10小题,共96分)解答应写出文字说明、证明过程或演算步骤. 19.(本题满分8分)(1)解不等式,并把解集表示在数轴上 (2)解分式方程 242x x +>-211x x x-=-20.(本题满分8分)先化简:1)111(2-÷-+x xx ,再选择一个恰当的x 值代入并求值. 21.(本题满分8分)如图,已知D E 、分别是△ABC 的边AC AB 、上的点,若55A ∠=︒,85C ∠=︒, 40ADE ∠=︒.(1)请说明:△ADE ∽△ABC ;(2)若8,6,10AD AE BE ===,求AC 的长.22.(本题满分8分)如图,点D ,E 在△ABC 的边BC 上, 连接AD ,AE . ①AB =AC ;②AD =AE ;③BD =CE .以 此三个等式中的两个作为命题的题设,另一个作为命题的结论,构成三个命题:①②⇒③;①③⇒②;②③⇒①.(1)以上三个命题是真命题的为(直接作答) ;(2)请选择一个真命题进行证明(先写出所选命题,然后证明).ED CB AEDCBA第16题图 第18题图23.(本题满分10分)如图,在单位长度为1的方格 纸中.ABC △如图所示:(1)请在方格纸上建立平面直角坐标系,使(0,0)A ,(4,4)C -并求出B 点坐标( , ); (2)以点A 为位似中心,位似比为1:2,在第一,二象限内将ABC △缩小,画出缩小后的位似图形A B C '''△; (3)计算A B C '''△的面积S24.(本题满分10分)在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.随机地摸取出一张纸牌然后放回,再随机摸取出一张纸牌.(1)用树状图或列表的方法计算两次摸取纸牌上数字之积为奇数的概率;(2)甲、乙两个人进行游戏,如果两次摸出纸牌上数字之积为奇数,则甲胜;如果两次摸出纸牌上数字之积为偶数,则乙胜。
2015新人教版八年级下册数学期末试卷及答案

2015年八年级数学(下)期末调研检测试卷(含答案)一、选择题(本题共10小题,满分共30分)1.二次根式21、12 、30 、x+2 、240x 、22y x中,最简二次根式有()个。
A 、1 个B 、2 个C 、3 个D 、4个2.若式子23x x 有意义,则x 的取值范围为().A 、x ≥2B 、x ≠3C 、x ≥2或x ≠3D 、x ≥2且x ≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A .7,24,25B .1113,4,5222 C .3,4, 5 D .114,7,8224、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是()(A )AC=BD ,AB ∥CD ,AB=CD (B )AD ∥BC ,∠A=∠C (C )AO=BO=CO=DO ,AC ⊥BD(D )AO=CO ,BO=DO ,AB=BC5、如图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∠1=()1FEDCBAA .40°B .50°C .60°D .80°6、表示一次函数y =mx+n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是()7.如图所示,函数x y 1和34312xy 的图象相交于(-1,1),(2,2)两点.当21y y 时,x 的取值范围是()A .x <-1B .—1<x <2C .x >2D . x <-1或x >28、在方差公式2222121xx xx xx nSn中,下列说法不正确的是()A. n 是样本的容量B.n x 是样本个体C.x 是样本平均数D. S 是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()(A )极差是47 (B )众数是42 (C )中位数是58(D )每月阅读数量超过40的有4个月10、如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【】A .54B .52C .53D .6510203040506070809012345678某班学生1~8月课外阅读数量折线统计图3670585842287583本数月份(第8题)12345678(-1,1)1y (2,2)2y xyOM PFE CBABCADO二、填空题(本题共10小题,满分共30分)11.48-133+)13(3-30-23=12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为()13.平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB的周长大2cm ,则CD = cm。
八年级数学下期末试卷带答案

适用精选文件资料分享2015 年八年级数学下期末试卷(带答案)江阴市山观二中 2014-2015 八年级下数学期末试卷一、选择题(本大题共有 10 小题,每题 3 分,共 30 分,在每题所给出的四个选项中,只有一项为哪一项正确的,请把正确选项前的字母代号填在题后的括号内.)1 .要使分式 5x-1 有意义,则 x 的取值范围是()A .x≠0 B.x>1 C.x<1 D.x≠12 .不改变分式的值,将 x2-x 变形,可得()A .- xx-2 B.xx-2 C.- xx+2 D . xx +2 3 .以下式子中,属于最简二次根式的是() A .9 B.10 C.20 D.13 4.以下函数中,图象经过点(1,-1)的是() A .y=1x B.y=2x C.y=- 1xD.y=- 2x 5 .以下图形中,既是中心对称图形又是轴对称图形的是A. B . C. D. 6 .如图,△ ABC和△ DBE都是等腰直角三角形,点E在 AB上,若△ ABC经旋转后能与△ DBE 重合,则旋转中心为()A.点 A B.点 B C.点 C D.点 E 7.如图,在菱形 ABCD中,对角线AC长为 3cm,∠ABC=60°,则菱形 ABCD的周长为() A .63cm B.123cm C.12cm D.24cm 8.在一次有 24 000 名学生参加的数学质量抽测的成绩中,随机抽取 2 000 名考生的数学成绩进行解析,则在该抽样中,样本指的是() A .所抽取的 2 000 名考生的数学成绩 B .24 000 名考生的数学成绩 C.2 000 D .2 000 名考生 9 .以下事件中,属于必然事件的是() A .抛一枚硬币,正面向上 B .经过某一有交通讯号灯的路口,恰好遇到红灯 C.打开电视,正在播放动画片D.3 个人分成两组,此中一组必有 2 人 10 .如图,P 为正方形 ABCD的对角线 BD上任一点,过点 P 作 PE⊥BC 于点 E,PF⊥CD于点 F,连接 EF.给出以下 4 个结论:① AP=EF;②AP⊥EF;③△ APD必定是等腰三角形;④∠PFE=∠BAP.此中,所有正确的结论是()A.①② B .①③ C.①②④ D.①③④二、填空题(本大题共有 8 小题,每题 3 分,共 24 分.请把结果直接填在题中的横线上.)11 .当x=时,分式 x-2x 的值为 0. 12 .若实数 a 满足 a-1=2,则 a 的值为. 13 .给出以下 3 个分式: 2ab,1a2b,3abc,它们的最简公分母为____________________. 14 .若将反比率函数 y=6x 的图象向上平移2 个单位所得图象经过点 P(m,-4),则 m=. 15 .如图,在△ ABC中, AB=AC,∠ A=20o,边 AC的垂直均分线交AC于点 D,交 AB于点 E,则∠ BCE等于 ___________ o. 16 .如图,已知□ ABCD 的对角线 AC、BD订交于点 O,点 E 是 CD的中点,若 BD=12cm,△DOE 的周长为 15cm,则□ ABCD的周长为___________cm. 17 .一个不透明的袋中装有红、白、黄3 种颜色的若干个小球,它们除颜色外完好同样.每次从袋中摸出1 个球,记下颜色后放回搅匀再摸.摸球实验中,统计获得下表中的数据:摸球次数 10 20 50 100 150 200 250300 400 500出现红球的频数 4 9 16 31 44 61 74 92 118 147出现白球的频数 5 7 18 33 54 78 101 123 159 202由此可以预计摸到黄球的概率约为 ____________(精确到 0.1 ). 18 .如图,已知菱形 OABC的极点 A 在 x 轴的负半轴上,反比率函数 y=- 4x( x<0)的图象恰好经过点 C,且与 AB交于点 D,若△ OCD的面积为 22,则点B 的坐标为 ____________.三、解答题(本大题共 8 小题,共 66分,解答时应写出文字说明、说理过程或演算步骤.) 19 .(本题共有 2小题,每题 4 分,共 8 分)计算:( 1)12-3-3+(3)2 ;(2)6-3 3 +(2 +2)(2 -2). 20 .(本题共有 2 小题,每题 5 分,共 10 分)(1)计算:2xx2-4-1x+2;(2)解方程: xx-1+1x=1. 21.(本题满分 6 分)先化简,再求值: m2-1m2+m÷m- 2m-1m,其中 m=1+2.22.(本题满分8 分)如图,在四边形ABCD中,AB∥CD,∠B=∠D.P为对角线AC上的一点,PE⊥AB于E,PF⊥AD于F,且PE=PF,求证:四边形 ABCD是菱形.23.(本题满分 8 分)中学生带手机上学的现象愈来愈遇到社会的关注.某市记者随机检查了一些家长对这类现象的态度(A:无所谓;B:反对; C:同意),并将调 ? 私峁 ? 绘制成图①和图②的统计图(不完好).请依据图中供给的信息,解答以下问题:(1)在图①中, C部分所占扇形的圆心角度数为 ___________°;选择图①进行统计的长处是;(2)将图②增补完好;(3)依据抽样检查结果,可预计该市 50000 名中学生家长中有 _________名家长持同意态度.24.(本题满分 9 分)如图,直线 y=ax+1(a≠0)与 x 轴交于点 A,与 y 轴交于点 B,与双曲线 y= k x 在第四象限的交点为 C.若点 B 与点C 关于点 A 对称,且△ BOC的面积为 3.(1)求 a、k 的值;(2)问:在 x 轴上能否存在这样的点 P,使得△ PBC为等腰三角形?若存在,请直接写出所有吻合条件的点 P的坐标;若不存在,请说明原由.25.(本题 9 分)如图,直线 y= 4 3 x+8 分别交 x 轴、 y 轴于 A、B两点,点 C为 OB的中点,点 D在第二象限,且四边形 AOCD为矩形.(1)求证: AB、CD相互均分;(2)动点 P 从 A 出发,以每秒2 个单位长度的速度,沿 AO、OC向点 C作匀速运动.设点 P的运动时间为 t 秒.在动点 P 从 A 出发的同时,动点 Q 从 C出发,以每秒 1 个单位长度的速度,沿 CM向点 M作匀速运动.当 P、Q中的一点到达终点后,该点停止运动,另一点连续运动,直至到达终点,整个运动停止.问:能否存在这样的 t ,使得直线 PQ将四边形 AOCM的面积分成1∶3两部分?若存在,央求出所有吻合条件的 t 的值;若不存在,请说明原由. 26 .(本题满分 8 分)南京青奥会开幕在即,某衣饰店老板小陈用 3 600 元购进甲、乙两款运动服,很快售完.小陈再次去购进同款、同数目的衣饰时,他发现甲、乙两款衣饰的进价分别上升了20 元/件、5 元/ 件,结果比第一次多花了 400 元.设小陈每次购买甲衣饰 x 件,乙衣饰 y 件.(1)请直接写出 y 与 x 之间的函数关系式:__________________.(2)小陈经计算后发现,进货时甲、乙两款衣饰的均匀单价第二次比第一次上升了 8 元.①求 x、y 的值;②第二次所购进的衣饰所有卖出后赢利 35%,小陈带着这批衣饰的所有销售款再去进货,这时两款衣饰均恢复了最先的进价,于是小陈花了3 000 元购买乙衣饰,其他钱款所有购买甲衣饰,结果所购甲、乙两款衣饰数目恰好相等,问:此次小陈共购买了多少件衣饰?。
八年级(下用)期末考试数学试卷(含答案)

2015年新北师大版八年级下数学期末考试试卷(2):把下列各式分解因式1、222xy x y -- 2、232a a a -+-参考答案一、 选择题(每小题3分,共30分)1、A ;2、B ;3、C ;4、C ;5、C ;6、A ;7、D ;8、B ;9、B ;10、D .二、填空题(每小题3分,共18分)11、2-;12、20o ;13、12 ;14、18;15、-3;16、(9,6),(-1,6),(7,0). 三、解答题(7+7+8+8+10+10+10+12) 17、解:(1)解①得2x <, ……2分解②得4x ≥-, ……4分所以不等式组的解集为:42x -≤<, ……6分 其解集在数轴上表示出来略. ……7分18、解:)2(311---=x x …………2分 6311+--=x x521+-=x …………4分 42=x2=x …………5分经检验2=x 是原方程的增根…………6分 ∴原方程无解…………7分19、解:(1)以B 为圆心,适当长为半径画弧,交AB BC ,于M ,N 两点.…1分 分别以M N ,为圆心,大于12MN 长为半径画弧.两弧相交于点P .……2分 过B P ,作射线BF 交AC 于F .……4分(注:没有作出射线BF 与AC 的交点并表明、标明F 扣1分). (2)证明:AD BC ∥,DAC C ∴=∠∠. 又BF 平分ABC ∠, ∴∠ABC =2∠FBC , ∵2ABC ADG =∠∠, D BFC ∴=∠∠,……7分 又AD BC = ,ADE CBF ∴△≌△, DE BF ∴=.……8分20、解:原式=22(2)4(2)x x x x x --÷-……2分 =2(2)(2)(2)(2)x xx x x x -∙-+-……4分 =12x +……6分∵64<<x -,且x 为整数,∴若使分式有意义,x 只能取-3,-1和1.当x =1时,原式=13. ……8分 21、证法一:∵ 四边形ABCD 是平行四边形, ∴ AD =BC ,AB =CD ,∠A =∠C ,∵ AM =CN ,∴ △ABM ≌△CDN (SAS ).……5分 ∴ BM =DN .∵ AD -AM =BC -CN ,即MD =NB ,∴ 四边形MBND 是平行四边形(两组对边分别相等的四边形是平行四边形)……10分 证法二:∵ 四边形ABCD 是平行四边形, ∴ AD ∥BC ,AD =BC ,∵ AM =CN , ∴ AD -AM =BC -CN , ∴ MD =NB ,∴ 四边形MBND 是平行四边形,(一组对边平行且相等的四边形是平行四边形)(2)解:假设存在时间t 秒,使△BDP 和△CPQ 全等, 则BP =2t ,BD =5,CP =8-2t ,CQ =2.5t , ∵△BDP 和△CPQ 全等,∠B =∠C ,∴2825 2.5t t t =-⎧⎨=⎩ 或2 2.5582t t t =⎧⎨=-⎩(此方程组无解),解得:t =2,∴存在时刻t =2秒时,△BDP 和△CPQ 全等,……8分 此时BP =4,BD =5,CP =8-4=4=BP ,CQ =5=BD , 在△BDP 和△CQP 中BD CQ B C BP CP =⎧⎪∠=∠⎨⎪=⎩,∴△BDP ≌△CQP (SAS ).……10分23、解:(1)依题意得: 1(2100800200)1100y x x =--=,2(24001100100)20000120020000y x x =---=-,……4分(2)设该月生产甲种塑料m 吨,则乙种塑料(700-m )吨,总利润为W 元,依题意得: W=1100m +1200(700-m )-20000=-100m +820000. ∵400700400m m ≤⎧⎨≤⎩-解得:300≤m≤400.……7分∵-100<0,∴W随着m的增大而减小,∴当m=300时,W最大=790000(元).此时,700-m=400(吨).因此,生产甲、乙塑料分别为300吨和400吨时总利润最大,最大利润为790000元.……10分一、选择题:1. 如果(1)1m x m +>+的解集为1x <,则m 的取值范围是( ) A. 0m <B. 1m <-C. 1m >-D. m 是任意实数BC .A. 4个B. 5个C. 3个D. 2个(第3题) (第7题)(第6题)4、下列运动中,是平移的是( )A.开门时,门的移动 B.走路时手臂的摆动 C.移动电脑的鼠标时,显示屏上鼠标指针的移动 D .移动书的某一页时,这一页上的某个图形的移动5. 直角三角形中两锐角平分线所交成的角的度数是( ) A. 45°B. 135°C. 45°或135°D. 都不对6、如图,所给的图案由△ABC 绕点O 顺时针旋转多少度前后的图形组成的 ( ). A .45°、90°、135° B . 90°、135°、180°C .45°、90°、135°、180°、225°D .45°、135°、225°、270°7、若x 2+(2m +2)x +16是完全平方式,则m 的值为 ( )A .m =3B .m =5C .m =-3或m =5;D .m =3或m =-5 8. 如图8,已知AB =AC ,∠A =36°,AC 的垂直平分线MN 交AB 于D ,AC 于M ,以下结论:①△BCD 是等腰三角形;②射线CD 是∠ACB 的角平分线;③△BCD 的周长C △BCD =AB +BC ;④△ADM ≌△BCD 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F E DCB A 2014——2015学年度第二学期质量监控试卷一、选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.在平面直角坐标系中,点P ()1,4-在A .第一象限.B .第二象限.C .第三象限.D .第四象限. 2.下列图形中,既是..轴对称图形又是..中心对称图形的是3.方程2x x =的根是A .0x =B .1x =C .11x =,20x =D .11x =-,20x = 4.如果一个多边形的内角和与外角和相等,那么这个多边形是A .四边形B .五边形C .六边形D .七边形 5.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:则这四人中成绩发挥最稳定的是 A .甲 B .乙 C .丙 D .丁 6.如图,在△ABC 中,点 D 、E 、F 分别是BC 、AB 、AC 的中点,如果△ABC 的周长为20,那么△DEF 的周长是A .5B .10C .15D .20 7.把方程2250x x --=配方后的结果为A .2(2)9x += B .2(2)9x -= C .2(1)6x -= D . 2(1)6x +=8.如图是矩形ABCD 剪去一角所成图形,AB=6cm ,BC=8cm ,AE=5cm ,CF=2cm .一动点P 以1cm/s 的速度沿折线AE —EF —FC 运动,设点P 运动的时间为x (s ),△ABP 的面积为y (cm 2),则y 与x 之间的函数图象大致为二、填空题(本题共20分,每小题4分)9.函数y=中自变量x的取值范围是________.10.点(1,2)-关于x轴对称点的坐标为.11.如图,□ABCD中,DE平分∠ADC交边BC于点E,AD=9,AB=6,则BE= .12.过点(0,1-)的直线不过第二象限,写出一个满足条件的一次函数解析式___________.13.如图,在平面直角坐标系中,一动点A从原点O出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点()()()()12340,1,1,1,1,0,2,0,A A A A,则点9A的坐标为_____,点17A的坐标为_______点41nA+(n是自然数)的坐标为________.三、解答题(本题共30分,14题10分,15—18题每小题5分)14.用适当方法解下列方程(本题共10分,每小题5分)(1)22310x x-+=;(2)()868y y y-+=.15.如图,在□ABCD中,点E F,分别在AB CD,上,AE CF=.求证:.DE BF=16.如图,直线()10y kx k=+≠经过点A.(1)求k的值;(2)求直线与x轴,y轴的交点坐标.17.关于x的一元二次方程2210x x m-+-=有两个不相等实数根.(1)求m的取值范围;(2)如果0x=是方程的一个根,求m的值及方程另一个根.18.列方程(组)解应用题:某产粮大户今年产粮20吨,计划后年产粮达到28.8吨,若每年粮食增产的百分率相同,求平均每年增产的百分率.四、解答题(本题共24分,每小题6分)19.如图,在正方形网格中,ABC △的三个顶点都在格点上,点A C 、的坐标分别为(24)-,、(41)-,(1)点B 的坐标是 ;(2)在(1)的条件下,画出ABC △关于原点O 对称的点1A 坐标是 ;(3)在(1)的条件下,平移ABC △,使点A 画出平移后的222A B C △,点2B 的坐标是 ,点标是 .20.已知:直线()0y kx b k =+≠经过点()0,4A 和(1)求直线()0y kx b k =+≠的解析式;(2)如果直线()0y kx b k =+≠,与x 轴交于点C 一点P ,使得P A=AC ,请直接写出点P 坐标.21随机抽取获得的50理:(2)请把频数分布直方图补充完整;(3)为了鼓励节约用水,要确定一个月用水量的标准,超出这个标准的部分按1.4倍价格收费.若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少合适? 22.如图,□ABCD 中, AE ⊥BD 于点E ,CF ⊥BD 于点F .(1)求证:BF =DE ;(2)如果75ABC ∠=︒,30DBC ∠=︒, BC =2,求BD 的长.频数分布表五、解答题(本题共22分,第23题6分,第24题8分,第25题8分) 23是圆O “好O 3,过点M 、O 画一条“好线”,过O 作OM 的垂线,即为另一条“好线”.所以这两条“好线”将的圆O 的面积四等分.问题迁移:(1)请在图4中作出两条“好线”,使它们将□ABCD 的面积四等分; (2)如图5,M 是正方形ABCD 内一定点,请在图5中作出两条“好线”(要求其中一条“好线”必须过点M ),使它们将正方形ABCD 的面积四等分;(3)如图6,在四边形ABCD 中,AB CD ∥,AB CD BC +=,点P 是AD 的中点,点Q 是边BC 一点,请作出“好线”PQ 将四边形ABCD 的面积分成相等的两部分.24.已知:关于x 的一元二次方程2(mx m -+(1)求m 的取值范围;(2)若m 点(,)P p q 的坐标;(3)在(2)的条件下,分别在y 轴和直线y =x 的周长最小,求PMN ∆的周长.25.如图,矩形ABCD 中,点E 是边AB 的中点,点F 、G 是分别边AD 、BC 上任意一点,且AE =BG ,FEG α∠=.(1)如图,若AE =AF ,则EF 与EG 的数量关系为 ,α= ;(2)在(1)的条件下,若点P 为边BC 上一点,连接EP ,将线段EP 以点E 为旋转中心,逆时针旋转90°,得到线段EQ ,连接FQ ,在图2中补全图形,请猜想AF 与BG 的数量关图5图6图2 图4系,并证明你的结论;(3)在(2)的条件下,若30EQF ∠=︒,EF =,则FQ = (用含a 的代数式表示).图1 图2平谷区2013——2014学年度第二学期质量监控试卷答案 初 二 数 学 2014年7月二、填空题(本题共20分,每小题4分)9.5x ≤;10.()1,2;11.3;12.答案不唯一,如1y x =-等;13.()4,1;……………………………………………………………………………………1分 ()8,1;……………………………………………………………………………………2分 ()2,1n .……………………………………………………………………………………4分三、解答题(本题共30分,14题10分,15—18题每小题5分) 14.(1)解:2,3,1a b c ==-=…………………………………………………………1分∴∆=…………………………………………………………………2分=……………………………………………………………………………………3分1= …………………………………………………………………………………………4分∴()3131224x --±±==⨯∴原方程的解为1211,2x x ==………………………………………………………………5分 (2)解:28680y y y -+-=………………………………………………………………1分2280y y --=228y y -=………………………………………………………………2分 22181y y -+=+()219y -=………………………………………………………………3分13y -=±1134,y ∴=+=………………………………………………………………4分2132y =-=-……………………………………………………………5分15.证明:∵四边形ABCD 是平行四边形,∴AD CB A C =∠=∠, .…………………………………………………………………2分 又∵AE CF =,∴ADE CBF △≌△.………………………………………………………………………4分 ∴DE BF =.…………………………………………………………………………………5分 16.解:(1)根据题意得()1,3A13k ∴+= ……………………………………………………………………………………1分 2k ∴= ………………………………………………………………………………………2分(2)21y x ∴=+ …………………………………………………………………………3分 令y =0得,210x +=12x ∴=-∴直线与x 轴交于点1,02⎛⎫- ⎪⎝⎭……………………………………………………………4分 令x =0得,1y =∴直线与y 轴交于点()0,1………………………………………………………………5分 17.解:(1)证明:()()2241m ∆=---444m =-+84m =- ……………………………………………………………1分∵有两个不相等实数根∴840m ∆=->.………………………………………………………………………2分 ∴2m <.…………………………………………………………………………………3分 (2)把0x =代入原方程,得10m -=解得1m = (4)分 ∴原方程变为220x x -= 解方程,得 10x =,22x =∴方程的另一个根为2x =……………………………………………………………………5分 18.解:设平均每年增产的百分率为x .……………………………………………………1分根据题意,得()220128.8x += …………………………………………………………………2分解得 120.2, 2.2x x ==-………………………………………………………………3分其中 2.2x =-不合题意,舍去∴0.220%x ==. ………………………………………………………………………4分 答:平均每年增产的百分率为20%.………………………………………………… 5分 四、解答题(本题共24分,每小题6分)19. (1)点B 的坐标是()2,0-;………………………………1分 (2)如图所示…………………………………………………2分点1A 坐标是()2,4-; ………………………………… 3分 (3)如图所示…………………………………………………4分 点2B 的坐标为(02)-, ……………………………… 5分点2C 的坐标为(21)--,………………………………………………………………………6分 20.解:(1)把()0,4A 和()6,4B --代入()0y kx b k =+≠得464b k b =⎧⎨-+=-⎩………………………………………………………………………………2分 解得443b k =⎧⎪⎨=⎪⎩…………………………………………………………………………………3分∴所求直线解析式为443y x =+.…………………………………………………………4分 (2)()()0,90,2P -或. ……………………………………………………………………6分21.解:(1)如表所示 ………………………………………………………………………2分(2)如图所示…………………………………………………………………………………3分 (3)方法一:111960%50+= ………………………………………………………………5分 方法二:0.22+0.38=0.6=60%频数分布表要使60% 的家庭收费不受影响,家庭月均用水量应该定为5吨合适. …………………6分 22.(1)证明:∵□ABCD , ∴AD ∥BC ,AD =BC .∴ADE CBF ∠=∠ .………………………………………………………………………1分 ∵AE ⊥BD 于点E ,CF ⊥BD 于点F ,∴90AED CFB ∠=∠=︒.…………………………………………………………………2分 ∴△ADE ≌△CBF .∴DE=BF. ……………………………………………………………………………………3分 (2)解:∵75ABC ∠=︒,30DBC ∠=︒, ∴753045ABE ∠=︒-︒=︒. ∵AB ∥CD ,∴753045ABE ∠=︒-︒=︒∵AD=BC =2,=30ADE CBF ∠=∠︒, 在Rt △ADE 中, ∴AE =1, DE=……………………………………4分在Rt △AEB 中,45ABE BAE ∠=∠=︒∴AE=BE =1. …………………………………………………………………………………5分6分 2分4分 6分222[(3)]4369(3)m m m m m ∴∆=-+-⨯=-+=-;0m ≠………………………………………………………………………………………1分 0∆>,∴3m ≠.……………………………………………………………………………………2分 即m 的取值范围为0m ≠且3m ≠.(2)解:由求根公式,得(3)(3)2m m x m+±-=.11x ∴=…………………………………………………………………………………………3分23x m=,………………………………………………………………………………………4分∵m 为正整数,方程根为整数,∴1m =,3m =. ∵3m ≠, ∴1m =.∴213x =+=…………………………………………………………………………………5分 p q <, ∴p=1,q=3.∴(1,3)P(3)作点P 关于y 轴的对称点'P ,∴'(1,3)P -.作点P 关于直线y=x 的对称点''P , ∴''(3,1)P .连结'''P P ,与y 轴和直线y =x 即PMN ∆的周长最小. 过''''P P Q P Q Q ⊥作于点, ∴'2''4P Q P Q ==,.∴'''P P =………………………………………………………………………………8分 即PMN ∆的周长最小值为25.解:(1)EF 与EG 的数量关系为 EF=EG ,α= 90° ;………………2分 (2)如图,补全图形. ……………………………………………3分 由(1)知90GEF ∠=︒, EF=EG .由题意得90,GEP EP EQ ∠=︒=.∵90GEP PEF QEF FEP ∠+∠=∠+∠=︒∴GEP QEF ∠=∠………………………………………………4分 ∵EG=EF ,EP=EQ∴EPG ∆≌EQF ∆…………………………………………………………………………5分 ∴GP=FQ ………………………………………………………………………………………6分 (3)1)FQ a =…………………………………………………………………………8分E初二数学试卷11页共4页。