2010年至2015年岳阳中考数学题分类汇编
历年中考真题分类汇编(数学)

第一篇基础知识梳理第一章数与式§1.1实数A组2015年全国中考题组一、选择题1.(2015·浙江湖州,1,3分)-5的绝对值是()A.-5 B.5 C.-15 D.15解析∵|-5|=5,∴-5的绝对值是5,故选B.答案 B2.(2015·浙江嘉兴,1,4分)计算2-3的结果为() A.-1 B.-2 C.1 D.2解析2-3=-1,故选A.答案 A3.(2015·浙江绍兴,1,4分)计算(-1)×3的结果是() A.-3 B.-2 C.2 D.3解析(-1)×3=-3,故选A.答案 A4.(2015·浙江湖州,3,3分)4的算术平方根是() A.±2 B.2 C.-2 D. 2解析∵4的算术平方根是2,故选B.答案 B5.(2015·浙江宁波,3,4分)2015年中国高端装备制造业收入将超过6万亿元,其中6万亿元用科学记数法可表示为()A.0.6×1013元B.60×1011元C.6×1012元D.6×1013元解析6万亿=60 000×100 000 000=6×104×108=6×1012,故选C.答案 C6.(2015·江苏南京,5,2分)估计5-12介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间解析∵5≈2.236,∴5-1≈1.236,∴5-12≈0.618,∴5-12介于0.6与0.7之间.答案 C7.(2015·浙江杭州,2,3分)下列计算正确的是() A.23+26=29B.23-26=2-3C.26×23=29D.26÷23=22解析只有“同底数的幂相乘,底数不变,指数相加”,“同底数幂相除,底数不变,指数相减”,故选C.答案 C8.★(2015·浙江杭州,6,3分)若k<90<k+1(k是整数),则k=() A.6 B.7 C.8 D.9解析∵81<90<100,∴9<90<100.∴k=9.答案 D9.(2015·浙江金华,6,3分)如图,数轴上的A,B,C,D四点中,与表示数-3的点最接近的是 ()A.点A B.点B C.点C D.点D解析 ∵-3=-1.732,∴表示-3的点与表示-2的点最接近. 答案 B二、填空题10.(2015·浙江宁波,13,4分)实数8的立方根是________. 解析 ∵23=8,∴8的立方根是2. 答案 211.(2015·浙江湖州,11,4分)计算:23×⎝ ⎛⎭⎪⎫122=________.答案 212.(2015·四川巴中,20,3分)定义:a 是不为1的有理数,我们把11-a称为a 的差倒数,如:2的差倒数是11-2=-1,-1的差倒数是11-(-1)=12.已知a 1=-12,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,……,以此类推,则a 2 015=________.解析 根据“差倒数”的规定进行计算得:a 1=-12,a 2=23,a 3=3,a 4= -12,……,三个数一循环,又2 015÷3=671……2,∴a 2 015=23. 答案 23三、解答题13.(2015·浙江嘉兴,17(1),4分)计算:|-5|+4×2-1. 解 原式=5+2×12=5+1=6.14.(2015·浙江丽水,17,6分)计算:|-4|+(-2)0-⎝ ⎛⎭⎪⎫12-1.解 原式=4+1-2=3.15.(2015·浙江温州,17(1),5分)计算:2 0150+12+2×⎝ ⎛⎭⎪⎫-12.解 原式=1+23-1=2 3.16.(2015·浙江衢州,17,6分)计算:12-|-2|+(1-2)0-4sin 60° 解 原式=23-2+1-23=-1.B 组 2014~2011年全国中考题组一、选择题1.(2013·浙江舟山,1,3分)-2的相反数是 ( )A .2B .-2C.12D .-12解析 -2的相反数是2,故选A. 答案 A2.(2014·云南,1,3分)⎪⎪⎪⎪⎪⎪-17=( )A .-17 B.17C .-7D .7解析 由绝对值的意义可知:⎪⎪⎪⎪⎪⎪-17=-⎝ ⎛⎭⎪⎫-17=17.故选B.答案 B3.★(2013·安徽,1,4分)-2的倒数是 ( )A .-12B.12C .2D .-2解析 ∵-2×(-12)=1,∴-2的倒数是-12. 答案 A4.(2013·浙江温州,1,4分)计算:(-2)×3的结果是 ( )A .-6B .1C .1D .6解析 根据有理数的乘法运算法则进行计算,(-2)×3=-2×3=-6.故选A. 答案 A5.(2014·浙江绍兴,1,4分)比较-3,1,-2的大小,正确的是 ( )A .-3<-2<1B .-2<-3<1C .1<-2<-3D .1<-3<-2解析 ∵||-3>||-2,∴-3<-2.∴-3<-2<1.故选A. 答案 A6.(2013·浙江丽水,1,3分)在数0,2,-3,-1.2中,属于负整数的是( ) A .0B .2C .-3D .-1.2解析 根据负整数的定义,属于负整数的是-3. 答案 C7.(2014·浙江宁波,2,4分)宁波轨道交通1号线、2号线建设总投资253.7亿元.其中253.7亿用科学记数法表示为( )A .253.7×108B .25.37×109C .2.537 ×1010D .2.537 ×1011解析 253.7亿=253.7×108=2.537 ×1010,故选C. 答案 C8.(2014·浙江丽水,1,3分)在数23,1,-3,0中,最大的数是 ( )A.23B .1C .-3D .0解析 在数23,1,-3,0中,按从大到小的顺序排列为1>23>0>-3,故选B. 答案 B9.★(2013·山东德州,1,3分)下列计算正确的是( )A.⎝ ⎛⎭⎪⎫13-2=9 B.(-2)2=-2 C .(-2)0=-1D .|-5-3|=2解析 A 中,⎝ ⎛⎭⎪⎫13-2=1⎝ ⎛⎭⎪⎫132=119=9;B 中,(-2)2=4=2;C 中,(-2)0=1;D 中,|-5-3|=|-8|=8.故选A. 答案 A10.(2014·浙江台州,4,3分)下列整数中,与30最接近的是 ( )A .4B .5C .6D .7解析 由25<30<36,可知25<30<36,即5<30<6.又∵30.25=5.5,30<30.25,可知30更接近5.故选B. 答案 B 二、填空题11.(2013·浙江宁波,13,3分)实数-8的立方根是________. 解析 ∵(-2)3=-8,∴-8的立方根是-2. 答案 -212.(2013·湖南永州,9,3分)钓鱼岛列岛是我国固有领土,共由8个岛屿组成,其中最大的岛是钓鱼岛,面积约为4.3平方公里,最小的岛是飞濑岛,面积约为0.000 8平方公里,请用科学记数法表示飞濑岛的面积约为________平方公里.解析 在0.000 8中,8前面有4个0,则0.000 8=8×10-4. 答案 8×10-413.(2014·河北,18,3分)若实数m ,n 满足||m -2+(n -2 014)2=0,则m -1+n 0=________.解析 ∵||m -2+(n -2 014)2=0,∴m -2=0,n -2 014=0,即m =2,n =2 014.∴m -1+n 0=2-1+2 0140=12+1=32.故答案为32. 答案 32 三、解答题14.(2014·浙江金华,17,6分)计算:8-4cos 45°+(12)-1+||-2. 解8-4cos 45°+(12)-1+||-2=22-4×22+2+2=22-22+4=4.15.(2014·浙江丽水,17,6分)计算:(-3)2+||-4×2-1-(2-1)0. 解 原式=3+4×12-1=3+2-1=4.16.★(2013·山东滨州,20,7分)(计算时不能使用计算器)计算:33-(3)2+(π+3)0-27+|3-2|. 解 原式=3-3+1-33+2-3=-3 3.§1.2 整式及其运算A 组 2015年全国中考题组一、选择题1.(2015·浙江衢州,3,3分)下列运算正确的是 ( )A .a 3+a 3=2a 6B .(x 2)3=x 5C .2a 4÷a 3=2a 2D .x 3·x 2=x 5解析 A .a 3+a 3=2a 3;B.(x 2)3=x 6;C.2a 4÷a 3=2a ,故选D. 答案 D2.(2015·山东济宁,2,3分)化简-16(x -0.5)的结果是 ( )A .-16x -0.5B .16x +0.5C .16x -8D .-16x +8解析 计算-16(x -0.5)=-16x +8.所以D 项正确. 答案 D3.(2015·四川巴中,4,3分)若单项式2x 2y a +b与-13x a -b y 4是同类项,则a ,b 的值分别为( )A .a =3,b =1B .a =-3,b =1C .a =3,b =-1D .a =-3,b =-1解析 由同类项的定义可得⎩⎪⎨⎪⎧a -b =2,a +b =4,解得⎩⎪⎨⎪⎧a =3,b =1,故选A.答案 A4.(2015·浙江丽水,2,3分)计算(a 2)3结果正确的是( )A.3a2B.a6C.a5D.6a解析本题属于积的乘方,底数不变指数相乘,故B正确.答案 B5.(2015·贵州遵义,5,3分)计算3x3·2x2的结果为() A.5x5B.6x5C.6x6D.6x9解析属于单项式乘单项式,结果为:6x5,故B项正确.答案 B6.(2015·福建福州,6,3分)计算a·a-1的结果为() A.-1 B.0 C.0 D.-a解析a·a-1=1,故A正确.答案 A二、填空题7.(2015·福建福州,12,4分)计算(x-1)(x+2)的结果是________.解析由多项式乘以多项式的法则可知:(x-1)(x+2)=x2+x-2.答案x2+x-28.(2015·山东青岛,9,3分)计算:3a3·a2-2a7÷a2=________.解析本题属于同底数幂的乘除,和合并同类项,3a3·a2-2a7÷a2=3a5-2a5=a5.答案a59.(2015·安徽安庆,10,3分)一组按规律排列的式子:a2,a34,a56,a78,…,则第n个式子是________(n为正整数).解析a,a3,a5,a7,…,分子可表示为:a2n-1,2,4,6,8,…,分母可表示为2n,则第n个式子为:a2n-1 2n.答案a2n-1 2n三、解答题10.(2015·浙江温州,17(2),5分)化简:(2a +1)(2a -1)-4a (a -1). 解 原式=4a 2-1-4a 2+4a =4a -1.11.(2015·湖北随州,19,5分)先化简,再求值:(2+a )(2-a )+a (a -5b )+3a 5b 3÷(-a 2b )2,其中ab =-12.解 原式=4-a 2+a 2-5ab +3ab =4-2ab , 当ab =-12时,原式=4+1=5.B 组 2014~2011年全国中考题组一、选择题1.(2014·贵州毕节,13,3分)若-2a m b 4与5a n +2b 2m +n 可以合并成一项,则m n的值是 ( )A .2B .0C .-1D .1解析 由同类项的定义可得⎩⎪⎨⎪⎧m =n +2,4=2m +n ,解得⎩⎪⎨⎪⎧m =2,n =0.∴m n=20=1.故选D.答案 D2.(2014·浙江丽水,3,3分)下列式子运算正确的是 ( )A .a 8÷a 2=a 6B .a 2+a 3=a 5C .(a +1)2=a 2+1D .3a 2-2a 2=1解析 选项A 是同底数幂的除法,根据同底数幂除法运算的性质可知a 8÷a 2=a 6,所以选项A 是正确的;选项B 是整式的加法,因为a 2,a 3不是同类项,所以无法合并,所以选项B 是错误的;选项C 是整式的乘法,根据完全平方公式可知(a +1)2=a 2+2a +1,所以选项C 是错误的;选项D 是整式的加法,根据合并同类项法则可知3a 2-2a 2=a 2,所以选项D 是错误的.故选A. 答案 A3.(2014·贵州遵义,8,3分)若a+b=22,ab=2,则a2+b2的值为() A.6 B.4C.3 2 D.2 3解析∵a+b=22,∴(a+b)2=(22)2,即a2+b2+2ab=8.又∵ab=2,∴a2+b2=8-2ab=8-4=4.故选B.答案 B4.(2013·浙江宁波,2,3分)下列计算正确的是() A.a2+a2=a4B.2a-a=2C.(ab)2=a2b2D.(a2)3=a5解析A.a2+a2=2a2,故本选项错误;B.2a-a=a,故本选项错误;C.(ab)2=a2b2,故本选项正确;D.(a2)3=a6,故本选项错误.故选C.答案 C5.★(2013·湖南湘西,7,3分)下列运算正确的是() A.a2·a4=a8B.(x-2)(x+3)=x2-6C.(x-2)2=x2-4 D.2a+3a=5a解析A中,a2·a4=a6,∴A错误;B中,(x-2)(x+3)=x2+x-6,∴B错误;C中,(x-2)2=x2-4x+4,∴C错误;D中,2a+3a=(2+3)a=5a,∴D正确.故选D.答案 D二、填空题6.(2013·浙江台州,11,5分)计算:x5÷x3=________.解析根据同底数幂除法法则,∴x5÷x3=x5-3=x2.答案x27.(2013·浙江义乌,12,4分)计算:3a·a2+a3=________.解析3a·a2+a3=3a3+a3=4a3.答案4a38.(2013·福建福州,14,4分)已知实数a 、b 满足:a +b =2,a -b =5,则(a +b )3·(a -b )3的值是________.解析 法一 ∵a +b =2,a -b =5,∴原式=23×53=103=1 000. 法二 原式=[(a +b )(a -b )]3=103=1 000. 答案 1 000 三、解答题9.(2013·浙江衢州,18,6分)如图,在长和宽分别是a ,b 的矩形纸片的四个角都剪去一个边长为x 的正方形.(1)用含a ,b ,x 的代数式表示纸片剩余部分的面积;(2)当a =6,b =4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长. 解 (1)面积=ab -4x 2.(2)根据题意可得:ab -4x 2=4x 2(或4x 2=12ab =12). 整理得:8x 2=24, 解得x =±3.∵x >0,∴正方形边长为 3.10.(2014·浙江湖州,17,6分)计算:(3+a )(3-a )+a 2. 解 原式=9-a 2+a 2=9.11.(2014·浙江绍兴,17,4分)先化简,再求值:a (a -3b )+(a +b )2-a (a -b ),其中a =1,b =-12.解 a (a -3b )+(a +b )2-a (a -b )=a 2-3ab +a 2+2ab +b 2-a 2+ab =a 2+b 2. 当a =1,b =-12时, 原式=12+⎝ ⎛⎭⎪⎫-122=54.12.(2014·浙江金华,18,6分)先化简,再求值:(x +5)(x -1)+(x -2)2,其中x=-2.解(x+5)(x-1)+(x-2)2=x2+4x-5+x2-4x+4=2x2-1.当x=-2时,原式=2×(-2)2-1=8-1=7.§1.3因式分解A组2015年全国中考题组一、选择题1.(2015·四川宜宾,5,3分)把代数式3x3-12x2+12x分解因式,结果正确的是() A.3x(x2-4x+4) B.3x(x-4)2C.3x(x+2)(x-2) D.3x(x-2)2解析先提公因式3x再用公式法分解:3x3-12x2+12x=3x(x2-4x+4)=3x(x -2)2,故D正确.答案 D2.(2015·山东临沂,5,3分)多项式mx2-m与多项式x2-2x+1的公因式是() A.x-1 B.x+1C.x2-1 D.(x-1)2解析mx2-m=m(x-1)(x+1),x2-2x+1=(x-1)2,多项式mx2-m与多项式x2-2x+1的公因式是(x-1).答案 A3.(2015·华师一附中自主招生,7,3分)已知a,b,c分别是△ABC的三边长,且满足2a4+2b4+c4=2a2c2+2b2c2,则△ABC是 () A.等腰三角形B.等腰直角三角形C.直角三角形D.等腰三角形或直角三角形解析∵2a4+2b4+c4=2a2c2+2b2c2,∴4a4-4a2c2+c4+4b4-4b2c2+c4=0,∴(2a2-c2)2+(2b2-c2)2=0,∴2a2-c2=0,2b2-c2=0,∴c=2a,c=2b,∴a=b,且a2+b2=c2.∴△ABC为等腰直角三角形.答案 B二、填空题4.(2015·浙江温州,11,5分)分解因式:a2-2a+1=________.解析利用完全平方公式进行分解.答案(a-1)25.(2015·浙江杭州,12,4分)分解因式:m3n-4mn=________.解析m3n-4mn=mn(m2-4)=mn(m+2)(m-2).答案mn(m+2)(m-2)6.(2015·山东济宁,12,3分)分解因式:12x2-3y2=________.解析12x2-3y2=3(2x+y)(2x-y).答案3(2x+y)(2x-y)7.(2015·湖北孝感,12,3分)分解因式:(a-b)2-4b2=________.解析(a-b)2-4b2=(a-b+2b)(a-b-2b)=(a+b)(a-3b).答案(a+b)(a-3b)8.(2015·四川泸州,13,3分)分解因式:2m2-2=________.解析2m2-2=2(m2-1)=2(m+1)(m-1).答案2(m+1)(m-1)三、解答题9.(2015·江苏宿豫区,19,6分)因式分解:(1)x4-81;(2)6a(1-b)2-2(b-1)2.解(1)x4-81=(x2+9)(x2-9)=(x2+9)(x+3)(x-3);(2)6a(1-b)2-2(b-1)2=2(1-b)2(3a-1).B组2014~2011年全国中考题组一、选择题1.(2014·湖南岳阳,7,3分)下列因式分解正确的是 () A.x2-y2=(x-y)2B.a2+a+1=(a+1)2C.xy-x=x(y-1) D.2x+y=2(x+y)解析A中,由平方差公式可得x2-y2=(x+y)(x-y),故A错误;B中,左边不符合完全平方公式,不能分解;C中,由提公因式法可知C正确;D中,左边两项没有公因式,分解错误.故选C.答案 C2.(2014·贵州毕节,4,3分)下列因式分解正确的是() A.2x2-2=2(x+1)(x-1)B.x2+2x-1=(x-1)2C.x2+1=(x+1)2D.x2-x+2=x(x-1)+2解析A中,2x2-2=2(x2-1)=2(x+1)(x-1),故A正确;B中,左边多项式不符合完全平方公式,不能分解;C中,左边多项式为两项,不能用完全平方公式分解,故C错误;D中,右边不是乘积的形式,不是因式分解,故D错误.故选A.答案 A3.(2014·山东威海,3,3分)将下列多项式分解因式,结果中不含因式x-1的是() A.x2-1 B.x(x-2)+(2-x)C.x2-2x+1 D.x2+2x+1解析A中,x2-1=(x+1)(x-1),不符合题意;B中,x(x-2)+(2-x)=x(x -2)-(x-2)=(x-2)(x-1),不符合题意;C中,x2-2x+1=(x-1)2,不符合题意;D中,x2+2x+1=(x+1)2,符合题意,故选D.答案 D4.(2012·浙江温州,5,4分)把a2-4a多项式分解因式,结果正确的是() A.a(a-4) B.(a+2)(a-2)C.a(a+2)(a-2) D.(a-2)2-4解析a2-4a=a(a-4).答案 A5.(2011·浙江金华,3,3分)下列各式能用完全平方公式进行分解因式的是() A.x2+1 B.x2+2x-1C.x2+x+1 D.x2+4x+4解析根据完全平方公式:a2±2ab+b2=(a±b)2可得,选项A,B,C都不能用完全平方公式进行分解因式,D.x2+4x+4=(x+2)2.答案 D二、填空题6.(2014·浙江台州,13,3分)因式分解a3-4a的结果是________.解析a3-4a=a(a2-4)=a(a+2)(a-2).故答案为a(a+2)(a-2).答案a(a+2)(a-2)7.(2013·浙江绍兴,11,5分)分解因式:x2-y2=________.解析直接利用平方差公式进行因式分解.答案(x+y)(x-y)8.(2012·浙江绍兴,11,5分)分解因式:a3-a=________.解析a3-a=a(a2-1)=a(a+1)(a-1).答案a(a+1)(a-1)9.(2013·四川南充,12,3分)分解因式:x2-4(x-1)=________.解析原式=x2-4x+4=(x-2)2.答案(x-2)210.★(2013·四川自贡,11,4分)多项式ax2-a与多项式x2-2x+1的公因式是________.解析∵ax2-a=a(x2-1)=a(x+1)(x-1),x2-2x+1=(x-1)2,∴它们的公因式是(x-1).答案x-111.(2013·江苏泰州,11,3分)若m=2n+1,则m2-4mn+4n2的值是________.解析法一∵m=2n+1,∴m-2n=1.∴m2-4mn+4n2=(m-2n)2=12=1.法二把m=2n+1代入m2-4mn+4n2,得m2-4mn+4n2=(2n+1)2-4n(2n +1)+4n2=4n2+4n+1-8n2-4n+4n2=1.答案 112.(2013·贵州黔西南州,18,3分)因式分解:2x4-2=________.解析2x4-2=2(x4-1)=2(x2+1)(x2-1)=2(x2+1)(x+1)(x-1).答案2(x2+1)(x+1)(x-1)§1.4分式A组2015年全国中考题组一、选择题1.(2015·浙江丽水,4,3分)分式-11-x可变形为()A.-1x-1B.11+xC.-11+xD.1x-1解析由分式的性质可得:-11-x=1x-1.答案 D2.(2015·山东济南,3,3分)化简m2m-3-9m-3的结果是()A .m +3B .m -3C.m -3m +3D.m +3m -3解析 原式=m 2-9m -3=(m +3)(m -3)m -3=m +3.答案 A3.(2015·山西,3,3分)化简a 2+2ab +b 2a 2-b 2-ba -b 的结果是( )A.aa -bB.b a -bC.a a +bD.b a +b解析 原式= (a +b )2(a +b )(a -b )-b a -b =a +b a -b -b a -b =a +b -b a -b =aa -b .答案 A4.(2015·浙江绍兴,5,3分)化简 x 2x -1+11-x 的结果是( )A .x +1 B.1x +1 C .x -1D.x x -1解析 原式=x 2x -1-1x -1=x 2-1x -1=(x +1)(x -1)x -1=x +1. 答案 A 二、填空题5.(2015·贵州遵义,13,4分)计算:1a -1+a1-a 的结果是________.解析 1a -1+a1-a =1-a a -1=-1.答案 -16.(2015·四川泸州,19,6分)化简:m 2m 2+2m +1÷⎝ ⎛⎭⎪⎫1-1m +1=________. 解析 原式=m 2(m +1)2÷m +1-1m +1=m 2(m +1)2·m +1m =mm +1. 答案 mm +17.(2015·山东青岛,16,4分)化简:⎝ ⎛⎭⎪⎫2n +1n +n ÷n 2-1n =________.解析 ⎝ ⎛⎭⎪⎫2n +1n +n ÷n 2-1n =⎝ ⎛⎭⎪⎫2n +1n +n 2n ·n n 2-1=n 2+2n +1n ·nn 2-1=(n +1)2n ·n(n +1)(n -1)=n +1n -1. 答案n +1n -18.(2015·福建福州,18,7分)化简:(a +b )2a 2+b 2-2aba 2+b 2=________.解析 (a +b )2a 2+b 2-2aba 2+b 2=a 2+2ab +b 2-2ab a 2+b 2=a 2+b 2a 2+b 2=1. 答案 1 三、解答题9.(2015·山东烟台,19,5分)先化简:x 2+x x 2-2x +1÷⎝ ⎛⎭⎪⎫2x -1-1x ,再从-2<x <3的范围内选取一个你最喜欢的值代入求值.解 原式=x (x +1)(x -1)2÷2x -x +1x (x -1)=x (x +1)(x -1)2·x (x -1)x +1=x 2x -1.当x =2时,原式=4.B 组 2014~2011年全国中考题组一、选择题1.(2014·浙江温州,4,4分)要使分式x +1x -2有意义,则x 的取值应满足 ( ) A .x ≠2 B .x ≠-1 C .x =2D .x =-1解析 由x -2≠0得x ≠2,故选A. 答案 A2.(2014·浙江杭州,7,3分)若(4a 2-4+12-a)·w =1,则w = ( )A .a +2(a ≠-2)B .-a +2(a ≠2)C .a -2(a ≠2)D .-a -2(a ≠±2)解析 原式可以化简如下:4-(a +2)(a +2)(a -2)·w =1,-(a -2)(a +2)(a -2)·w =1,-1a +2·w =1,所以w =-(a +2)=-a -2.故选D.答案 D3.(2013·江苏南京,2,2分)计算a 3·⎝ ⎛⎭⎪⎫1a 2的结果是( ) A .aB .a 5C .a 6D .a 9解析 a 3·⎝ ⎛⎭⎪⎫1a 2=a 3·1a 2=a ,故选A.答案 A4.(2013·山东临沂,6,3分)化简a +1a 2-2a +1÷(1+2a -1)的结果是( )A.1a -1B.1a +1 C.1a 2-1D.1a 2+1解析 原式=a +1(a -1)2÷a +1a -1=a +1(a -1)2×a -1a +1 =1a -1,故选A. 答案 A5.(2013·浙江杭州,6,3分)如图,设k =甲图中阴影部分面积乙图中阴影部分面积(a >b >0),则有( )A .k >2B .1<k <2C.12<k <1D .0<k <12解析 甲图中阴影部分面积是:a 2-b 2,乙图中阴影部分的面积是a 2-ab ,∴k =a 2-b 2a 2-ab =(a +b )(a -b )a (a -b )=a +b a =1+b a .∵a >b >0,∴0<ba <1.∴1<1+ba <2. 答案 B 二、填空题6.(2011·浙江嘉兴,11,4分)当x ________时,分式13-x有意义. 解析 要使分式13-x有意义,必须3-x ≠0,即x ≠3. 答案 ≠37.(2012·浙江杭州,12,4分)化简m 2-163m -12得________;当m =-1时,原式的值为________. 解析m 2-163m -12,=(m +4)(m -4)3(m -4)=m +43,当m =-1时,原式=-1+43=1. 答案m +43 18.(2014·贵州遵义,13,4分)计算:1a -1+a 1-a的结果是________. 解析 1a -1+a 1-a =1a -1-a a -1=1-a a -1=-(a -1)a -1=-1.答案 -19.(2014·山东东营,15,4分)如果实数x ,y 满足方程组⎩⎨⎧x +3y =0,2x +3y =3,那么代数式⎝ ⎛⎭⎪⎫xy x +y +2÷1x +y的值为______. 解析 解方程组可得⎩⎪⎨⎪⎧x =3,y =-1.∴⎝ ⎛⎭⎪⎫xy x +y +2÷1x +y =⎝⎛⎭⎪⎫xy x +y +2·(x +y )=xy +2x +2y =3×(-1)+2×3+2×(-1)=1. 答案 110.(2014·浙江台州,16,3分)有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下: 输入x ――→第1次y 1=2x x +1――→第2次y 2=2y 1y 1+1――→第3次y 3=2y 2y 2+1――→… 则第n 次的运算结果=____________(含字母x 和n 的代数式表示). 解析 将第2、3、4次化简后列表如下:故答案为2n x(2n -1)x +1.答案 2n x(2n -1)x +1三、解答题11.(2012·浙江宁波,19,6分)计算:a 2-4a +2+a +2.解 法一:原式=(a +2)(a -2)a +2+a +2=a -2+a +2=2a .法二:原式=a 2-4a +2+(a +2)2a +2=a 2-4a +2+a 2+4a +4a +2=2a 2+4a a +2=2a (a +2)a +2=2a .12.(2013·四川宜宾,17,5分)化简:b a 2-b 2÷⎝ ⎛⎭⎪⎫1-a a +b . 解 原式=b(a +b )(a -b )÷⎝⎛⎭⎪⎫a +b a +b -a a +b =b (a +b )(a -b )·a +b b =1a -b. 13.(2013·江西,17,6分)先化简,再求值:x 2-4x +42x ÷x 2-2x x 2+1,在0,1,2,三个数中选一个合适的,代入求值. 解 原式=(x -2)22x ·x 2x (x -2)+1=x -22+1=x2. 当x =1时,原式=12.14.(2014·湖南娄底,21,8分)先化简x -4x 2-9÷⎝ ⎛⎭⎪⎫1-1x -3,再从不等式2x -3<7的正整数解中选一个使原式有意义的数代入求值.解 原式=x -4(x +3)(x -3)÷x -3-1x -3=x -4(x +3)(x -3)·x -3x -4=1x +3.解不等式2x -3<7,得x <5. 取x =0时,原式=13.(本题最后答案不唯一,x ≠±3,x ≠4即可)§1.5 二次根式A 组 2015年全国中考题组一、选择题1.(2015·重庆,3,3分)化简12的结果是() A.4 3 B.2 3 C.3 2 D.2 6解析化简得:23,故B正确.答案 B2.(2015·山东济宁,3,3分)要使二次根式x-2有意义,x必须满足() A.x≤2 B.x≥2 C.x<2 D.x>2解析由x-2≥0得:x≥2.故B正确.答案 B3.(2015·江苏淮安,4,3分)下列式子为最简二次根式的是()A. 3B. 4C.8D.1 2解析4=2,8=22,12=22,4,8,12都不是最简二次根式,故选A.答案 A4.(2015·湖北孝感,9,3分)已知x=2-3,则代数式(7+43)x2+(2+3)x+3的值是() A.0 B. 3 C.2+ 3 D.2- 3解析原式=(7+43)(2-3)2+(2+3)(2-3)+3=49-48+4-3+3=2+ 3.故选C.答案 C二、填空题5.(2015·贵州遵义,11,4分)27+3=________.解析原式=33+3=4 3.答案4 36.(2015·江苏南京,12,3分)计算5×153的结果是________.解析5×153=5×5=5.答案 57.(2015·江苏泰州,12,3分)计算:18-212等于________.解析原式=32-2=2 2.答案2 2三、解答题8.(2015·四川凉山州,19,5分)计算:-32+3×1tan 60°+|2-3|.解-32+3×1tan 60°+|2-3|=-9+3×13+3-2=-5- 2.9. (2015·山西,21,6分)阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170~1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用15⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1+52n-⎝⎛⎭⎪⎫1-52n表示(其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.解第1个数,当n=1时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n=15⎝ ⎛⎭⎪⎫1+52-1-52=15×5=1. 第2个数,当n =2时, 15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+522-⎝ ⎛⎭⎪⎫1-522=15⎝ ⎛⎭⎪⎫1+52+1-52⎝ ⎛⎭⎪⎫1+52-1-52=15×1×5=1. B 组 2014~2011年全国中考题组一、选择题1.(2013·上海,1,4分)下列式子中,属于最简二次根式的是 ( ) A.9B.7C.20D.13解析 ∵9=32=3,20=22×5=25,13=13=33,∴9,20,13都不是最简二次根式,7是最简二次根式,故选B. 答案 B2.(2013·广东佛山,5,3分)化简2+(2-1)的结果是( )A .22-1B .2- 2C .1- 2D .2+ 2解析2+(2-1)=2+2-1=22-1,故选A.答案 A3.★(2013·江苏泰州,2,3分)下列计算正确的是 () A.43-33=1 B.2+3= 5C.212= 2 D.3+22=5 2解析43-33=3,∴A错误;∵2与3被开方数不同,不能合并,∴B错误;212=2×22=2,∴C正确;3和22一个是有理数,一个是无理数,不能合并,∴D错误.综上所述,选C.答案 C4.(2013·山东临沂,5,3分)计算48-913的结果是 ()A.- 3 B. 3 C.-113 3 D.113 3解析48-913=43-33= 3.答案 B5.(2014·山东济宁,7,3分)如果ab>0,a+b<0,那么下面各式:①ab=ab,②ab·ba=1,③ab÷ab=-b,其中正确的是()A.①②B.②③C.①③D.①②③解析∵ab>0,a+b<0,∴a,b同号,且a<0,b<0,∴ab>0,ba>0.ab=a b .等号右边被开方数小于零,无意义,∴①不正确;ab·ba=ab·ba=1,②正确;ab÷ab =ab·ba=b2=-b,∴③正确.故选B.答案 B二、填空题6.(2013·浙江舟山,11,4分)二次根式x-3中,x的取值范围为________.解析由二次根式有意义,得出x-3≥0,解得x≥3.答案 x ≥37.(2014·福建福州,13,4分)计算:(2+1)(2-1)=________. 解析 由平方差公式可得(2+1)(2-1)=(2)2-12=2-1=1. 答案 18.(2013·山东泰安,22,3分)化简:3(2-3)-24-︱6-3︱=________. 解析 原式=3×2-(3)2-26-3+6=6-3- 26-3+6=-6. 答案 -69.(2012·浙江杭州,14,4分)已知a (a -3)<0,若b =2-a ,则b 的取值范围是________.解析 由题意知,a >0,∴a >0,∴a -3<0,解得:0<a <3,∴2-3<2-a <2,即:2-3<b <2. 答案 2-3<b <2 三、解答题10.(2013·浙江温州,17,5分)计算:8+(2-1)+⎝ ⎛⎭⎪⎫120.解8+(2-1)+⎝ ⎛⎭⎪⎫120=22+2-1+1=3 2.11.(2013·湖北孝感,19,6分)先化简,再求值:1x -y ÷⎝ ⎛⎭⎪⎫1y -1x ,其中x =3+2,y =3- 2.解 1x -y ÷⎝ ⎛⎭⎪⎫1y -1x =1x -y ·xy x -y =xy (x -y )2,当x =3+2,y =3-2时, 原式=(3+2)(3-2)(3+2-3+2)2=18.第二章方程(组)与不等式(组)§2.1一元一次方程与可化为一元一次方程的分式方程A组2015年全国中考题组一、选择题1.(2015·山东济宁,8,3分)解分式方程2x-1+x+21-x=3时,去分母后变形正确的为() A.2+(x+2)=3(x-1) B.2-x+2=3(x-1)C.2-(x+2)=3 D.2-(x+2)=3(x-1)解析公分母为x-1,结果为:2-(x+2)=3(x-1),故D正确.答案 D2.(2015·浙江杭州,7,3分)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%,设把x公顷旱地改为林地,则可列方程() A.54-x=20%×108 B.54-x=20%(108+x)C.54+x=20%×162 D.108-x=20%(54+x)解析∵改造完后的林地为(108+x)公顷,改造完后的旱地是(54-x)公顷,∴54-x=20%(108+x).故选B.答案 B3.(2015·山东济南,5,3分)若代数式4x-5与2x-12的值相等,则x的值是()A.1 B.32 C.23D.2解析根据题意得:4x-5=2x-12,去分母得:8x-10=2x-1,解得:x=32,故选B. 答案 B4.(2015·四川自贡,5,3分)方程x 2-1x +1=0的解是( )A .1或-1B .-1C .0D .1解析 去分母得:x 2-1=0,即x 2=1,解得:x =1或x =-1,经检验x =-1是增根,分式方程的解为x =1. 答案 D5.(2015·湖南常德,6,3分)分式方程2x -2+3x2-x=1的解为 ( )A .1B .2C.13 D .0解析 去分母得:2-3x =x -2,解得:x =1,经检验x =1是分式方程的解. 答案 A 二、填空题6.(2015·四川巴中,14,3分)分式方程3x +2=2x的解x =________.解析 去分母得:3x =2x +4,解得:x =4.经检验x =4是原分式方程的解. 答案 47. (2015·浙江绍兴,16,5分)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1∶2∶1,用两个相同的管子在容器的5 cm 高度处连通(即管子底离容器底5 cm),现三个容器中,只有甲中有水,水位高1 cm ,如图所示,若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升56 cm ,则开始注入________分钟的水量后,甲与乙的水位高度之差是0.5 cm. 解析 第一种情况,甲比乙高0.5 cm ,0.5÷56=35分钟;第二种情况,乙比甲高0.5 cm 且甲的水位不变,时间为3320分钟;第三种情况,乙达到5 cm后,乙比甲高0.5 cm,时间为17140分钟.答案35或3320或171408.(2015·湖北,13,3分)分式方程1x-5-10x2-10x+25=0的解是________.解析去分母得:x-5-10=0,解得:x=15,经检验x=15是分式方程的解.答案159.(2015·山东威海,12,3分)分式方程1-xx-3=13-x-2的解为________.解析去分母得:1-x=-1-2x+6,解得:x=4,经检验x=4是分式方程的解.答案x=4三、解答题10.(2015·广东深圳,22,7分)下表为深圳市居民每月用水收费标准(单位:元/m3).(1)某用户用水10立方米,共交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?解(1)由题意可得:10a=23,解得:a=2.3,答:a的值为2.3;(2)设用户用水量为x立方米,∵用水22立方米时,水费为:22×2.3=50.6<71,∴x>22,∴22×2.3+(x-22)×(2.3+1.1)=71,解得:x=28.答:该用户用水28立方米.11.(2015·四川广安,19,4分)解方程:1-x x -2=x2x -4-1.解 化为整式方程得:2-2x =x -2x +4, 解得:x =-2.经检验x =-2是分式方程的解. 12.(2015·广东深圳,18,8分)解方程:x 2x -3+53x -2=4. 解 去分母得:3x 2-2x +10x -15=4(2x -3)(3x -2),整理得:3x 2-2x +10x -15=24x 2-52x +24,即7x 2-20x +13=0,分解因式得:(x -1)(7x -13)=0,解得:x 1=1,x 2=137,经检验x 1=1与x 2=137都为分式方程的解.13.(2015·浙江湖州,22,8分)某工厂计划在规定时间内生产24 000 个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件. (1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24 000个零件的生产任务,求原计划安排的工人人数.解 (1)设原计划每天生产零件x 个,由题意得24 000x =24 000+300x +30,解得x =2 400.经检验,x =2 400是原方程的根,且符合题意, ∴规定的天数为24 000÷2 400=10(天).答:原计划每天生产零件2 400 个,规定的天数是10天.(2)设原计划安排工人人数为y 人,由题意得,⎣⎢⎡⎦⎥⎤5×20×(1+20%)×2 400y +2 400×(10-2)=24 000. 解得y =480.经检验y =480是原方程的根,且符合题意.答:原计划安排工人人数为480人.B组2014~2011年全国中考题组一、选择题1.(2014·海南,2,3分)方程x+2=1的解是() A.3 B.-3 C.1 D.-1解析x+2=1,移项得:x=1-2,x=-1.故选D.答案 D2.(2014·浙江台州,7,3分)将分式方程1-2xx-1=3x-1去分母,得到正确的整式方程是() A.1-2x=3 B.x-1-2x=3C.1+2x=3 D.x-1+2x=3解析两边同时乘以(x-1),得x-1-2x=3,故选B.答案 B3.(2014·山东枣庄,6,3分)某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是 () A.350元B.400元C.450元D.500元解析设这批服装的标价为x元,得0.6x-200200=20%,解得x=400,故选B.答案 B4.(2013·江苏宿迁,6,3分)方程2xx-1=1+1x-1的解是()A.x=-1 B.x=0 C.x=1 D.x=2解析方程两边都乘以x-1,得2x=x-1+1.移项,合并,得x=0.经检验,x=0是原方程的解.故选B.答案 B二、填空题5.(2014·浙江宁波,14,4分)方程x x -2=12-x的根x =________. 解析 去分母,两边同乘以x -2,得x =-1,经检验x =-1是原方程的根,故答案为-1. 答案 -16.(2013·浙江丽水,12,4分)分式方程1x -2=0的解是________. 解析 去分母得1-2x =0,解得x =12.经检验,x =12是原方程的解. 答案 x =127.★(2013·黑龙江齐齐哈尔,16,3分)若关于x 的分式方程x x -1=3a2x -2-2有非负数解,则a 的取值范围是________. 解析 去分母,得2x =3a -2(2x -2), 解得x =3a +46. ∵有非负数解, ∴3a +4≥0,即a ≥-43. 又∵x -1≠0,即x ≠1, ∴3a +4≠6,解得a ≠23. ∴a ≥-43且a ≠23. 答案 a ≥-43且a ≠238.(2013·浙江舟山,15,4分)杭州到北京的铁路长1 487千米,动车的原平均速度为x 千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为________.解析 动车从杭州到北京以平均速度为x 千米/时行完全程所需时间为1 487x 小时,提速后行完全程所需时间为1 487x +70小时,又行驶时间缩短了3小时,即少用3小时,故所列方程应为1 487x -1 487x+70=3.答案1 487x-1 487x+70=3三、解答题9.(2014·浙江嘉兴,18,8分)解方程:1x-1-3x2-1=0.解方程两边同乘x2-1,得:x+1-3=0.∴x=2.经检验,x=2是原方程的根.10.(2014·浙江宁波,24,10分)用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成.硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?解(1)裁剪出的侧面个数为6x+4(19-x)=(2x+76)个,裁剪出的底面个数为5(19-x)=(-5x+95)个.(2)由题意,得2x+763=-5x+952,∴x=7.当x=7时,2x+763=30.∴能做30个盒子.§2.2一元二次方程A组2015年全国中考题组一、选择题1.(2015·浙江金华,5,3分)一元二次方程x2+4x-3=0的两根为x1,x2,则x1·x2的值是() A.4 B.-4 C.3 D.-3解析根据两根之积x1·x2=ca=-3.所以D正确.答案 D2.(2015·四川巴中,6,3分)某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是() A.560(1+x)2=315 B.560(1-x)2=315C.560(1-2x)2=315 D.560(1+x2)=315解析由题意可列方程为:560(1-x)2=315.故B正确.答案 B3.(2015·山东济宁,5,3分)三角形两边长分别为3和6,第三边的长是方程x2-13x+36=0的两根,则该三角形的周长为() A.13 B.15 C.18 D.13或18解析解方程x2-13x+36=0得,x=9或4,即第三边长为9或4.边长为9,3,6不能构成三角形;而4,3,6能构成三角形,所以三角形的周长为3+4+6=13.答案 A4.(2015·四川攀枝花,5,3分)关于x的一元二次方程(m-2)x2+(2m+1)x+m-2=0有两个不相等的正实数根,则m的取值范围是()A.m>34B.m>34且m≠2C.-12<m<2 D.34<m<2解析 根据题意得m -2≠0且Δ=(2m +1)2-4(m -2)·(m -2)>0,解得m >34且m ≠2,设方程的两根为a 、b ,则a +b =-2m +1m -2>0,ab =m -2m -2=1>0,而2m +1>0,∴m -2<0,即m <2,∴m 的取值范围为34<m <2. 答案 D 二、填空题5.(2015·山东泰安,22,4分)方程:(2x +1)(x -1)=8(9-x )-1的根为________. 解析 化简为:2x 2+7x -72=0,解得:x 1=-8,x 2=4.5. 答案 x 1=-8,x 2=4.56.(2015·贵州遵义,14,4分)关于x 的一元二次方程x 2-3x +b =0有两个不相等的实数根,则b 的取值范围是________. 解析 有题意得:Δ=9-4b >0,解得 b <94.答案 b <947.(2015·四川泸州,15,3分)设x 1,x 2是一元二次方程x 2-5x -1=0的两实数根,则x 21+x 22的值为________.解析 ∵x 1,x 2是一元二次方程x 2-5x -1=0的两实数根,∴x 1+x 2=5,x 1x 2=-1,∴x 21+x 22=(x 1+x 2)2-2x 1x 2=25+2=27.答案 278.(2015·四川宜宾,11,3分)关于x 的一元二次方程x 2-x +m =0没有实数根,则m 的取值范围是________.解析 由题意得(-1)2-4×1×m <0解之即可. 答案 m >149.(2015·四川宜宾,13,3分)某楼盘2013年房价为每平方米8 100元,经过两年连续降价后,2015年房价为7 600元.设该楼盘这两年房价平均降低率为x ,根据题意可列方程为________.解析先根据题意将每个量用代数式表示,然后利用等量关系建立等式即可.答案8 100(1-x)2=7 600三、解答题10.(2015·山东青岛,16,8分)关于x的一元二次方程2x2+3x-m=0有两个不相等的实数根,求m的取值范围.解∵关于x的一元二次方程2x2+3x-m=0有两个不相等的实数根,∴Δ=32-4×2×(-m)>0,∴m>-98,即m的取值范围是m>-98.11.(2015·四川巴中,28,8分)如图,某农场有一块长40 m,宽32 m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路.要使种植面积为1 140 m2,求小路的宽.解设小路的宽为x m.图中的小路平移到矩形边上时,种植面积是不改变的.∴(40-x)(32-x)=1 140.解得x1=2,x2=70(不合题意,舍去).∴小路的宽为2 m.答:小路的宽为2 m.12.(2015·安徽,21,8分)(1)解下列方程:①x+2x=3根为________;②x+6x=5根为________;③x+12x=7根为________;(2)根据这类方程特征,写出第n个方程为________,其根为________;(3)请利用(2)的结论,求关于x的方程x+n2+nx-3=2n+4(n为正整数)的根.解(1)①去分母,得:x2+2=3x,即x2-3x+2=0,(x-1)(x-2)=0,则x-1=0,x-2=0,解得:x1=1,x2=2.经检验:x1=1,x2=2都是方程的解;②去分母,得:x2+6=5x,即x2-5x+6=0,(x-2)(x-3)=0,则x-2=0,x-3=0,解得:x1=2,x2=3,经检验:x1=2,x2=3是方程的解;③去分母,得:x2+12=7x,即x2-7x+12=0,(x-3)(x-4)=0,则x1=3,x2=4,经检验x1=3,x2=4是方程的解;(2)列出第n个方程为x+n(n+1)x=2n+1,解得:x1=n,x2=n+1;(3)x+n2+nx-3=2n+4,即x-3+n(n+1)x-3=2n+1,则x-3=n或x-3=n+1,解得:x1=n+3,x2=n+4.B组2014~2011年全国中考题组一、选择题1.(2013·浙江丽水,7,3分)一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是() A.x-6=-4 B.x-6=4C.x+6=4 D.x+6=-4解析开方得x+6=±4,∴另一个一元一次方程是x+6=-4,故选D.答案 D2.(2014·陕西,8,3分)若x=-2是关于x的一元二次方程x2-52ax+a2=0的一个根,则a的值为() A.1或4 B.-1或-4C.-1或4 D.1或-4解析把x=-2代入x2-52ax+a2=0得(-2)2-52a×(-2)+a2=0,解得a1=-1,a2=-4.故选B.答案 B3.(2011·浙江嘉兴,2,3分)方程x(x-1)=0的解是() A.x=0 B.x=1C.x=0或x=1 D.x=0或x=-1解析x(x-1)=0,x=0或x-1=0,x1=0或x2=1.答案 C4.(2013·山东滨州,10,3分)对于任意实数k,关于x的方程x2-2(k+1)x-k2+2k-1=0的根的情况为() A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法确定解析∵b2-4ac=4(k+1)2-4×(-k2+2k-1)=8k2+8>0,∴这个方程有两个不相等的实数根,故选C.答案 C5.(2013·广东湛江,10,4分)由于受H7N9禽流感的影响,今年4月份鸡的价格两次大幅下降,由原来每斤12元,连续两次降价a%后售价下调到每斤5元,下列所列的方程中正确的是() A.12(1+a%)2=5 B.12(1-a%)2=5C.12(1-2a%)=5 D.12(1-a2%)=5解析第一次降价后的价格为12(1-a%)元,第二次降价后的价格为12(1-a%)2元,∴所列方程为12(1-a%)2=5,故选B.答案 B6.(2013·湖北黄冈,6,3分)已知一元二次方程x2-6x+c=0有一个根为2,则另一根为() A.2 B.3 C.4 D.8解析把x=2代入方程,得22-6×2+c=0,解得c=8,把c=8代入原方程得x2-6x+8=0,解得x1=2,x2=4.故选C.答案 C7.(2013·山东日照,8,3分)已知一元二次方程x2-x-3=0的较小根为x1,则下面对x1的估计正确的是()A.-32<x1<-1 B.-3<x1<-2C.2<x1<3 D.-1<x1<0。
年湖南省岳阳市中考数学试题

A CBD 2010年湖南省岳阳市初中毕业学业考试数学试卷一、选择题(本大题共8小题,每小题3分,共24分,)1.下列运算正确的是()A .a 2·a 3=a 6B .(a 2)3=a 6C .2x (x +y )=x 2+xyD .9+2=3 2 2.下面给出的四个命题中,是假命题的是() A .如果a =3,那么|a |=3 B .如果x 2=4,那么x =2C .如果(a -1)(a +2)=0,那么a -1=0或a +2=0D .如果四边形ABCD 是正方形,那么它是矩形3.下列图案中既是轴对称图形又是中心对称图形的是()4.如图,是一个正五棱柱,作为该正五棱柱的三视图,下列四个选项中,错误的一个是()5.将不等式组⎩⎨⎧x +2≥02-x >0的解集在数轴上表示,正确的是()2-2A 2-2B 20-2C20-2D6.如图,要使△ABC ≌△ABD ,下面给出的四组条件中,错误的一组是()A .BC =BD ,∠BAC =∠BADB .∠C =∠D ,∠BAC =∠BAD C .∠BACD .BC =BD ,AC =AD 710个图案中的最下面一行从左至右的第28.如图,⊙O 的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O 与∠α的两边相切,图中阴影部分的面积S 关于⊙O 的半径r (r >0)变化的函数图像大致是()第一个图案 第二个图案第三个图案第四个图案第五个图案A .. AB CDA B CD二、填空题(本大题共8小题,每小题3分,满分24分)9.因式分解:x 3y -xy 3=.10.岳阳洞庭湖大桥路桥全长10173.8m ,这个数据用科学记数法表示(保留3位有效数字)为.11.幼儿园的小朋友打算选择一种....形状、大小都相同的多边形塑料胶板铺地面.为了保证铺地时既无缝隙,又不重叠,请你告诉他们可以选择哪些形状的塑料胶板(填三种). 12.如图,我国南方一些地区农民戴的斗笠是一个底面圆半径为24cm ,高为413cm 的圆椎形,这个斗笠的侧面积是(用含π的数表示).13.二氧化碳的密度ρ(kg/m 3)关于其体积V (m 3)的函数关系式如图所示,那么函数关系式是.14.据第二次全国经济普查资料修订及各项数据初步核算,岳阳市GDP 从2007年的987.9亿元增加到2009年的1272.2亿元.设平均年增长率为x ,则可列方程为.15.如图,线段AB 、DC 分别表示甲、乙两建筑物的高.AB ⊥BC ,DC ⊥BC ,从B 点测得点D 的仰角为α,从A 点测得点D 的仰角为β.已知甲乙两建筑物之间的距离为a ,甲建筑物的高AB 为(用含α、β、a 的式子表示).16.如图,在等腰梯形ABCD 中,AB ∥CD ,AD ⊥AD ,∠A =60°,AD =2,梯形ABCD 的面积为(结果保留根号).三、解答题(本大题共10小题,满分72分)17.(6分)计算:2-1+0.252010×42010-(π+13)0+sin30°.18.(6分)先化简,再计算:(1+23-a )÷412-+a a ,其中a =2-3.19.(6分)解方程:24-x -2-x x=1.3) 0.5)B CC D C 1 20.(6分)如图,在Rt △ABC 中,∠ABC =90°,∠BAC =60°,D 为AC 的中点,以BD 为折痕,将△BCD 折叠,使得C 点到达C 1点的位置,连接AC 1. 求证:四边形ABDC 1是菱形.21.(6分)在一次课外活动中,李聪、何花、王军三位同学准备跳绳,他们约定用“抛硬币”的游戏方式来确定哪两位同学先用绳(如图).(1)请将下面表示游戏一个回合所有可能出现结果的树状图补充完整;(2)求一个回合能确定两位同学先用绳的概率.开始正面李聪 正面 正面 荷花 正面王军不 确 定确 定22.(8分)农历五月初五,汨罗江龙舟赛渡.甲、乙两队在比赛中龙舟行驶路程y (m )和行驶时间t (s )之间的函数关系如图所示.根据所给图像,解答下列问题: (1)请分别求出甲、乙两队行驶路程y 与时间t (t ≥0)之间的函数关系; (2)出发后,t 为何值时,甲、乙两队行驶的路程相等?23.(8分)几年来,岳阳经济快速发展,居民收入不断提高.根据统计部门统计,绘制了2005年~2009年岳阳市居民人均纯收入和农村居民人均纯收入的条形统计图(如图①). 农村居民人均纯收入占全市居民人均纯收入的大致比例统计表(单位:元)(1)请你根据图①提供的信息将上表补充完整;(2)请在图②中,将年度农村居民人均纯收入占全市居民人均纯收入的比例,绘制成折线统计图.A A A AB B B BC C C CD DD D O O O OE E E E FF FF GGG H GH 图① 图② 图③ 图④24.(8分)某货运码头,有稻谷和棉花共2680t ,其中稻谷比棉花多380t .(1)求稻谷和棉花各是多少?(2)现安排甲、乙两种不同规格的集装箱共50个,将这批稻谷和棉花运往外地.已知稻谷35t 和棉花15t 可装满一个甲型集装箱;稻谷25t 和棉花35t 可装满一个乙型集装箱.按此要求安排甲、乙两种集装箱的个数,有哪几种方案?25.(8分)已知AB 是⊙O 的直径,C 是⊙O 上一点,连接AC ,过点C 作CD ⊥AB 于点D .(1)当点E 为DB 上任意一点(点D 、B 除外)时,连接CE 并延长交⊙O 于点F ,AF 与CD 的延长线交于点G (如图①).求证:AC 2=AG ·AF .(2)李明证明(1)的结论后,又作了以下探究:当点E 为AD 上任意一点(点A 、D 除外)时,连接CE 并延长交⊙O 于点F ,连接AF 并延长与CD 的延长线在圆外交于点G ,CG 与⊙O 相交于点H (如图②).连接FH 后,他惊奇的发现∠GFH =∠AFC .根据这一条件,可证GF ·GA =GH ·GC .请你帮李明给出证明.(3)当点E 为AB 的延长线上或反向延长线上任意一点(点A 、B 除外)时,如图③、④所示,还有许多结论成立.请你根据图③或图④再写出两个类似问题(1)、(2)的结论(两角、两弧、两线段相等或不相等的关系除外)(不要求证明).26.(8分)如图①②,在平面直角坐标系中,边长为2的等边△CDE恰好与坐标系中的△OAB重合,现将△CDE绕边AB的中点G(G点也是DE的中点),按顺时针方向旋转180°到△C1DE的位置.(1)求C1点的坐标;(2)求经过三点O、A、C`的抛物线的解读式;(3)如图③,⊙G是以AB为直径的圆,过B点作⊙G的切线与x轴相交于点F,求切线BF的解读式;(4)抛物线上是否存在一点M,使得S△AMF∶S△OAB=16∶3.若存在,请求出点M的坐标;若不存在,请说明理由.x岳阳市2010年初中毕业学业考试试卷数学参考答案一、选择题1.B 2.B 3.A 4.C 5.A 6.A 7.C 8.C 二、填空题9.xy (x +y )(x -y ) 10.1.02×104 11.正三角形、正方形、长方形、正六边形、直角三角形、直角梯形(写出其它图形,只要符合题目要求,均可得分) 12.672πcm 213.ρ=99v14.978.9(1+x )2=1272.2 15.a (t a nα-t a nβ) 16.三、解答题17.解:原式=12+(0.25×4)2010-1+12=12+1-1+12=118.解:原式=(22a a --+32a -)×(2)(2)1a a a +-+ =12a a +-×(2)(2)1a a a +-+ =a +2把a 33+2 1 19.解:去分母,得4-x =x -2 (4分) 解得:x =3 (5分)经检验:x =3是原方程的解.(6分)20.证法一:(有一组邻边相等的平行四边形是菱形) ∵∠ABC =90°,∠BAC =60°,D 为AC 的中点, ∴BD =CD =AD ∵∠BAC =60°∴△BDA 为等边三角形∴BD =BA根据折叠可知CD =DC`∠C =∠BC`D =30° ∵BD =CD∴∠C =∠CBD =30° ∵∠CBD =∠C`BD ∴∠C`BD =30°∴∠BC`D =∠C`BA =30° ∴DC`∥BA 又DC`=CD CD =BD =BA ∴DC`=BA∴四边形DBAC`为平行四边形 又BD =BA∴平行四边形DBAC`为菱形证法二:(四条边相等的四边形是菱形)∵Rt △ABC 中,D 为AC 的中点 ∴BD =CD =AD =12AC 又∠BAC =60° ∴△BDA 为等边三角形∴BD =BA =AD 根据折叠可知△CBD ≌△C`BD ∴CD =C`D ∵∠BAC =60° ∴∠C =30° ∵CD =BD∴∠C =∠CBD =30° 又∠DBC`=∠CBD =30° ∴∠ABC`=30° ∴∠ABC`=∠DBC`∵DA =BA ,BC`为公共边 ∴△BDC`≌△BAC`∴C`D =AC`又CD =BD ∴C`D =BD =BA =AC` ∴四边形DBAC`为菱形21.解:(1)补充树状图:(2)P (确定两人先用绳)=3422.解:(1)设甲队在0≤t ≤500的时段内y 与t 的函数关系式为y =k 甲t 由图可知,函数图象经过点(500,1200) ∴500k 甲=1200 ∴k 甲=2.4∴甲对y 与t 的函数关系式为y =2.4t(2)设乙队在0≤t ≤200的时段内y 与t 的函数关系式为y =k 乙t 由图可知,函数图象经过点(200,400) ∴200k 甲=400 ∴k 乙=2 ∴y =2t ;设乙队在200≤t ≤450的时段内y 与t 的函数关系式为y =a t +b 由图可知,函数图象经过点(200,400),(450,1200)∴2004004501200a b a b +=⎧⎨+=⎩解得a =3.2 b =-240∴y =3.2t -240∴乙对y 与t 的函数关系式为y =2(0200)3.2240(200450)t t t t ≤≤⎧⎨-<≤⎩(2)由题意得:2.4t =3.2t -240 解得t =300∴当t 为300秒时,甲、乙两队行驶的路程相等.24.(1)解:设稻谷为x t ,棉花为y t .根据题意,可列方程2680380x y x y +=⎧⎨-=⎩解得15301150x y =⎧⎨=⎩答:稻谷、棉花分别为1530吨、1150吨.(2)解:设安排甲型集装箱x 个,乙型集装箱(50-x )个. 根据题意,可得3525(50)15301535(50)1150x x x x +-≥⎧⎨+-≥⎩解得28≤x ≤30又因为x 为整数∴x =28、29、30 ∴共有三种方案方案一:安排甲型集装箱28个,乙型集装箱22个 方案二:安排甲型集装箱29个,乙型集装箱21个 方案三:安排甲型集装箱30个,乙型集装箱20个. 25.(1)证明:延长CG 交⊙O 于H ,∵CD ⊥AB ∴AB 平分CH ∴弧CH =弧AH ∴∠ACH =∠AFC 又∠CAG =∠FAC △AGC ∽△ACF ∴AG AC =ACAF即AC 2=AG·AF(2)∵CH ⊥AB ∴弧AC =弧AH ∴∠AFC =∠ACG 又∠AFC =∠GFH ∴∠ACG =∠GFH 又∠G =∠C ∴△GFH ∽△GCA ∴GF GC =GHGA∴GF·GA =GC·CH(3)CD 2=AD·DB AC 2=AD·AB EF·EC =EA·EB AF·GA =AD·AB26.(1)C`(3(2)∵抛物线过原点O(0,0),设抛物线解读式为y=ax2+b x把A(2,0),C`(3带入,得42093a ba b+=⎧⎪⎨+=⎪⎩ab∴抛物线解读式为y=3x2-3x(3)∵∠ABF=90°,∠BAF=60°,∴∠AFB=30°又AB=2 ∴AF=4 ∴OF=2 ∴F(-2,0)设直线BF的解读式为y=k x+b把B(1,F(-2,0)带入,得20k bk b⎧+=⎪⎨-+=⎪⎩解得kb∴直线BF的解读式为y(4)①当M在x轴上方时,存在M(x2)S△AMF:S△OAB=[12×4×(3x2-3x)]:[12×2×4]=16:3得x2-2x-8=0,解得x1=4,x2=-2当x1=4时,y42×4当x1=-2时,y(-2)2(-2)∴M1(4,3),M2(-2,3)②当M在x轴下方时,不存在,设点M(x,3x2-3x)S△AMF:S△OAB=[-12×4×2x)]:[12×2×4]=16:3得x2-2x+8=0,b2-4a c<0 无解综上所述,存在点的坐标为M1(4,3),M2(-2,3).。
岳阳市中考数学详细解答.doc

2015年岳阳市中考数学岳阳市中考数学资料详细核1核1【例题】1.2a(a﹣3).2.(x﹣2)2.3.(2x﹣3)(2x+3).4.x(x+1)(x﹣1)5.解:x3﹣6x2+9x=x(x2﹣6x+9)=x(x﹣3)2.核1【练习】1.解:①x3+2xy+x=x(x2+2y+1),故原题错误;②x2+4x+4=(x+2)2;正确;③﹣x2+y2=(x+y)(y﹣x),故原题错误;故正确的有1个.故选:C.2.解:A、2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1),故此选项正确;B、x2﹣2x+1=(x﹣1)2,故此选项错误;C、x2+1,不能运用完全平方公式进行分解,故此选项错误;D、x2﹣x+2=x(x﹣1)+2,还是和的形式,不属于因式分解,故此选项错误;故选:A.3.解:x2y﹣2xy2=xy(x﹣2y).故答案为:xy(x﹣2y)4.解:m(x﹣y)+n(x﹣y)=(x﹣y)(m+n).故答案为:(x﹣y)(m+n).5.解:x3﹣4x2y+4xy2=x(x2﹣2xy+4y2)=x(x﹣2y)2.故答案是:x(x﹣2y)2.核2核2【例题】解:已知点P(3﹣m,m﹣1)在第二象限,3﹣m<0且m﹣1>0,解得m>3,m>1,故选:A.核2【练习1】解:移项得,3x>4+2,合并同类项得,3x>6,把x的系数化为1得,x>2.故答案为:x>2.核2【练习2】解:,解①得:x>﹣5,解②得:x<﹣2,则不等式组的解集是:﹣5<x<﹣2.故答案是:﹣5<x<﹣2.核2【练习3】解:2(x﹣1)+5<3x,2x﹣2+5﹣3x<0,﹣x<﹣3,x>3,在数轴上表示为:核2【练习4】解:解①得:x>3,解②得:x≥1.,则不等式组的解集是:x>3.核2【练习5】解:∵由题意可得,由①得,x≥﹣3,由②得,x<0,∴﹣3≤x<0,在数轴上表示为:.故选:B.核2【练习6】解:解不等式得:x≤3.解不等式x﹣3<3x+1得:x>﹣2所以不等式组的解集为﹣2<x≤3.故选:D.核3核3【例题】解:画树状图得:∵共有12种等可能的结果,现任意闭合其中两个开关,则小灯泡发光的有6种情况,∴小灯泡发光的概率为:=.故选:A.核3【例题】解:(1)画树状图得:则共有12种等可能的结果;(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:=.核3【练习1】解:根据平行四边形的性质可得:平行四边形的对角线把平行四边形分成的四个面积相等的三角形,根据平行线的性质可得S1=S2,则阴影部分的面积占,故飞镖落在阴影区域的概率为:;故选:C.核3【练习2】解:∵白色的小正方形有12个,能构成一个轴对称图形的有2个情况(第二行中第4个,还有第四行中第3个),∴使图中红色部分的图形构成一个轴对称图形的概率是:=.故选:A核3【练习3】解:∵在等边三角形、平行四边形、正方形、菱形、圆中,是中心对称图形的有平行四边形、正方形、菱形、圆,∴现从中任意抽取一张,卡片上所画的图形是中心对称图形的概率为:;故答案为:.核3【练习4】解:列表得:1 2 3 41 (1,2)(1,3)(1,4)2 (2,1)(2,3)(2,4)3 (3,1)(3,2)(3,4)4 (4,1)(4,2)(4,3)(1)点P所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种;(2)∵共有12种等可能的结果,其中在函数y=﹣x+5图象上的有4种,即:(1,4),(2,3),(3,2),(4,1)∴点P(x,y)在函数y=﹣x+5图象上的概率为:P=.核4核4【例题】解:原式=+×+﹣(﹣3)﹣2+1=+1++3﹣2+1=5.核4【练习1】解:原式=1﹣1+﹣1﹣3×=1﹣1+﹣1﹣=﹣1.核4【练习2】解:原式=1+2﹣﹣3+2=.核4【练习3】解:原式=﹣8+﹣+3=﹣5.核4【练习4】原式=4﹣(2﹣)+1﹣3×﹣2=4﹣2++1﹣﹣2=1.核4【练习5】解:原式=+×+﹣(﹣3)﹣2+1=+1++3﹣2+1=5.核5核5【例题】解:原式=[﹣]•=•=•=﹣,当x=2时,原式=﹣=3.核5【例题】解:去分母得:x﹣2=3x﹣3,解得:x=,经检验x=是分式方程的解.核5【例题】解:设新购买的纯电动汽车每行驶1千米所需的电费为x元,则原来的燃油汽车所需的油费为(x+0.54)元,由题意得=,解得:x=0.18经检验x=0.18为原方程的解答:纯电动汽车每行驶1千米所需的电费为0.18元核5【练习1】解:方程的两边同乘(x+1)(x﹣1),得x(x+1)+1=x2﹣1,解得x=﹣2.检验:把x=﹣2代入(x+1)(x﹣1)=3≠0.∴原方程的解为:x=﹣2.核5【练习2】解:原式=•=,当a=3时,原式=.核5【练习3】解:原式=a(a+3)÷=a(a+3)×=a.核5【练习4】解:原式=•=2x+8,当x=1时,原式=2+8=10.核5【练习5】解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,由题意,得=2×+300,解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元;(2)[+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000=1500×9+4320﹣12000=13500+4320﹣12000=5820(元).答:超市销售这种干果共盈利5820元.核6核6【例题】解:(1)设y关于x的函数关系式为y=kx+b,由题意,得,解得:,∴y=x+29.75.∴y关于x的函数关系式为:y=+29.75;(2)当x=6.2时,y=×6.2+29.75=37.5.答:此时体温计的读数为37.5℃.【练习1】解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∴反比例函数的解析式是y=,一次函数解析式是y=x+3;(2)如图,设直线y=x+3与y轴的交点为C,当x=﹣4时,y=﹣1,∴B(﹣4,﹣1),当x=0时,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC==;(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.【练习2】解:(1)∵反比例函数y=(x>0)的图象经过点B(2,1),∴将B坐标代入反比例解析式得:m=1×2=2,∵一次函数y=kx+b的图象经过点A(1,0)、B(2,1)两点,∴将A和B坐标代入一次函数解析式得:,解得:,∴一次函数的解析式为y=x﹣1;(2)由图象可知:当x>0时,不等式kx+b>的解集为x>2.【练习3】解:(1)设y关于x的函数关系式y=kx+b,∵直线y=kx+b经过点(50,200),(60,260)∴解得∴y关于x的函数关系式是y=6x﹣100;(2)由图可知,当y=620时,x>50,∴6x﹣100=620,解得x=120.答:该企业2013年10月份的用水量为120吨.(3)由题意得6x﹣100+(x﹣80)=600,化简得x2+40x﹣14000=0解得:x1=100,x2=﹣140(不合题意,舍去).答:这个企业2014年3月份的用水量是100吨.【练习4】解:(1)由题意,得m=1.5﹣0.5=1.120÷(3.5﹣0.5)=40,∴a=40.答:a=40,m=1;(2)当0≤x≤1时设y与x之间的函数关系式为y=k1x,由题意,得40=k1,∴y=40x当1<x≤1.5时,y=40;当1.5<x≤7设y与x之间的函数关系式为y=k2x+b,由题意,得,解得:,∴y=40x﹣20.y=;(3)设乙车行驶的路程y与时间x之间的解析式为y=k3x+b3,由题意,得,解得:,∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=.当40x﹣20+50=80x﹣160时,解得:x=.=,.答:乙车行驶小时或小时,两车恰好相距50km.核7【例题】解:(1)被调查的学生人数为:12÷20%=60(人);(2)喜欢艺体类的学生数为:60﹣24﹣12﹣16=8(人),如图所示:;(3)全校最喜爱文学类图书的学生约有:1200×=480(人)【练习1】解:(1)根据题意得:解得a=5,b=1;(2)七年级成绩为3,6,6,6,6,6,7,8,9,10,中位数为6,即m=6;优秀率为==20%,即n=20%;(3)八年级平均分高于七年级,方差小于七年级,成绩比较稳定,故八年级队比七年级队成绩好.【练习2】解:(1)(6+4)÷50%=20.所以王老师一共调查了20名学生.(2)C类学生人数:20×25%=5(名)C类女生人数:5﹣2=3(名),D类学生占的百分比:1﹣15%﹣50%﹣25%=10%,D类学生人数:20×10%=2(名),D类男生人数:2﹣1=1(名),故C类女生有3名,D类男生有1名;补充条形统计图.(3)由题意画树形图如下:从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选两位同学恰好是一位男同学和一位女同学的结果共有3种.【练习3】解:(1)调查的总人数是:81÷27%=300(人),则选择D方式的人数300﹣75﹣81﹣90﹣36=18(人),m=×100=12.补全条形统计图如下:(2)该市支持选项B的司机大约有:27%×5000=1350(人);(3)小李抽中的概率P==.核8【例题】【练习1】解:A、因为二次函数的图象与y轴的交点在y轴的上方,所以c>0,正确;B、由已知抛物线对称轴是直线x=﹣=1,得2a+b=0,正确;C、由图知二次函数图象与x轴有两个交点,故有b2﹣4ac>0,正确;D、直线x=﹣1与抛物线交于x轴的下方,即当x=﹣1时,y<0,即y=ax2+bx+c=a﹣b+c<0,错误.故选:D.【练习2】解:(1)由题意可得:﹣(﹣1)2+2×(﹣1)+c=0,解得:c=3,∴y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点M(1,4);(2)∵A(﹣1,0),抛物线的对称轴为直线x=1,∴点B(3,0),∴EM=1,BN=2,∵EM∥BN,∴△EMF∽△BNF,∴=()2=()2=.【练习3】解:(1)设抛物线为y=a(x﹣4)2﹣1,∵抛物线经过点A(0,3),∴3=a(0﹣4)2﹣1,;∴抛物线为;(2)相交.证明:连接CE,则CE⊥BD,当时,x1=2,x2=6.A(0,3),B(2,0),C(6,0),对称轴x=4,∴OB=2,AB==,BC=4,∵AB⊥BD,∴∠OAB+∠OBA=90°,∠OBA+∠EBC=90°,∴△AOB∽△BEC,∴=,即=,解得CE=,∵>2,故抛物线的对称轴l与⊙C相交.(3)如图,过点P作平行于y轴的直线交AC于点Q;可求出AC的解析式为;设P点的坐标为(m,),则Q点的坐标为(m,);∴PQ=﹣m+3﹣(m2﹣2m+3)=﹣m2+m.∵S△PAC=S△PAQ+S△PCQ=×(﹣m2+m)×6=﹣(m﹣3)2+;∴当m=3时,△PAC的面积最大为;此时,P点的坐标为(3,)【练习4】解:(1)∵抛物线y=ax2+bx+c过点A(﹣2,0),B(8,0),C(0,﹣4),∴,解得,∴抛物线的解析式为:y=x2﹣x﹣4;∵OA=2,OB=8,OC=4,∴AB=10.如答图1,连接AC、BC.由勾股定理得:AC=,BC=.∵AC2+BC2=AB2=100,∴∠ACB=90°,∴AB为圆的直径.由垂径定理可知,点C、D关于直径AB对称,∴D(0,4).(2)解法一:设直线BD的解析式为y=kx+b,∵B(8,0),D(0,4),∴,解得,∴直线BD解析式为:y=﹣x+4.设M(x,x2﹣x﹣4),如答图2﹣1,过点M作ME∥y轴,交BD于点E,则E(x,﹣x+4).∴ME=(﹣x+4)﹣(x2﹣x﹣4)=﹣x2+x+8.∴S△BDM=S△MED+S△MEB=ME(x E﹣x D)+ME(x B﹣x E)=ME(x B﹣x D)=4ME,∴S△BDM=4(﹣x2+x+8)=﹣x2+4x+32=﹣(x﹣2)2+36.∴当x=2时,△BDM的面积有最大值为36;解法二:如答图2﹣2,过M作MN⊥y轴于点N.设M(m,m2﹣m﹣4),∵S△OBD=OB•OD==16,S梯形OBMN=(MN+OB)•ON=(m+8)[﹣(m2﹣m﹣4)]=﹣m(m2﹣m﹣4)﹣4(m2﹣m﹣4),S△MND=MN•DN=m[4﹣(m2﹣m﹣4)]=2m﹣m(m2﹣m﹣4),∴S△BDM=S△OBD+S梯形OBMN﹣S△MND=16﹣m(m2﹣m﹣4)﹣4(m2﹣m﹣4)﹣2m+m(m2﹣m﹣4)=16﹣4(m2﹣m﹣4)﹣2m=﹣m2+4m+32=﹣(m﹣2)2+36;∴当m=2时,△BDM的面积有最大值为36.(3)如答图3,连接AD、BC.由圆周角定理得:∠ADO=∠CBO,∠DAO=∠BCO,∴△AOD∽△COB,∴=,设A(x1,0),B(x2,0),∵已知抛物线y=x2+bx+c(c<0),∵OC=﹣c,x1x2=c,∴=,∴OD==1,∴无论b,c取何值,点D均为定点,该定点坐标D(0,1).高1【例题】解:(1)设彩色地砖采购x块,单色地砖采购y块,由题意,得,解得:.答:彩色地砖采购40块,单色地砖采购60块;(2)设购进彩色地砖a块,则单色地砖购进(60﹣a)块,由题意,得80a+40(60﹣a)≤3200,解得:a≤20.故彩色地砖最多能采购20块.【练习1】解:设第一阶梯电价每度x元,第二阶梯电价每度y元,由题意可得,,解得.答:第一阶梯电价每度0.5元,第二阶梯电价每度0.6元.【练习2】解:设打折前甲商品的单价为x元,乙商品的单价为y元,由题意得:,解得:,则购买10件甲商品和10件乙商品需要900元,∵打折后实际花费735元,∴这比不打折前少花165元.答:这比不打折前少花165元.【练习3】解:(1)设购买甲、乙两种树苗各x棵和y棵,根据题意得:,解得:,答:购买甲、乙两种树苗各350棵和650棵;(2)设至多可购买甲种树苗x棵,则购买乙种树苗为(1000﹣x)棵,根据题意得,≥88%,解得x≤400,答:至多可购买甲种树苗400棵.【练习4】解:(1)小林以折扣价购买商品A、B是第三次购物.故答案为:三;(2)设商品A的标价为x元,商品B的标价为y元,根据题意,得,解得:.答:商品A的标价为90元,商品B的标价为120元;(3)设商店是打a折出售这两种商品,由题意得,(9×90+8×120)×=1062,解得:a=6.答:商店是打6折出售这两种商品的.高2 【例题】解:A、底数不变指数相乘,故A错误;B、底数不变指数相减,故B错误;C、积得乘方等于每个因式分别乘方,再把所得的幂相乘,故C正确;D、和的平方等于平方和加积的二倍,故D错误;故选:C.【练习1】解:A、不是同类项,不能合并,故A错误;B、非0数的0次幂等于1,故B错误;C、2,故C错误;D、底数不变指数相乘,故D正确;故选:D【练习2】解:A、3a﹣2a=a,原式计算错误,故A选项错误;B、3a2和2a不是同类项,不能合并,故B选项错误;C、(2ab)3=8a3b3,原式计算错误,故C选项错误;D、﹣a4•a4=﹣a8,计算正确,故D选项正确.故选:D.【练习3】解:A、被开方数不能相加,故A错误;B、积的乘方等于每个因式分别乘方,再把所得的幂相乘,故B错误;C、系数相加字母部分不变,故C错误;D、底数不变指数相加,故D正确;故选:D.【练习4】解:A、a•a2=a3,故A选项正确;B、a2b﹣ab2=ab(a﹣b),故B选项正确;C、2m+3n不是同类项,故C选项错误;D、(x2)3=x6,故D选项正确.故选:C.【练习5】解:A、a2•a3=a5≠a6,故A选项错误;B、a8÷a4=a4≠a2,故B选项错误;C、a3+a3=2a3≠2a6,故C选项错误;D、(a3)2=a3×2=a6,故D选项正确.故选:D.高3【例题】解:∵AB=AC,∠A=50°,∴∠ACB=∠ABC=(180°﹣50°)=65°,∵将△ABC折叠,使点A落在点B处,折痕为DE,∠A=50°,∴∠ABE=∠A=50°,∴∠CBE=∠ABC﹣∠ABE=65°﹣50°=15°.故答案为:15.【练习1】解:如图所示,满足条件的点P有8个,分别为(5,0)(8,0)(0,5)(0,6)(﹣5,0)(0,﹣5)(0,)(,0).故答案为:8;(5,0)(答案不唯一,写出8个中的一个即可).【练习2】解:分两种情况:①当其他两条边中有一个为3时,将x=3代入原方程,得32﹣12×3+k=0,解得k=27.将k=27代入原方程,得x2﹣12x+27=0,解得x=3或9.3,3,9不能够组成三角形,不符合题意舍去;②当3为底时,则其他两条边相等,即△=0,此时144﹣4k=0,解得k=36.将k=36代入原方程,得x2﹣12x+36=0,解得x=6.3,6,6能够组成三角形,符合题意.故k的值为36.故选:B.【练习3】解:∵ME∥CB,MF∥AB,则四边形AEMF是平行四边形,∠B=∠FMC,∠EMB=∠C∵AB=AC,∴∠B=∠C,∴∠B=∠EMB,∠C=∠FMC∴BE=EM,FM=FC,所以:▱AFDE的周长等于AE+EM+AF+FM=(AE+BE)+(AF+FC)=AB+AC=12.故选:D.【练习4】解:①80°角是顶角时,三角形的顶角为80°,②80°角是底角时,顶角为180°﹣80°×2=20°,综上所述,该等腰三角形顶角的度数为80°或20°.故选:B.【练习5】解:(1)∵△ABC是边长为6的等边三角形,∴∠ACB=60°,∵∠BQD=30°,∴∠QPC=90°,设AP=x,则PC=6﹣x,QB=x,∴QC=QB+BC=6+x,∵在Rt△QCP中,∠BQD=30°,∴PC=QC,即6﹣x=(6+x),解得x=2,∴AP=2;(2)当点P、Q同时运动且速度相同时,线段DE的长度不会改变.理由如下:作QF⊥AB,交直线AB的延长线于点F,连接QE,PF,又∵PE⊥AB于E,∴∠DFQ=∠AEP=90°,∵点P、Q速度相同,∴AP=BQ,∵△ABC是等边三角形,∴∠A=∠ABC=∠FBQ=60°,在△APE和△BQF中,∵∠AEP=∠BFQ=90°,∴∠APE=∠BQF,在△APE和△BQF中,,∴△APE≌△BQF(AAS),∴AE=BF,PE=QF且PE∥QF,∴四边形PEQF是平行四边形,∴DE=EF,∵EB+AE=BE+BF=AB,∴DE=AB,又∵等边△ABC的边长为6,∴DE=3,∴点P、Q同时运动且速度相同时,线段DE的长度不会改变.核4【例题】解:根据题意,△ABC的三边之比为::,要使△ABC∽△PQR,则△PQR的三边之比也应为::,经计算只有丙点合适.故选C.【练习1】解:∵,∴EF∥BC,∴△AEF∽△ABC,∴=()2=()2=,∴S△ABC=18,则S四边形EBCF=S△ABC﹣S△AEF=18﹣2=16.故答案为:16.【练习2】解:∵∠DAB=∠CAE∴∠DAE=∠BAC∴当∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD•AC=AB•AE时两三角形相似.故答案为:∠D=∠B(答案不唯一).【练习3】解:过A作AE⊥BC,∵AD∥BC,AD⊥CD,∴∠DCB=90°,∴四边形ADCE是矩形,∵AD=4,∴CE=4,∵BC=9,∴EB=5,∵AE2=EB×CE,∴AE2=20,∴AC===6.故答案为:6.【练习4】解:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC;∴CD=BC﹣BD=9﹣3=6;∴∠BAD+∠ADB=120°∵∠ADE=60°,∴∠ADB+∠EDC=120°∴∠DAB=∠EDC,又∵∠B=∠C=60°,∴△ABD∽△DCE,则=,即=,解得:CE=2,故AE=AC﹣CE=9﹣2=7.故答案为:7.【练习5】解:连接AD,则∠ADB=90°,在Rt△ABD中,AB=5,BD=4,则AD==3,∵,∴∠DAC=∠DBA,∴△DAC∽△DBA,∴==,∴CD=,∴AC==,∴sin∠ECB=sin∠DCA==.故答案为:.【练习6】(1)①证明:∵△ABC为等边三角形,∴AB=AC,∠C=∠CAB=60°,又∵AE=CF,在△ABE和△CAF中,,∴△ABE≌△CAF(SAS),∴AF=BE,∠ABE=∠CAF.又∵∠APE=∠BPF=∠ABP+∠BAP,∴∠APE=∠BAP+∠CAF=60°.∴∠APB=180°﹣∠APE=120°.②∵∠C=∠APE=60°,∠PAE=∠CAF,∴△APE∽△ACF,∴,即,所以AP•AF=12(2)若AF=BE,有AE=BF或AE=CF两种情况.①当AE=CF时,点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,且∠ABP=∠BAP=30°,∴∠AOB=120°,又∵AB=6,∴OA=,点P的路径是.②当AE=BF时,点P的路径就是过点C向AB作的垂线段的长度;因为等边三角形ABC 的边长为6,所以点P的路径为:.所以,点P经过的路径长为或3.【练习7】解:①∵AB是⊙O的直径,弦CD⊥AB,∴DG=CG,∴弧AD=弧AC,∠ADF=∠AED,∵∠FAD=∠DAE(公共角),∴△ADF∽△AED;②∵=,CF=2,∴FD=6,∴CD=DF+CF=8,∴CG=DG=4,∴FG=CG﹣CF=2;③∵AF=3,FG=2,∴AG=,tan∠E=.高 5【练习1】解:7260000=7.26×106,故选:C.【练习2】解:13 940 000=1.394×107,故选:A.高6【例题】解:从上面看可得到左右相邻的3个矩形.故选:D.【练习1】解:由实物结合它的俯视图可得该物体是由两个长方体木块一个横放一个竖放组合而成,由此得到它的主视图应为选项D.故选:D.【练习2】解;从正面看是矩形,看不见的棱用虚线表示,故选:B.【练习3】解:A、圆柱的主视图是矩形,俯视图是矩形,主视图与俯视图相同,故A选项错误;B、正方体的主视图是正方形,俯视图是正方形,主视图与俯视图相同,故B选项错误;C、圆锥的主视图是三角形,俯视图是圆及圆心,主视图与俯视图不相同,故C选项正确;D、球的主视图是圆,俯视图是圆,主视图与俯视图相同,故D选项错误.故选:C.【练习4】解:A、圆柱主视图是矩形,俯视图是圆,故A选项错误;B、圆锥主视图是等腰三角形,俯视图是圆,故B选项错误;C、三棱柱主视图是矩形,俯视图是三角形,故C选项错误;D、长方体主视图和俯视图都为矩形,故D选项正确;故选:D.【练习5】解:上面看,是上面2个正方形,左下角1个正方形,故选:C.高7【例题】解:∵1出现了2次,出现的次数最多,∴众数是1,把这组数据从小到大排列1,1,2,3,6,最中间的数是2,则中位数是2;故选:D.【例题2】解:∵这组数据的平均数是10,∴(10+10+12+x+8)÷5=10,解得:x=10,∴这组数据的方差是[3×(10﹣10)2+(12﹣10)2+(8﹣10)2]=1.6;故答案为:1.6.【练习1】解:∵S2甲=0.0006,S2乙=0.00315,∴S2甲<S2乙,∴这两名运动员中甲的成绩更稳定.故答案为:甲.【练习2】解:(1)甲的众数为8,乙的平均数=×(5+9+7+10+9)=8,乙的中位数为9;(2)因为他们的平均数相等,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛;(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小.故答案为:8,8,9;变小.【练习3】解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:×(10×4+8×2+7+9×3)=9,则方差是:×[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.【练习4】解:(1)由题意得:甲的总成绩是:9+4+7+4+6=30,则a=30﹣7﹣7﹣5﹣7=4,=30÷5=6,故答案为:4,6;(2)如图所示:;(3)①观察图,可看出乙的成绩比较稳定,故答案为:乙;=[(7﹣6)2+(5﹣6)2+(7﹣6)2+(4﹣6)2+(7﹣6)2]=1.6.由于<,所以上述判断正确.②因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中.高8【例题】解:∵AB=DE,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据ASA,也可证明△ABC≌△DEF,故B正确;但添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C不正确;故选:C.【练习1】(1)证明:∵正五边形ABCDE,∴AB=BC,∠ABM=∠C,∴在△ABM和△BCN中,∴△ABM≌△BCN(SAS);(2)解:∵△ABM≌△BCN,∴∠BAM=∠CBN,∵∠BAM+∠ABP=∠APN,∴∠CBN+∠ABP=∠APN=∠ABC==108°.即∠APN的度数为108°.【练习2】解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选C.【练习3】解:A、∵AB=AC,∴,∴△ABD≌△ACD(SAS);故此选项正确;B、当DB=DC时,AD=AD,∠1=∠2,此时两边对应相等,但不是夹角对应相等,故此选项错误;C、∵∠ADB=∠ADC,∴,∴△ABD≌△ACD(ASA);故此选项正确;D、∵∠B=∠C,∴,∴△ABD≌△ACD(AAS);故此选项正确.故选:B.【练习4】(1)证明:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵BE⊥BF,∴∠FBE=90°,∵∠ABE+∠EBC=90°,∠CBF+∠EBC=90°,∴∠ABE=∠CBF,在△AEB和△CFB中,∴△AEB≌△CFB(SAS),∴AE=CF.(2)解:∵BE⊥BF,∴∠FBE=90°,又∵BE=BF,∴∠BEF=∠EFB=45°,∵四边形ABCD是正方形,∴∠ABC=90°,又∵∠ABE=55°,∴∠EBG=90°﹣55°=35°,∴∠EGC=∠EBG+∠BEF=45°+35°=80°.高9【例题】解:由已知有:∠BAE=22°,∠ABC=90°,∠CED=∠AEC=90°∴∠BCE=158°,∴∠DCE=22°,又∵tan∠BAE=,∴BD=AB•tan∠BAE,又∵cos∠BAE=cos∠DCE=,∴CE=CD•cos∠BAE=(BD﹣BC)•cos∠BAE=(AB•tan∠BAE﹣BC)•cos∠BAE=(10×0.4040﹣0.5)×0.9272≈3.28(m).【练习1】解:(1)过点A作AD⊥BE于D,设山AD的高度为(x)m,在Rt△ABD中,∵∠ADB=90°,tan31°=,∴BD=≈=x,在Rt△ACD中,∵∠ADC=90°,tan39°=,∴CD=≈=x,∵BC=BD﹣CD,∴x﹣x=80,解得:x=180.即山的高度为180米;(2)在Rt△ACD中,∠ADC=90°,sin39°=,∴AC==≈282.9(m).答:索道AC长约为282.9米.【练习2】解:(1)作CH⊥AB于H.在Rt△ACH中,CH=AC•sin∠CAB=AC•sin25°≈10×0.42=4.2(千米),AH=AC•cos∠CAB=AC•cos25°≈10×0.91=9.1(千米),在Rt△BCH中,BH=CH÷tan∠CBA=4.2÷tan37°≈4.2÷0.75=5.6(千米),∴AB=AH+BH=9.1+5.6=14.7(千米).故改直的公路AB的长14.7千米;(2)在Rt△BCH中,BC=CH÷sin∠CBA=4.2÷sin37°≈4.2÷0.6=7(千米),则AC+BC﹣AB=10+7﹣14.7=2.3(千米).答:公路改直后比原来缩短了2.3千米.【练习3】解:过点A作AE⊥CC′于点E,交BB′于点F,过点B作BD⊥CC′于点D,则△AFB、△BDC、△AEC都是直角三角形,四边形AA′B′F,BB′C′D和BFED都是矩形,∴BF=BB′﹣B′F=BB′﹣AA′=310﹣110=200,CD=CC′﹣C′D=CC′﹣BB′=710﹣310=400,∵i1=1:2,i2=1:1,∴AF=2BF=400,BD=CD=400,又∵EF=BD=400,DE=BF=200,∴AE=AF+EF=800,CE=CD+DE=600,∴在Rt△AEC中,AC===1000(米).答:钢缆AC的长度是1000米.高10【例题】解:连接OC,∵BD,CD分别是过⊙O上点B,C的切线,∴OC⊥CD,OB⊥BD,∴∠OCD=∠OBD=90°,∵∠BDC=110°,∴∠BOC=360°﹣∠OCD﹣∠BDC﹣∠OBD=70°,∴∠A=∠BOC=35°.故答案为:35.【练习1】解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.故选:C.【练习2】解:连接OC,∵CD是⊙O的切线,点C是切点,∴∠OCD=90°.∵∠BAC=25°,∴∠COD=50°,∴∠D=180°﹣90°﹣50°=40°.故选:D.【练习3】解:∵AC是⊙O的切线,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故选:B.【练习4】解:连接BD,∵AB为⊙O的直径,BC是⊙O的切线,∴∠ADB=90°,AB⊥BC,∴∠C+∠BAC=∠BAC+∠ABD=90°,∴∠ABD=∠C,∵∠AED=∠ABD,∴∠AED=∠C=38°.故选B.【练习5】解:(Ⅰ)如图①,连接OC,∵直线l与⊙O相切于点C,∴OC⊥l,∵AD⊥l,∴OC∥AD,∴∠OCA=∠DAC,∵OA=OC,∴∠BAC=∠OCA,∴∠BAC=∠DAC=30°;(Ⅱ)如图②,连接BF,∵AB是⊙O的直径,∴∠AFB=90°,∴∠BAF=90°﹣∠B,∴∠AEF=∠ADE+∠DAE=90°+18°=108°,在⊙O中,四边形ABFE是圆的内接四边形,∴∠AEF+∠B=180°,∴∠B=180°﹣108°=72°,∴∠BAF=90°﹣∠B=90°﹣72°=18°.高11【例题】解:如图所示:组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种.故选:C.【练习1】解:A、主视图是等腰三角形,是轴对称图形,不是中心对称图形,故错误;B、主视图是等腰三角形,是轴对称图形,不是中心对称图形,故错误;C、主视图是等腰梯形,是轴对称图形,不是中心对称图形,故错误;D、主视图是矩形,是轴对称图形,也是中心对称图形,故正确.故选:D.【练习2】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.【练习3】解:①只是中心对称图形;②、③、④两者都既是中心对称图形又是轴对称图形,⑤只是轴对称图形.故选B.高12【例题】解:∠1与∠5是同位角.故选:D.【练习1】解:∵斜边与这根直尺平行,∴∠α=∠2,又∵∠1+∠2=90°,∴∠1+∠α=90°,又∠α+∠3=90°∴与α互余的角为∠1和∠3.故选:C.【练习2 】解∵∠BOC与∠AOD是对顶角,∴∠BOC=∠AOD=50°,故答案为:50.【练习3】解:∵a∥b,∴∠1=∠3,∵∠2+∠3=180°,∴∠1+∠2=180°,故答案为:180°.高14【例题】解:∵矩形ABCD的对角线AC,BD相交于点O,∴OB=OC,∴∠OBC=∠ACB=30°,∴∠AOB=∠OBC+∠ACB=30°+30°=60°.故选:B.【练习1】解:∵菱形ABCD的边长为2,∴AD=AB=2,又∵∠DAB=60°,∴△DAB是等边三角形,∴AD=BD=AB=2,则对角线BD的长是2.故选:C【练习2】解:连接AC,∵四边形ABCD是菱形,∴AB=CD,AC⊥BD,∴∠DEC=90°,∵F为CD的中点,∴EF=CD=6,∴CD=12,∴AB=CD=12,故答案为:12.【练习3】解:∵四边形ABCD是矩形,∴BD=AC=6,OD=BD=3.故答案是:3.【练习4】解:根据矩形的判定定理:对角线相等的平行四边形是矩形,有一个角是直角的平行四边形是矩形故添加条件:∠ABC=90°或AC=BD.故答案为:∠ABC=90°或AC=BD.高14【例题】解法(1):解:利用平移,原图可转化为下图,设道路宽为x米,根据题意得:(20﹣x)(32﹣x)=540整理得:x2﹣52x+100=0解得:x1=50(舍去),x2=2答:道路宽为2米.解法(2):解:利用平移,原图可转化为下图,设道路宽为x米,根据题意得:20×32﹣(20+32)x+x2=540整理得:x2﹣52x+100=0解得:x1=2,x2=50(舍去)答:道路宽应是2米.【练习1】解:∵x=2是一元二次方程x2﹣2mx+4=0的一个解,∴4﹣4m+4=0,∴m=2.故选:A.【练习2】解:设这个增长率是x,根据题意得:2000×(1+x)2=2880解得:x1=20%,x2=﹣220%(舍去)故答案为:20%.【练习3】解:设每个商品的定价是x元,由题意,得(x﹣40)[180﹣10(x﹣52)]=2000,整理,得x2﹣110x+3000=0,解得x1=50,x2=60.当x=50时,进货180﹣10(50﹣52)=200个>180个,不符合题意,舍去;当x=60时,进货180﹣10(60﹣52)=100个<180个,符合题意.答:当该商品每个定价为60元时,进货100个.高6【例题】解:由益阳市区所在地用坐标表示为(1,0),安化县城所在地用坐标表示为(﹣3,﹣1),可知,益阳所在的水平直线为x轴,且向右为正方向,益阳所在的竖直直线的左侧的第一条竖直直线为y轴,且向上为正方向,这两条直线交点为坐标原点.∴南县所在位置的坐标为(2,4).故答案填:(2,4).【练习1】解:∵△ABC与△DEF关于y轴对称,A(﹣4,6),∴D(4,6).故选:B.【练习2】解:点A(1,﹣2)关于x轴对称的点的坐标是(1,2),故选:D.【练习3】解:点A(﹣2,﹣3)向右平移3个单位长度,得到点B的坐标为(1,﹣3),故点在第四象限.故选D.【练习4】解:过C点作CE⊥x轴于E.∵四边形ABCD为正方形,∴AB=BC,∠ABC=90°,∴∠ABO+∠CBE=90°,又∠ABO+∠BAO=90°,∴∠BAO=∠CBE,又∠AOB=∠BEC=90°,∴△ABO≌△BCE,∴CE=OB=3,BE=OA=4,∴C点坐标为(4﹣3,﹣3),即(1,﹣3).故答案为:(1,﹣3).高16【例题】解:此扇形的弧长是:=10π.故选:D.【练习1】解:连接OC,∵∠AOB=120°,C为弧AB中点,∴∠AOC=∠BOC=60°,∵OA=OC=OB=2,∴△AOC、△BOC是等边三角形,∴AC=BC=OA=2,∴△AOC的边AC上的高是=,△BOC边BC上的高为,∴阴影部分的面积是﹣×2×+﹣×2×=π﹣2,故选:A.【练习2】解:如图,CD⊥AB,交AB于点E,∵AB是直径,∴CE=DE=CD=,又∵∠CDB=30°∴∠COE=60°,∴OE=1,OC=2,∴BE=1,∴S△BED=S△OEC,∴S阴影=S扇形BOC==.故选:D.【练习3】解:依题意知母线长为:2,底面半径r=1,则由圆锥的侧面积公式得S=πrl=π×1×2=2π.故选B.。
10-13岳阳中考数学题分类汇编

10-13岳阳中考数学题分类汇编岳阳市2010——2013年数学中考题分类汇编一、数与式(一)、相反数、绝对值、无理数1(2013.岳阳).-2013的相反数是()2(2012.岳阳).(3分)(2009•南平)计算:|﹣2|= _________.A.-2013 B、2013 C、12013D、-12013(二)、科学计数法、有效数字3(2013.岳阳).据统计,今年我市参加初中毕业学业考试的九年级学生将近47500人,数据47500用科学记数法表示为____________4(2011.岳阳).今年3月7日,岳阳市人民政府新闻发布会发布,2010年全市经济增长14.8%,岳阳市GDP达到l539.4亿元。
1539.4亿元用科学记数法表示为(保留两位有效数字) __________亿元.5(2010.岳阳).岳阳洞庭湖大桥路桥全长10173.8m,这个数据用科学记数法表示(保留3位有效数字)为.(三)、整式6(2013.岳阳).计算a3·a2的结果是()+y )=x 2+xy D .9+2=3 212(2010.岳阳).下面给出的四个命题中,是假命题的是( )A .如果a =3,那么|a |=3B .如果x 2=4,那么x =2C .如果(a -1)(a +2)=0,那么a -1=0或a +2=0D .如果四边形ABCD 是正方形,那么它是矩形 13(2011.岳阳).将边长分别为2、223242…的正方形的面积记作1234S S S S ,,,….计算213243S S S S S S ---,,….若边长为2n (n 为正整数)的正方形面积记作nS .根据你的计算结果,猜想1n n S S +-=__________。
(四)、因式分解14(2013.岳阳).分解因式:xy -3x=____________ 15(2012.岳阳).(3分)(2011•南昌)分解因式:x 3﹣x= _________ . 16(2011.岳阳).分解因式:41a-=__________。
2015年湖南岳阳市初中毕业学业考试数学模拟试题和答案

2015年湖南岳阳市初中毕业学业考试数学模拟试题和答案.. 2015年岳阳市初中毕业学业考试数学模拟试题卷时量:90分钟满分:120分一、选择题(本大题8个小题,每小题3分,满分24分)1.下列计算错误的是()A. *****=0B. 9=C. 11()33-= D. 4216= 2.下列几个图形是国际通用的交通标志,其中不是中心对称图形的是()A .B .C .D .3.2015年岳阳元宵节灯展参观人数约为*****人,将这个数用科学记数法表示为4.710n ?,那么n 的值为()A .3B .4C .5D .64.一个几何体的主视图、左视图、俯视图的图形完全相同,它可能是()A .三棱锥B .长方体C .球体D .三棱柱5.一组数据2,2,4,5,6的中位数是()A .2B .4C .5D .66.下列计算,正确的是()A .()*****x x =B .623a a a ÷=C .*****a a a ?=D .01303???= ???7.某次考试中,某班级的数学成绩统计图如下.下列说法错误..的是() A .得分在70~80分之间的人数最多 B .该班的总人数为40C .得分在90~100分之间的人数最少D .及格(≥60分)人数是26 8.二次函数y=ax 2+bx+c (a≠0)的部分图象如图,图象过点(1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c >3b ;③8a+7b+2c >0;④当x >2时,y 的值随x 的增大而增大.其中正确的结论有()A .1个B .2个C .3个D .4个.. 第7题图人数分数第8题图二、填空题(本大题8个小题,每小题4分,满分32分)9.|-2|=.10.分解因式:24x x -=.11.函数13y x =-中自变量x 的取值范围是.12.五边形的外角和为.13.如图,四边形ABCD 是菱形,对角线AC 和BD 相交于点O ,4AC cm =,8BD cm =,则这个菱形的面积是2cm .14.如图,四边形ABCD 是O 的内接四边形,∠DCE =60?,则∠BAD =______________.15,则圆锥的母线长是______________.第14题图16.对点(x ,y )的一次操作变换记为P 1(x ,y ),定义其变换法则如下:P 1(x ,y )=(x+y ,x y );且规定P n (x ,y )=P 1(P n 1(x ,y ))(n 为大于1的整数).如P 1(1,2)=(3,1),P 2(1,2)=P 1(P 1(1,2))=P 1(3,1)=(2,4),P 3(1,2)=P 1(P 2(1,2))=P 1(2,4)=(6,2).则P 2015(1,1)=______________.O D C BA 第13题图..三、解答题(本大题共8小题,满分64分,解答题应写出文字说明、证明过程或演算步骤)17.(本题满分6分)计算:17-23÷(-2)×318. (本题满分6分)解不等式组211,48 1.x x x x -+??-+?19.(本题满分8分)先化简,再求值。
2010年湖南省岳阳市中考数学试题及答案(word版)

2010年初中毕业班综合测试数学答案及评分标准一.选择题:本大题共10小题, 每小题3分, 满分30分. 在每小题给出的四个选项中, 只有一项是符合题目要求的.二.填空题:本大题共6小题,每小题3分,满分18分.1. 6- 12.> 13.120O14.16 15.20y x= 16.7,16(第一空2分,第二空1分)三.解答题:本大题共9题,满分102分. 解答须写出说明、证明过程和演算步骤 17.(本小题满分9分)先化简,后计算:2)1(2)1(2-+-+x x ,其中2=x解法1:2)1(2)1(2-+-+x x222122---++=x x x ---------4分 32-=x --------6分 将2=x 得,1323)2(2-=-=- --------9分(其它解法酌情评分) 解法2:2)1(2)1(2-+-+x x3141)2)(2(1]3)1][(1)1[(13)1(2)1(222-=+-=+-+=+-+++=+-+-+=x x x x x x x x将2=x 得,1323)2(2-=-=-解法3:2)1(2)1(2-+-+x x3212)1)(1(2]2)1)[(1(22-=--=--+=--++=x x x x x x将2=x 得,1323)2(2-=-=-解法4:2)1(2)1(2-+-+x x2(1)2(1)13x x =+-++- 2[(1)1]3x =+--23x =-将2=x得,23231-=-=-18.(本小题满分9分)解:(1) ∵2(444)y x x =--+- --------2分2(2)4x =--+ --------4分∴1,2,4a h k =-== --------7分 (2)函数24y x x =-+图像的顶点坐标为(2,4) ,--------8分 对称轴方程为2x = --------9分19.(本小题满分10分)证明:∵ABCD 是等腰梯形∴AB DC =, --------2分ABC DCB ∠=∠ --------4分∵,E F 分别为,AB CD 的中点 ∴BE CF = --------6分 ∴BCF C ∆≅∆BE --------8分 ∴BF CE = --------10分20.(本小题满分10分)解:(1)(2)-得,22x a a =- --------2分 ∴223a a -=,解得121,3a a =-= ---------4分将11,3a x =-=代入(2)得32y +=-,5y =-,即15m =-, ---------6分将23,3a x ==代入(2)得323y +=⨯,0y =,即23m = --------8分∴11,a =-15m =-23,a =23m = --------10分21.(本小题满分12分)解:组成的所有坐标列树状图为:1 1 -12 -2(1,1)(1,-1)(1,2)(1,-2) -11 -1 2-2(-1,1) (-1,-1)(-1,2) (-1,-2) 第一次...第二次----------8分 或列表为:(1)根据已知的数据,点(,)m n 在函数y x =的图像上的概率为41164= --------10分 (2)根据已知的数据,点(,)m n 不在第二象限的概率为123164= --------12分 22.(本小题满分12分)解:(1),A B 点的坐标分别为(0,4),(2,0)A B ------2分 线段AB 2224+ ------3分== ------4分(此步有任意一个等号都给1分) (2)两个交叉点 -------各1分;垂直平分线 -------1分;连接OP ------1分; (3)两段圆弧------各1分;连接AM 、CM 各1分其它作法酌情评分21 -12 -2(2,1)(2,-1)(2,2)(2,-2) -21 -12 -2 (-2,1) (-2,-2) (-2,2) (-2,-2)第一次...第二次23. (本小题满分12分)(1)连接OC, ------2分∵PC 切⊙O 于点C ,∴PC OC ⊥, ------3分又30P ο∠=,∴12OA OB OC OP ===------5分 ∴22PB OB AB == ------6分(2) 在Rt POC ∆中,由(1)可知60POC ο∠=,又OB OC =, ------7分∴OBC ∆是正三角形,∴60ABC ο∠= ------8分 ∵AB 是⊙O 的直径,∴ABC ∆是直角三角形 ------9分∴sin 60ACABο=, ------10分 343=解得8AB = ------11分 ∴⊙O 的半径142r AB cm == ------12分 24.(本小题满分14分)解:(1)设生产A 型桌椅x 套,则生产B 型桌椅(500)x -套,由题意得------2分 解得345350x ≤≤ ------4分 因为x 是整数,所以有6种生产方案. ------5分 (2)(602)(804)(500)2242000y x x x =+++-=-+ ------8分220-<,y 随x 的增大而减少.∴当350x =时,y 有最小值. ------10分 ∴当生产A 型桌椅350套、B 型桌椅150套时,总费用最少.此时最少费用为223504200034300-⨯+=(元) ------12分(3)有剩余木料,最多还可以解决3名同学的桌椅问题. ------14分25.(本小题满分14分)(2)根据题意,得,8AE t OE OA EA t ==-=-∴点Q 的纵坐标为5(8)4t -,点P 的纵坐标为33(8)644t t --+=, ∴53(8)10244PQ t t t =--=-.当MN 在AD 上时,102t t -=,∴103t =.当100t 3<≤时,()2S t 102t S 2t 10t.AE PQ =⨯=-=-+,即当10t 53≤<时,()222S 102t S 4t 40t 100.PQ ==-=-+,即 --------8分 (3)当100t 3<≤时, 2525S 2t )22=--+(,∴5t 2=时, 25S 2=最大值.当10t 53≤<时,()2S 4t 5=-,∵t 5<时,S 随t 的增大而减小, ∴10t 3=时, 100S 9=最大值.∵225>9100,∴S 的最大值为225. --------12分(4)224t 5<<或t 6>. --------14分(4)的答案供教师参考)图12易知:3(8,)4P t t -, 5(8,10)4Q t t --①当05t <<时,102PQ t =-,M 5(183,10)4t t --,则可得6t > 综上所述:2245t <<或6t >.。
岳阳市中考真题数学试卷

岳阳市中考真题数学试卷题目一:选择题1. 若x^2 + 2x - 15 = 0,则x的值为()。
A. -5和3B. -3和5C. 3和-5D. -1和152. 三角形ABC的边长满足AB = AC,角A的大小为60°,则角B的大小为()。
A. 60°B. 30°C. 90°D. 120°3. 下列各组数中,互为倒数的数是()。
A. 3和1/3B. -9和9C. 2.5和1/2.5D. -0.6和-1/0.64. 若m∈(-∞, 1),n∈[3, +∞),则mn的取值范围是()。
A. (-∞, -3]B. (-∞, -1)C. [-∞, -1)D. (-∞, -3)5. 数列1,2,4,8的通项公式为()。
A. 2^(n-1)B. 2^nC. 2^(n+1)D. 2^n+1题目二:计算题1. 已知正方形ABCD中,点E是边AB上的一个点,且AE = x cm,DE = 3 cm。
若三角形BEC的面积为12 cm^2,求x的值。
2. 已知函数y = 2x^2 + bx + c的图象过点(-1, 3),且与x轴交于点(2, 0),求常数b和c的值。
3. 某商品原价为x元,现进行8折优惠后售价为60元,求该商品的原价。
4. 若a,b是整数,并满足a^2 - b^2 = 24,求a的最大值。
5. 已知三角形ABC的周长为12 cm,边长分别为3 cm,4 cm和5 cm,判断该三角形是否为直角三角形,并说明理由。
题目三:解答题1. 用辗转相除法求下列各组数的最大公因数和最小公倍数:A. 45和75B. 36和482. 小明从北京出发,以每小时80 km的速度骑车到海边,若他骑了4小时,骑车路程大于等于航程的一半,求小明骑车的最短路程。
3. 若甲力气大于乙的1/5,乙力气大于丙的1/6,已知乙、丙两个人的力气总和为14千克,求甲、乙、丙三人的力气。
4. 一个学校有学生甲、乙、丙三个班级,甲班和乙班的人数之比为5:7,乙班和丙班的人数之比为2:5,已知甲班的人数为40人,求三个班级的人数各为多少?5. 一个直角梯形的底边长为8 cm,上底边长为4 cm,两条腿长分别是6 cm和10 cm,求该梯形的面积。
湖南岳阳中考数学试题.doc

湖南省岳阳市2011年初中毕业学业考试试卷— 选择题(本大题共8道小,每小题3分,满分24分)1.负数的引入是数学发展史上的一大飞跃, 使数的家族得到了扩张, 为人们认识世界提供了更多的工具,最早使用负数的国家是( ) AA: 中国 B: 印度 C: 英国 D: 法国 2.下列运算正确的是( ) DA :a 2+a 3=a 5B :4=±2C :(2a)3=6a 3D :(-3x-2)(3x-2)=4-9x 2 3.) B左视图俯视图主视图A:圆锥B: 正三棱柱 C :正三棱锥 D :圆柱4. 下列说话正确的是( ) DA 、要调查人们对“低碳生活”的了解程度,宜采用普查方式B 、一组数据3,4,4,6,8,5的众数和中位数都是3C 、必然事件的概率是100%,随机事件的概率是50%D 、若甲组数据的方差S 2甲 =0.128 ,乙组数据的方差S 2乙=0.036,则乙组数据比甲组数据稳定 5.下列四句话的文字有三句具有对称规律,其中没有这种规律的一句是( ) B A 、上海自来水来自上海 B 、有志者事竟成C 、清水池里池水清D 、蜜蜂酿蜂蜜6.小芳家房屋装修时,选中了一种漂亮的正八边形地砖,建材店老板告诉她,只用一种八边形地砖是不能密铺地面的,便向她推荐了几种形状的地砖,里认为要使地面密铺,小芳应选择另一种形状的地砖是()BBADC7.如图,把一张长方形纸片ABCD 沿对角线BD 折叠,使C 点落在E 处,BE 与AD 相交于点F ,下列结论:① BD=AD 2+AB 2, ② △ABF ≌△EDF, ③ DE AB =EFAF , ④AD=BD·COS45° ( ) BA :①②B :②③C :①④D :③④8.如图,边长都是1的正方形好正三角形,其一边在同一水平线上,三角形沿该水平线自左向右匀速穿过正方形,设穿过的时间为t ,正方形与三角形重合部分的面积为S (空白部分),那么S 关于t 的函数大致图像应为( ) B二、填空题(本大题共8道小题,每小题3分,满分24分)9.函数y=1x+3中自变量x 的取值范围是____________ (x≠-3)10.分解因式:a 4-1=____________ (a 2+1)(a+1)(a-1)11今年3月7日,岳阳市人民政府新闻发布会发布,2010年全市经济增长14.8% ,岳阳市GDP 达到1539.4亿元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
岳阳市2010——2015年数学中考题分类汇编一、 数与式(一)、相反数、绝对值、无理数1(2013.岳阳).-2013的相反数是( ) 2(2012.岳阳).(3分)(2009•南平)计算:|﹣2|= _________ . A .-2013 B 、2013 C 、12013 D 、-12013﹣±.(二)、科学计数法、有效数字4(2013.岳阳).据统计,今年我市参加初中毕业学业考试的九年级学生将近47500人,数据47500用科学记数法表示为____________4(2011.岳阳).今年3月7日,岳阳市人民政府新闻发布会发布,2010年全市经济增长14.8%,岳阳市GDP 达到l539.4亿元。
1539.4亿元用科学记数法表示为(保留两位有效数字) __________亿元.5(2010.岳阳).岳阳洞庭湖大桥路桥全长10173.8m ,这个数据用科学记数法表示(保留3位有效数字)为 .4(2014•岳阳)2014年“五一”小长假,岳阳楼、君山岛景区接待游客约120000人次,将120000表示为 4.9×104.(三)、整式6(2013.岳阳).计算a 3·a 2的结果是( )A 、a 5B 、a 6C 、a 3+a 2D 、3a 27(2013.岳阳).单项式-5x 2y 的系数是____________ +=2+ C 9(2011.岳阳). 负数的引入是数学发展史上的一大飞跃,使数的家族得到了扩张,为人们认识世界提供了更多的工具.最早使用负数的国家是( ) A .中国 B .印度 C .英国 D .法国 10(2011.岳阳).下列运算正确的是( )A .235a a a +=B 2=±C .33(2)6a a =D .2(32)(32)49x x x ---=-9(2015•岳阳)单项式﹣x 2y 3的次数是 5 . 14(2014•岳阳)计算:﹣= ﹣3 .12(2010.岳阳).下列运算正确的是( ) A .a 2·a 3=a 6 B .(a 2)3=a 6 C .2x (x +y )=x 2+xy D .9+2=3 212(2010.岳阳).下面给出的四个命题中,是假命题的是( ) A .如果a =3,那么|a |=3 B .如果x 2=4,那么x =2C .如果(a -1)(a +2)=0,那么a -1=0或a +2=0D .如果四边形ABCD 是正方形,那么它是矩形+= D m= _________ (用含n 的代数式表示)13(2011.岳阳).将边长分别为、、、…的正方形的面积记作1234S S S S ,,,….计算213243S S S S S S ---,,….若边长为(n 为正整数)的正方形面积记作n S .根据你的计算结果,猜想1n n S S +-=__________。
15(2014•岳阳)观察下列一组数:、1、、、…,它们是按一定规律排列的那么这组数的第n 个数是 .(n 为正整数)(四)、因式分解14(2013.岳阳).分解因式:xy -3x=____________15(2012.岳阳).(3分)(2011•南昌)分解因式:x 3﹣x= _________ . 16(2011.岳阳).分解因式:41a -=__________。
9(2010.岳阳).因式分解:x 3y -xy 3= .10(2015•岳阳)分解因式:x 2﹣9= (x+3)(x ﹣3) .(五)、实数计算题21(2013.岳阳).计算:||-2+(-1)2013-(π-3)022(2012.岳阳).(6分)(2012•岳阳)计算:3﹣+()﹣1﹣(2012﹣π)0+2cos30°.23(2011.岳阳).(本题满分6分)0112( 3.14)()2sin 602π---+-︒24(2010.岳阳).(6分)计算:2-1+0.252010×42010-(π+ 1 3)0+sin30°.17(2014•岳阳)计算:|﹣|+×+3﹣1﹣22.17(2015•岳阳)计算:(﹣1)4﹣2tan60°++.(六)、分式计算17(2013.岳阳).先化简,再求值:a -2+a 2-1a -1,其中a=318(2012.岳阳)先化简,再求值:(﹣)÷,其中x=.18(2015•岳阳)先化简,再求值:(1﹣)÷,其中x=.19(2011.岳阳).(本题满分6分)先化简,再选择一个你喜欢的数代入求值. 2220111(1)211a a a a a +÷+-+-20(2010.岳阳).(6分)先化简,再计算:(1+23-a )÷412-+a a ,其中a =2-3.二、 方程与不等式(一)、一元一次不等式1(2013.岳阳).不等式2x <10的解集在数轴上表示正确的是( )DCBA2(2014•岳阳)不等式组的解集是( )2(2011.岳阳).不等式组670352x x x -≤⎧⎨<+⎩的解集是__________。
3(2010.岳阳).将不等式组⎩⎨⎧x +2≥02-x >0的解集在数轴上表示,正确的是( )20-2A 20-2B 20-2C20-2D4(2015•岳阳)一个关于x 的一元一次不等式组的解集在数轴上表示如图,则该不等式组的解集是( )4(2012.岳阳)(6分)(2012•岳阳)解不等式组,并将解集在数轴上表示出来.(二)、二元一次方程组5(2011.岳阳).(本题满分6分)解方程组: 3 53() 1 x y x x y +=⎧⎨-+=⎩①②6(2013.岳阳).某天,一蔬菜经营户用114元从蔬菜批发市场购进黄瓜好土豆共40到菜市场去(1)他当天购进黄瓜和土豆各多少千克?(2)如果黄瓜和土豆全部卖完,他能赚多少钱?7(2011.岳阳),(本题满分6分)为了建设社会主义新农村,华新村修筑了一条长3000m 的公路。
实际工作效率比原计划提高了20%,结果提前5天完成任务.问原计划每天应修路多长?8(2010.岳阳)(8分)某货运码头,有稻谷和棉花共2680t ,其中稻谷比棉花多380t .(1)求稻谷和棉花各是多少?(2)现安排甲、乙两种不同规格的集装箱共50个,将这批稻谷和棉花运往外地.已知稻谷35t 和棉花15t 可装满一个甲型集装箱;稻谷25t 和棉花35t 可装满一个乙型集装箱.按此要求安排甲、乙两种集装箱的个数,有哪几种方案?20(2014•岳阳)某项球类比赛,每场比赛必须分出胜负,其中胜1场得2分,负1场得1分.某队在全部16场比赛中得到25分,求这个队胜、负场数分别是多少?(三)、一元二次方程9(2012.岳阳).(3分)(2000•河北)若关于x 的一元二次方程kx 2+2(k+1)x+k ﹣1=0有两个实数根,则k 的取值范围是 _________ .10(2010.岳阳).据第二次全国经济普查资料修订及各项数据初步核算,岳阳市GDP 从2007年的987.9亿元增加到2009年的1272.2亿元.设平均年增长率为x ,则可列方程为 .10(2014•岳阳)方程x 2﹣3x+2=0的根是 1或2 .11(2015•岳阳)若关于x 的一元二次方程x 2﹣3x+m=0有两个相等的实数根,则m=(四)、分式方程11(2013.岳阳).关于x 的分式方程7x-1+3=mx-1有增根,则增根为( )A 、x=1B 、x=-1C 、x=3D 、x=-312(2015•岳阳)岳阳市某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数 = = ==12(2010.岳阳).(6分)解方程:24-x -2-x x=1.18(2014•岳阳)解分式方程:=.三、 函数(一)、平面直角坐标系与函数1(2012.岳阳).(3分)(2012•岳阳)如图,两个边长相等的正方形ABCD 和EFGH ,正方形EFGH 的顶点E 固定在正方形ABCD 的对称中心位置,正方形EFGH 绕点E 顺时针方向旋转,设它们重叠部分的面积为S ,旋转的角度为θ,S 与θ的函数关系的大致图象是( ).BCD .2(2011.岳阳).如图,边长是1的正方形和正三角形,共一边在同一水平线上,三角形沿该水平线自左向右匀速穿过正方形,设穿过的时间为t ,正方形与三角形重合部分的面积为S (空白部分),那么S 关于t 的函数大致图象应为( )3(2010.<且⊙O 与∠α的两边相切,图中阴影部分的面积S 关于⊙O 的半径r (r >0)变化的函数图像大致是( )(二)、自变量取值范围4(2013.岳阳).函数y=x +2中,自变量x 的取值范围是____________C B5(2011.岳阳).函数13y x =+中自变量x 的取值范围是__________。
(三)、一次函数6(2013.岳阳).如图,反比例函数y=kx 与一次函数y=x +b 的图象,都经过点A (1,2)(1)试确定反比例函数和一次函数的解析式; (2)求一次函数图象与两坐标轴的交点坐标。
7(2012.岳阳).(8分)(2012•岳阳)游泳池常需进行换水清洗,图中的折线表示的是游泳池换水清洗过程“排水﹣﹣清洗﹣﹣灌水”中水量y (m 3)与时间t (min )之间的函数图象.(1)根据图中提供的信息,求整个换水清洗过程水量y (m 3)与时间t (min )的函数解析式; (2)问:排水、清洗、灌水各花多少时间?8(2010.岳阳).(8分)农历五月初五,汨罗江龙舟赛渡.甲、乙两队在比赛中龙舟行驶路程y (m )和行驶时间t (s )之间的函数关系如图所示.根据所给图像,解答下列问题: (1)请分别求出甲、乙两队行驶路程y 与时间t (t ≥0)之间的函数关系; (2)出发后,t 为何值时,甲、乙两队行驶的路程相等?9(2011.岳阳).(本题满分6分)如图,一次函数图象与x 轴相交于点B ,与反比例函数图象相交于点A(1,6 );△AOB 的面积为6.求一次函数和反比例函数的解析式.10(2014•岳阳)在一次蜡烛燃烧实验中,蜡烛燃烧时剩余部分的高度y (cm )与燃烧时间x (h )之间为一次函数关系.根据图象提供的信息,解答下列问题: (1)求出蜡烛燃烧时y 与x 之间的函数关系式; (2)求蜡烛从点燃到燃尽所用的时间.(四)、反比例函数10(2012.岳阳).(3分)(2012•岳阳)如图,一次函数y 1=x+1的图象与反比例函数y 2=的图象交于A 、B 两点,过点作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D ,连接AO 、BO ,下列说A第10题图11(2010.岳阳).二氧化碳的密度ρ(kg/m 3)关于其体积V (m 3)的函数关系式如上图所示,那么函数关系式是 .12(2014•岳阳)如图,已知点A 是直线y=x 与反比例函数y=(k >0,x >0)的交点,B 是y=图象上的另一点,BC ∥x 轴,交y 轴于点C .动点P 从坐标原点O 出发,沿O→A→B→C (图中“→”所示路线)匀速运动,终点为C ,过点P 作PM ⊥x 轴,PN ⊥y 轴,垂足分别为M ,N .设四边形OMPN 的面积为S ,P 点运动时间为t ,则S 关于t 的函数图象大致为( )19(2015•岳阳)如图,直线y=x+b 与双曲线y=都经过点A (2,3),直线y=x+b 与x 轴、y 轴分别交于B 、C 两点.(1)求直线和双曲线的函数关系式; (2)求△AOB 的面积.3)0.5)(五)、二次函数12(2013.岳阳).二次函数y=ax2+bx+c的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.其中正确的个数是()A、1个B、2个C、3个D、4个16(2015•岳阳)如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是③④.(写出所有正确结论的序号)①b>0②a﹣b+c<0③阴影部分的面积为4④若c=﹣1,则b2=4a.13(2011.岳阳).(本题满分8分)某工厂有一种材科,可加工甲、乙、丙三种型号机械配件共240个.厂方计划由20个工人一天内加工完戚.并要求每人只加工一种配件.根据下表提供的信息。