2013年高考数学(理)一轮复习导学案71

合集下载

71东北师大附属中学高三第一轮复习导学案--函数专题--抽象函数B

71东北师大附属中学高三第一轮复习导学案--函数专题--抽象函数B

9、函数 f(x)的定义域为 R,且对任意的 a、b∈ R,有 f(a+b) = f(a)+f(b)-1, 且 x>0,时, f(x)> 1。 (1) 证明:f(x)是 R 上的增函数; (2)若 f(3)=4,解关于 a 的不等式 f(a2 + a − 5)<2. (3)设 F(x)=1- f(x),试证:F(x)在 R 上是奇函数。
1 1 f ( x) 1 f ( x) , f(x+4)= 1 f ( x) f(x+2)= f ( x) . 1 f ( x) 1 1 f ( x) 1 1 f ( x)
所以 f(x+8)= f ( x 4) f ( x) .
1
所以 f(x)是以 8 为周期的周期函数, 从而 f(2013)=f(251*8+5)=2000 说明:这类问题出现应紧扣已知条件,需用数值或变量来迭代变换,经过有限次迭代可直接 求出结果,或者在迭代过程中发现函数具有周期性,利用周期性使问题巧妙获解。 6. 设 f(x)是定义 R 在上的函数,对任意 x,y∈R,有 f(x+y)+f(x-y)=2f(x)f(y) 且 f(0)≠0. (1)求证 f(0)=1; (2)求证:y=f(x)为偶函数. 证明: (1)问题为求函数值,只需令 x=y=0 即可得。 (2)问题中令 x=0 即得 f(y)+f(- y)=2f(0)f(y) , 且 f(0)=1.所以 f(y)+f(-y)=2f(y) ,因此 y=f(x)为偶函数. 说明:这类问题应抓住 f(x)与 f(-x)的关系,通过已知条件中等式进行变量赋值。 7. 已知定义在 R 上的偶函数 y=f(x)的一个递增区间为(2,6) ,试判断(4,8)是 y=f(2-x)的

2013年高考数学一轮复习3.1导数的概念及运算精品教学案(教师版)新人教版

2013年高考数学一轮复习3.1导数的概念及运算精品教学案(教师版)新人教版

2013年高考数学一轮复习精品教学案3.1 导数的概念及运算(新课标人教版,教师版)【考纲解读】1.导数概念及其几何意义 (1)了解导数概念的实际背景. (2)理解导数的几何意义. 2.导数的运算(1)能根据导数定义,求函数x y xy x y x y x y c y ======,1,,,,32的导数. (2)能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. (3)基本初等函数的导数公式和常用的导数计算公式:()0C '=(C 为常数), 1()();(sin )cos ;(cos )sin ;1();()ln (0,1);(ln );1(log )log (0,1)n n x x x x a a x nx n x x x x e e a a a a a x xx e a a x-+'''=∈N ==-'''==>≠='=>≠且且·法则1:[])()()()(x v x u x v x u '±'='±·法则2:[])()()()()()(x v x u x v x u x v x u '+'='·法则3:)0)(()()()()()()()(2≠'-'='⎪⎪⎭⎫ ⎝⎛x v x v x v x u x v x u x v x u【要点梳理】 1.导数的概念(1)f(x)在x=x 0处的导数就是f(x)在x=x 0处的瞬时变化率,记作:0/|x x y =或f /(x 0),即f /(x 0)=000()()limx f x x f x x∆→+∆-∆.(2)当把上式中的x 0看作变量x 时, f /(x)即为f(x)的导函数,简称导数,即''()y f x ==0()()limx f x x f x x∆→+∆-∆.2.导数的几何意义:函数f(x)在x=x 0处的导数就是曲线y=f(x)在点P(x 0,f(x 0))处的切线的斜率k= f /(x 0),切线方程为'000()()y y f x x x -=-.3.基本初等函数的导数公式1()();(sin )cos ;(cos )sin ;1();()ln (0,1);(ln );1(log )log (0,1)n n x x x x a a x nx n x x x x e e a a a a a x xx e a a x-+'''=∈N ==-'''==>≠='=>≠且且4.两个函数的四则运算法则 若u(x),v(x)的导数都存在,则 法则1:[])()()()(x v x u x v x u '±'='±法则2:[])()()()()()(x v x u x v x u x v x u '+'='法则3:)0)(()()()()()()()(2≠'-'='⎪⎪⎭⎫ ⎝⎛x v x v x v x u x v x u x v x u .【例题精析】考点一 导数的概念及几何意义例1.(2012年高考新课标全国卷文科13)曲线y =x (3ln x +1)在点)1,1(处的切线方程为________1.(2011年高考江西卷文科4)曲线xy e =在点A (0,1)处的切线斜率为( ) A.1 B.2 C.e D.1e例2. (2010年高考全国2卷理数10)若曲线12y x -=在点12,a a -⎛⎫ ⎪⎝⎭处的切线与两个坐标围成的三角形的面积为18,则a =( )(A )64 (B )32 (C )16 (D )82.(2010年高考江西卷文科4)若函数42()f x ax bx c =++满足'(1)2f =,则'(1)f -=( ) A .1- B .2- C .2 D .0【课时作业】1.(山东省济南一中2012届高三上学期期末)设曲线11x y x +=-在点(3,2)处的切线与直线10ax y ++=垂直,则a = ( )A .2B . 2-C . 12-D.122. (2010年高考宁夏卷文科4)曲线2y 21x x =-+在点(1,0)处的切线方程为( ) (A )1y x =- (B )1y x =-+ (C )22y x =- (D )22y x =-+ 【答案】A【解析】232y x '=-,所以11x k y ='==,所以选A .3.(2010年高考全国卷Ⅱ文科7)若曲线2y x ax b =++在点(0,)b 处的切线方程是10x y -+=,则( )(A )1,1a b == (B) 1,1a b =-= (C) 1,1a b ==- (D) 1,1a b =-=- 【答案】A 【解析】∵2x y x aa='=+=,∴ 1a =,(0,)b 在切线10x y -+=,∴ 1b =.4. (2010年全国高考宁夏卷3)曲线2xy x =+在点(-1,-1)处的切线方程为( ) (A )y=2x+1 (B)y=2x-1 C y=-2x-3 D.y=-2x-25.(2010年高考辽宁卷文科12)已知点P 在曲线41x y e =+上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) (A)[0,4π) (B)[,)42ππ(C ) 3(,]24ππ (D) 3[,)4ππ 【答案】D【解析】2441212x x x x x e y e e e e'=-=-++++,12,10x xe y e '+≥∴-≤<,即1tan 0α-≤<,3[,)4παπ∴∈.6. (福建省福州市2012年3月高中毕业班质量检查理科)函数)()(3R x ax x x f ∈+=在1=x 处有极值,则曲线)(x f y =在原点处的切线方程是___ __.1.(2011年高考重庆卷文科3)曲线323y x x =-+在点(1,2)处的切线方程为 ( ) A .31y x =- B .35y x =-+C .35y x =+D .2y x =【答案】A【解析】由导数的几何意义知:切线的斜率为3,所以切线方程为31y x =-,选A. 2. (2011年高考山东卷文科4)曲线211y x =+在点P(1,12)处的切线与y 轴交点的纵坐标是( )(A)-9 (B)-3 (C)9 (D)153. (2011年高考全国卷理科8)曲线y=2x e -+1在点(0,2)处的切线与直线y=0和y=x 围成的三角形的面积为( ) (A)13 (B)12 (C)23 (D)1 【答案】A 【解析】:2'2x y e -=- ,2k =-,切线方程为22y x -=-由232223x y xy x y ⎧=⎪=⎧⎪⎨⎨=-+⎩⎪=⎪⎩得 则1211.233S =⨯⨯= 故选A.4.(2011年高考湖南卷文科7)曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为( )A .12-B .12C .5. (2012年高考广东卷理科12)曲线y=x 3-x+3在点(1,3)处的切线方程为 . 【答案】210x y -+=【解析】因为'231y x =-,所以切线的斜率为2,故所求的切线方程为210x y -+=. 6.(2012年高考山东卷文科22第1问)已知函数ln ()(e xx kf x k +=为常数,e=2.71828…是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行.求k 的值.。

2013届高考数学(理)一轮复习教案:第三篇 导数及其应用专题一 高考函数与导数命题动向(人教A版)

2013届高考数学(理)一轮复习教案:第三篇  导数及其应用专题一 高考函数与导数命题动向(人教A版)

2013届高考数学(理)一轮复习教案:第三篇导数及其应用专题一高考函数与导数命题动向高考命题分析函数是数学永恒的主题,是中学数学最重要的主干知识之一;导数是研究函数的有力工具,函数与导数不仅是高中数学的核心内容,还是学习高等数学的基础,而且函数的观点及其思想方法贯穿于整个高中数学教学的全过程,高考对函数的考查更多的是与导数的结合,发挥导数的工具性作用,应用导数研究函数的性质、证明不等式问题等,体现出高考的综合热点.所以在高考中函数知识占有极其重要的地位,是高考考查数学思想、数学方法、能力和素质的主要阵地.高考命题特点函数与导数在高考试卷中形式新颖且呈现出多样性,既有选择题、填空题,又有解答题.其命题特点如下:(1)全方位:近年新课标的高考题中,函数的知识点基本都有所涉及,虽然高考不强调知识点的覆盖率,但函数知识点的覆盖率依然没有减小.(2)多层次:在近年新课标的高考题中,低档、中档、高档难度的函数题都有,且题型齐全.低档难度题一般仅涉及函数本身的内容,诸如定义域、值域、单调性、周期性、图象等,且对能力的要求不高;中、高档难度题多为综合程度较高的试题,或者函数与其他知识结合,或者是多种方法的渗透.(3)巧综合:为了突出函数在中学数学中的主体地位,近年高考强化了函数与其他知识的渗透,加大了以函数为载体的多种方法、多种能力(甚至包括阅读能力、理解能力、表述能力、信息处理能力)的综合程度.(4)变角度:出于“立意”和创设情景的需要,函数试题设置问题的角度和方式也不断创新,重视函数思想的考查,加大了函数应用题、探索题、开放题和信息题的考查力度,从而使函数考题显得新颖、生动、灵活.(5)重能力:以导数为背景与其他知识(如函数、方程、不等式、数列等)交汇命题.利用导数解决相关问题,是命题的热点,而且不断丰富创新.解决该类问题要注意函数与方程、转化与化归、分类讨论等数学思想的应用.综合考查学生分析问题、解决问题的能力和数学素养.高考动向透视函数的概念和性质函数既是高中数学中极为重要的内容,又是学习高等数学的基础.函数的基础知识涉及函数的三要素、函数的表示方法、单调性、奇偶性、周期性等内容.纵观全国各地的高考试题,可以发现对函数基础知识的考查主要以客观题为主,难度中等偏下,在解答题中主要与多个知识点交汇命题,难度中等.【示例1】►(2011·安徽)设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=( ).A .-3B .-1C .1D .3解析 法一 ∵f (x )是定义在R 上的奇函数,且x ≤0时,f (x )=2x 2-x ,∴f (1)=-f (-1)=-2×(-1)2+(-1)=-3.故选A.法二 设x >0,则-x <0,∵f (x )是定义在R 上的奇函数,且x ≤0时,f (x )=2x 2-x ,∴f (-x )=2(-x )2-(-x )=2x 2+x ,又f (-x )=-f (x ),∴f (x )=-2x 2-x ,∴f (1)=-2×12-1=-3,故选A.答案 A本题考查函数的奇偶性和函数的求值,解题思路有两个:一是利用奇函数的性质,直接通过f (1)=-f (-1)计算;二是利用奇函数的性质,先求出x >0时f (x )的解析式,再计算f (1).指数函数、对数函数、幂函数指数函数在新课标高考中占有十分重要的地位,因此高考对指数函数的考查有升温的趋势,重点是指数函数的图象和性质,以及函数的应用问题.对于幂函数应重点掌握五种常用幂函数的图象及性质,此时,幂的运算是解决有关指数问题的基础,也要引起重视.对数函数在新课标中适当地降低了要求,因此高考对它的考查也会适当降低难度,但它仍是高考的热点内容,重点考查对数函数的图象和性质及其应用.【示例2】►(2011·天津)已知a =5log 23.4,b =5log 43.6,c =⎝ ⎛⎭⎪⎫15log 30.3,则( ). A .a >b >c B .b >a >c C .a >c >b D .c >a >b解析因为c=5-log30.3=5log3103,又log23.4>log33.4>log3103>1>log43.6>0,且指数函数y=5x是R上的增函数,所以a>c>b.故选C.答案 C本题主要考查指数函数单调性的应用、对数式的大小比较.一般是利用指数函数单调性进行比较.对数式的比较类似指数式的比较,也可以寻找中间量.函数的应用函数的应用历来是高考重视的考点,新课标高考更是把这个考点放到了一个重要的位置.相对于大纲的高考,新课标高考无论在考查内容上还是力度上都有所加强,这主要体现在函数与方程方面,函数与方程已经成为新课标高考的一个命题热点,值得考生重视.【示例3】►(2011·山东)已知f(x)是R上最小正周期为2的周期函数,且当0≤x <2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为().A.6 B.7 C.8 D.9解析由f(x)=0,x∈[0,2)可得x=0或x=1,即在一个周期内,函数的图象与x 轴有两个交点,在区间[0,6)上共有6个交点,当x=6时,也是符合要求的交点,故共有7个不同的交点.故选B.答案 B本小题考查对周期函数的理解与应用,考查三次方程根的求法、转化与化归思想及推理能力,难度较小.求解本题的关键是将f(x)=x3-x进行因式分解,结合周期函数的性质求出f(x)=0在区间[0,6]上的根,然后将方程f(x)=0的根转化为函数图象与x轴的交点问题.导数的概念及运算从近两年的高考试题来看,利用导数的几何意义求曲线在某点处的切线方程是高考的热点问题,解决该类问题必须熟记导数公式,明确导数的几何意义是曲线在某点处切线的斜率,切点既在切线上又在曲线上.【示例4】►已知点P在曲线f(x)=x4-x上,曲线在点P处的切线平行于直线3x -y=0,则点P的坐标为________.解析由题意知,函数f(x)=x4-x在点P处的切线的斜率等于3,即f′(x0)=4x30-1=3,∴x0=1,将其代入f(x)中可得P(1,0).答案(1,0)本题主要考查导数的几何意义及简单的逻辑推理能力.利用导数求函数的单调区间、极值、最值从近两年的高考试题来看,利用导数研究函数的单调性和极、最值问题已成为高考考查的热点.解决该类问题要明确:导数为零的点不一定是极值点,导函数的变号零点才是函数的极值点;求单调区间时一定要注意函数的定义域;求最值时需要把极值和端点值逐一求出,比较即可.【示例5】►已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线l不过第四象限且斜率为3,又坐标原点到切线l的距离为1010,若x=23时,y=f(x)有极值.(1)求a,b,c的值;(2)求y=f(x)在[-3,1]上的最大值和最小值.解(1)由f(x)=x3+ax2+bx+c,得f′(x)=3x2+2ax+b.当x=1时,切线l的斜率为3,可得2a+b=0.①当x=23时,y=f(x)有极值,则f′⎝⎛⎭⎪⎫23=0,可得4a+3b+4=0②由①②解得a=2,b=-4. 设切线l的方程为y=3x+m由原点到切线l的距离为10 10,则|m|32+1=1010,解得m=±1.∵切线l不过第四象限∴m=1,由于切点的横坐标为x=1,∴f(1)=4,∴1+a+b+c=4∴c=5.(2)由(1)可得f(x)=x3+2x2-4x+5,∴f′(x)=3x2+4x-4.令f′(x)=0,得x=-2,x=2 3.f(x)和f′(x)的变化情况如下表:在x=23处取得极小值f⎝⎛⎭⎪⎫23=9527.又f(-3)=8,f(1)=4,∴f(x)在[-3,1]上的最大值为13,最小值为95 27.在解决类似的问题时,首先要注意区分函数最值与极值的区别.求解函数的最值时,要先求函数y=f(x)在[a,b]内所有使f′(x)=0的点,再计算函数y=f(x)在区间内所有使f′(x)=0的点和区间端点处的函数值,最后比较即得.突出以函数与导数为主的综合应用高考命题强调“以能力立意”,就是以数学知识为载体,从问题入手,把握数学学科的整体意义,加强对知识的综合性和应用性的考查.中学数学的内容可以聚合为数和形两条主线,其中数是以函数概念来串联代数、三角和解析几何知识,我们可以把方程看作函数为零,不等式看成两个函数值的大小比较、数列、三角则是特殊的一类函数.所以,高考试题中涉及函数的考题面很广.新课标高考对有关函数的综合题的考查,重在对函数与导数知识理解的准确性、深刻性,重在与方程、不等式、数列、解析几何等相关知识的相互联系,要求考生具备较高的数学思维能力和综合分析问题能力以及较强的运算能力,体现了以函数为载体,多种能力同时考查的命题思想.【示例6】►(2011·福建)已知a,b为常数,且a≠0,函数f(x)=-ax+b+ax ln x,f(e)=2(e=2.718 28…是自然对数的底数).(1)求实数b的值;(2)求函数f(x)的单调区间.(3)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y =t 与曲线y =f (x )⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤1e ,e 都有公共点?若存在,求出最小的实数m 和最大的实数M ;若不存在,说明理由.解 (1)由f (e)=2得b =2.(2)由(1)可得f (x )=-ax +2+ax ln x .从而f ′(x )=a ln x .因为a ≠0,故①当a >0时,由f ′(x )>0得x >1,由f ′(x )<0得0<x <1;②当a <0时,由f ′(x )>0得0<x <1,由f ′(x )<0得x >1.综上,当a >0时,函数f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1);当a <0时,函数f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞).(3)当a =1时,f (x )=-x +2+x ln x ,f ′(x )=ln x .由(2)可得,当x 在区间⎣⎢⎡⎦⎥⎤1e ,e 内变化时,f ′(x ),f (x )的变化情况如下表:又2-2e <2,所以函数f (x )⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤1e ,e 的值域为[1,2].据此可得,若⎩⎨⎧m =1,M =2.则对每一个t ∈[m ,M ],直线y =t 与曲线y =f (x )⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤1e ,e 都有公共点; 并且对每一个t ∈(-∞,m )∪(M ,+∞),直线y =t 与曲线y =f (x )⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤1e ,e 都没有公共点.综上,当a =1时,存在最小的实数m =1,最大的实数M =2,使得对每一个t∈[m ,M ],直线y =t 与曲线y =f (x )⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤1e ,e 都有公共点.本题主要考查函数、导数等基础知识.考查推理论证能力、抽象概括能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想、分类与整合思想.。

2013高考数学(理)一轮复习课件(考基自主导学+考向探究导析+考题专项突破):数列的概念与简单表示法

2013高考数学(理)一轮复习课件(考基自主导学+考向探究导析+考题专项突破):数列的概念与简单表示法
1 (2)a1=2,an+1=an+ln1+n.

解 (1)∵an=an-1+3n 1(n≥2),∴an-1=an-2+3n 2, an-2=an-3+3n-3, „ a2=a1+31, 以上(n-1)个式子相加得 an=a1+3 +3 +„+3
1 2 n-1


=1+3+3 +„+3

S ,n=1, 1 数列的通项 an 与前 n 项和 Sn 的关系是 an= Sn-Sn-1,
n≥2.
当 n=1 时,a1 若适合 Sn-Sn-1,则 n=1 的情况可并入 n≥2 时的通项 an;当 n=1 时,a1 若不适合 Sn-Sn-1,则用分段函数的形式表示.
【训练 2】 已知数列{an}的前 n 项和 Sn=3n2-2n+1,则其通项公式为 ________. 解析 当 n=1 时,a1=S1=3×12-2×1+1=2; 当 n≥2 时,n=Sn-Sn-1=3n2-2n+1-[3(n-1)2-2(n-1)+1]=6n-5, a 显然当 n=1 时,不满足上式. 故数列的通项公式为
2
n-1
3n-1 = 2 .
1 1+ , (2)∵an+1=an+ln n n+1 1 1+ =ln ∴an+1-an=ln , n n
n-1 n ∴an-an-1=ln ,an-1-an-2=ln , n-1 n-2 „ 2 a2-a1=ln , 1 以上(n-1)个式相加得, n-1 n 2 ∴an-a1=ln +ln +„+ln =ln n.又a1=2, 1 n-1 n-2 ∴an=ln n+2.
解 (1)各项减去 1 后为正偶数,所以 an=2n+1. (2)每一项的分子比分母少 1,而分母组成数列 21,22,23,24,„,所以 an 2n-1 = n . 2 (3)奇数项为负,偶数项为正,故通项公式中含因子(-1)n;各项绝对值 的分母组成数列 1,2,3,4,„;而各项绝对值的分子组成的数列中,奇数 项为 1,偶数项为 3,即奇数项为 2-1,偶数项为 2+1,所以 an=(- 2+-1n 1)n· . n 1 -n,n为正奇数, 也可写为 an= 3,n为正偶数. n

2013年高考数学(理)一轮复习导学案

2013年高考数学(理)一轮复习导学案
2.平面与平面平行的重要判定方法: (1) 定义法; (2) 判定定理; (3) 利用结论: a⊥ α,a⊥ β ? α∥ β. 3.线线平行、线面平行、面面平行间的相互转化:
一、选择题 (每小题 5 分,共 25 分 )
(满分: 75 分)
1.(2011 开·封月考 )下列命题中真命题的个数为 ( ) ①直线 l 平行于平面 α内的无数条直线,则 l ∥ α;
学案 43 空间的平行关系
导学目标: 1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行 的有关性质与判定定理 .2.能运用公理、定理和已获得的结论证明一些空间图形的平行关系.




1.直线 a 和平面 α的位置关系有 ________、 ________、 __________ ,其中 ________与 ________ 统称直线在平面外.
(1)求证: AE ⊥BE ; (2)求三棱锥 D — AEC 的体积; (3)设点 M 在线段 AB 上, 且满足 AM = 2MB ,试在线段 CE 上确定一点 N,使得 MN ∥ 平面 DAE.
学案 43 空间的平行关系
自主梳理 1.平行 相交 在平面内 平行 平行 相交 5.(1)公共点 (3)α∥ β 6.a∥ β a∥ b 7.(1)a∥ b
探究点二 面面平行的判定

2
在正方体 ABCD — A 1B 1C1D1 中, M 、N 、
P 分别是 C1C、 B1C1、 C1 D1 的中点,求证:平面 MNP ∥平面 A 1BD.
变式迁移 2 已知 P 为△ ABC 所在平面外一点, G1、 G2、 G3分别是△ PAB 、△ PCB 、 △PAC 的重心.
(1)求证:平面 G1G2G3∥平面 ABC ; (2)求 S△G1G2G3∶ S△ ABC .

2013届高考数学第一轮基础知识点复习教案1

2013届高考数学第一轮基础知识点复习教案1

第二编 函数与基本初等函数Ⅰ§2.1 函数及其表示基础自测1. 与函数f (x )=|x |是相同函数的有 (写出一个你认为正确的即可).答案 y =2x2.设M ={x |0≤x ≤2},N ={y |0≤y ≤3},给出下列四个图形(如图所示),其中能表示从集合M 到集合N 的函数关系的是 .(填序号).答案 ②③3.若对应关系f :A →B 是从集合A 到集合B 的一个映射,则下面说法正确的是 (填序号). ①A 中的每一个元素在集合B 中都有对应元素 ②A 中两个元素在B 中的对应元素必定不同③B 中两个元素若在A 中有对应元素,则它们必定不同④B 中的元素在A 中可能没有对应元素答案 ①③④4.如图所示,①②③三个图象各表示两个变量x ,y 的对应关系,则能表示y 是x 的函数的图象是 (填序号).答案 ②③ 5.已知f (x 1)=x 2+5x ,则f (x )= .答案 251x x +(x ≠0)例1给出下列两个条件:(1)f (x +1)=x +2x ;(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.试分别求出f (x )的解析式. 解 (1)令t =x +1,∴t ≥1,x =(t -1)2.则f (t )=(t -1)2+2(t -1)=t 2-1,即f (x )=x 2-1,x ∈[1,+∞).(2)设f (x )=ax 2+bx +c (a ≠0),∴f (x +2)=a (x +2)2+b (x +2)+c ,则f (x +2)-f (x )=4ax +4a +2b =4x +2.∴⎩⎨⎧=+=22444b a a ,∴⎩⎨⎧-==11b a ,又f (0)=3⇒c =3,∴f (x )=x 2-x +3.例2(1)求函数f (x )=229)2(1xx x g --(2)已知函数f (2x)的定义域是[-1,1],求f (log 2x )的定义域.解 (1,3302,090222⎩⎨⎧<<-<>⎪⎩⎪⎨⎧>->-x x x x x x 或即-3<x <0或2<x < 3.故函数的定义域是(-3,0)∪(2,3).(2)∵y =f (2x)的定义域是[-1,1],即-1≤x ≤1,∴21≤2x≤ 2. ∴函数y =f (log 2x )中21≤log 2x ≤2.即log 22≤log 2x ≤log 24,∴2≤x ≤ 4. 故函数f (log 2x )的定义域为[2,4]例3(14分)某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1 000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应提高的比例为0.75x , 同时预计年销售量增加的比例为0.6x .已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x(2)为使本年度利润比上年有所增加,问投入成本增加的比例x解 (1)依题意,本年度每辆摩托车的成本为1+x (万元),而出厂价为1.2×(1+0.75x ) (万元),销售量为1 000×(1+0.6x )(辆).故利润y =[1.2×(1+0.75x )-(1+x )]×1 000×(1+0.6x), 5 整理得y =-60x 2+20x +200 (0<x <1). 7(2则y -(1.2-1)×1 000>0, 10分即-60x 2+20x +200-200>0,即3x 2-x <0. 12分解得0<x <31,适合0<x < 1. 故为保证本年度利润比上年有所增加,投入成本增加的比例x 的取值范围是0<x <31. 13答 (1)函数关系式为y =-60x 2+20x +200 (0<x <1). (2)投入成本增加的比例x 的范围是(0,31). 14例4 已知函数f (x )=⎪⎪⎩⎪⎪⎨⎧<-=>.0,1,0,1,0,2x xx x x (1(2)求f (1),f (-1),f [f (-1)]的值.解 (1)分别作出f (x )在x >0,x =0, x <0段上的图象,如图所示,作法略. (2)f (1)=12=1,f (-1)=-11- =1,f [f (-1)]=f (1)=1.1.(1)已知f (12+x)=lg x ,求f (x(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x(3)已知f (x )满足2f (x )+f (x1)=3x ,求f (x ).解 (1)令x 2+1=t ,则x =12-t∴f (t )=lg12-t ,∴f (x )=lg 12-x ,x ∈(1,+∞). (2)设f (x )=ax +b3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +b +5a =2x +17,∴a =2,b =7,故f (x )=2x +7. (3)2f (x )+f (x1)=3x , ① 把①中的x 换成x 1,得2f (x 1)+f (x )=x3①×2-②得3f (x )=6x -x 3,∴f (x )=2x -x1. 2.(1)y =2)3(log 2+-x x +(2x -3)0;(2)y =log (2x +1)(32-4x).解 (1)由⎪⎩⎪⎨⎧≠-><⎪⎩⎪⎨⎧≠->+>-.3log 2,303202032x ,x x x x x ,得∴定义域为(-2,log 23)∪(log 23,3).(2)⎪⎪⎪⎩⎪⎪⎪⎨⎧≠-><⎪⎪⎩⎪⎪⎨⎧≠+>+>-021,25,1120120432x ,x x x x x 得∴定义域为(-21,0)∪(0,25).3.等腰梯形ABCD 的两底分别为AD =2a ,BC =a ,∠BAD =45°,作直线MN ⊥AD 交AD 于M ,交折线ABCD 于N ,记AM =x,试将梯形ABCD 位于直线MN 左侧的面积y 表示为x 的函数,并写出函数的定义域.解 作BH ⊥AD ,H 为垂足,CG ⊥AD ,G依题意,则有AH =2a ,AG =23a .(1) 当M 位于点H 的左侧时,N ∈AB由于AM =x ,∠BAD =45°. ∴MN =x . ∴y =S △AMN =21x 2(0≤x ≤2a ).(2)当M 位于HG由于AM =x∴MN =2a ,BN =x -2a.∴y =S 直角梯形AMNB =2·21a [x +(x -2a )]=21ax -).232(82a x a a ≤<(3)当M 位于点G由于AM =x ,MN =MD =2a -x . ∴y =S 梯形ABCD -S △MDN=).223(45221)44(2143)2(21)2(2·21222222a x a a ax x x ax a a x a a a a ≤<-+-=+--=--+ 综上:y =⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎥⎦⎤ ⎝⎛∈-+-⎥⎦⎤ ⎝⎛∈-⎢⎣⎡⎥⎦⎤∈a a x a ax x a a x a ax a x x 2,2345221.23,28212,02122224.如右图所示,在直角坐标系的第一象限内,△AOB 是边长为2的等边三角形,设直线x =t (0≤t ≤2)截这个三角形可得位于此直线左方的图形的面积为f (t ),则函数y =f (t )的图象(如下图所示)大致是 (填序号).答案一、填空题1.设函数f 1(x )=x 21,f 2(x )=x -1,f 3(x )=x 2,则[]))0072((123f f f = .答案007212.(2008·安徽文,13)函数f (x )=)1(log 1|21|2---x 的定义域为 .答案 []+∞,3 3.若f (x )=⎩⎨⎧≥<+)6(log )6()3(2x xx x f ,则f (-1)的值为 . 答案 34.已知f (2211)11x x x x +-=+-,则f(x )的解析式为 . 答案 f (x )=212x x +5.函数f (x )=xx -132 +lg(3x +1)的定义域是 .答案 (-31,1) 6.(2008·陕西理,11)定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y )+2xy (x ,y ∈R ),f (1)=2,则f (-3)= . 答案 6 7.已知函数f (x ),g (x)则f [g (1)]的值为 ,满足f [g (x )]>g [f (x )]的x 的值是. 答案 1 28.已知函数ϕ (x)=f (x )+g (x ),其中f (x )是x 的正比例函数,g (x )是x 的反比例函数,且ϕ(31)=16, ϕ (1)=8,则 ϕ(x )= .答案 3x +x5二、解答题 9.求函数f (x )=21)|lg(|xx x --的定义域.解 由,110010||2⎩⎨⎧<<-<⎪⎩⎪⎨⎧>->-x x x x x ,得 ∴-1<x <0. ∴函数f (x )=21)|lg(|xx x --的定义域为(-1,0).10.(1)设f (x )是定义在实数集R 上的函数,满足f (0)=1,且对任意实数a 、b ,有f (a -b )=f (a )-b (2a -b +1),求f (x ); (2)函数f (x ) (x ∈(-1,1))满足2f (x )-f (-x )=lg(x +1),求f (x ). 解 (1)依题意令a =b =x ,则f (x -x )=f (x )-x (2x -x +1), 即f (0)=f (x )-x 2-x , 而f (0)=1,∴f (x )=x 2+x +1. (2)以-x 代x ,依题意有2f (-x )-f (x )=lg(1-x ) ①又2f (x )-f (-x )=lg(1+x ) ②两式联立消去f (-x )得3f (x )=lg(1-x )+2lg(1+x ), ∴f (x )=31lg(1+x -x 2-x 3)(-1<x <1). 11.如图所示,有一块半径为R 的半圆形钢板,计划剪裁成等腰梯形ABCD 的形状,它的下底AB 是⊙O 的直径,且上底CD 的端点在圆周上,写出梯形周长y 关于腰长x 的函数关系式,并求出它的定义域.解 AB =2R ,C 、D 在⊙o的半圆周上,设腰长AD =BC =x ,作DE ⊥AB,垂足为E ,连接BD , 那么∠ADB 是直角,由此Rt △ADE ∽Rt △ABD.∴AD 2=AE ×AB ,即AE =R x 22,∴CD =AB -2AE =2R -Rx 2,所以y =2R +2x +(2R -Rx 2),即y =-Rx 2+2x +4R.再由⎪⎪⎪⎩⎪⎪⎪⎨⎧>->>0202022R x R R xx ,解得0<x <2R .所以y =-R x 2+2x +4R ,定义域为(0,2R ). 12.某租赁公司拥有汽车100辆.当每辆车的月租金为3 000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?解 (1)当每辆车的月租金定为3 600元时,未租出的车辆数为5000036003-=12,所以这时租出了88辆车.(2)设每辆车的月租金定为x 元,则租赁公司的月收益为f (x )=(100-500003)150)(500003----x x x ×50. 整理得f (x )=-502x +162x -21 000=-501(x -4 050)2+307 050. 所以,当x =4 050时,f (x )最大,最大值为f (4 050)=307 050.即当每辆车的月租金定为4 050元时,租赁公司的月收益最大,最大月收益为307 050元.§2.2函数的单调性与最大(小)值基础自测1.已知函数y =f (x )是定义在R 上的增函数,则下列对f (x )=0的根说法不正确的是 (填序号).有且只有一个 ②有2个至多有一个 ④没有根答案 ①②2. 已知f (x )是R 上的增函数,若令F (x )=f (1-x )-f (1+x ),则F (x )是R 上的 函数(用“增”、“减”填空). 答案 减3.若函数f (x )=x 2+(a 2-4a +1)x +2在区间(-∞,1]上是减函数,则a 的取值范围是 .答案 [1,3]4.(2009·徐州六县一区联考)若函数f (x )是定义在(0,+∞)上的增函数,且对一切x >0,y >0满足f (xy )=f (x )+f (y ),则不等式f (x +6)+f (x )<2f (4)的解集为 . 答案 (0,2)5.已知函数f (x )=x 2-2x +3在闭区间[0,m ]上最大值为3,最小值为2,则m 的取值范围为 . 答案 [1,2]例1已知函数f (x )=a x+12+-x x (a >1).证明:函数f (x )在(-1,+∞)上为增函数.证明 方法一 任取x 1,x 2∈(-1,+∞), 不妨设x 1<x 2,则x 2-x 1>0,12x x a->1且a1x >0,∴a ,0)1(12112>-=--x x x x x a a a 又∵x 1+1>0,x 2+1>0, ∴)1)(1()(3)1)(1()1)(2()1)(2(121221122121121122++-=+++--+-=+--+-x x x x x x x x x x x x x x >0, 于是f (x 2)-f (x 1)=a12x x a -+12121122+--+-x x x x >0,故函数f (x )在(-1,+∞)上为增函数. 方法二 f (x )=a x+1-13+x (a >1), 求导数得f ′(x )=a xln a +2)1(3+x ,∵a >1,∴当x >-1时,a xln a >0,2)1(3+x >0,f ′(x )>0在(-1,+∞)上恒成立,则f (x )在(-1,+∞)上为增函数. 方法三 ∵a >1,∴y =a x为增函数,又y =13112+-+=+-x x x ,在(-1,+∞)上也是增函数. ∴y =a x+12+-x x 在(-1,+∞)上为增函数. 例2判断函数f (x )=12-x 在定义域上的单调性.解 函数的定义域为{x |x ≤-1或x ≥1}, 则f (x )= 12-x , 可分解成两个简单函数.f (x )=)(,)(x u x u =x 2-1的形式.当x ≥1时,u (x )为增函数,)(x u 为增函数.∴f (x )=12-x 在[1,+∞)上为增函数.当x ≤-1时,u (x )为减函数,)(x u 为减函数,∴f (x )=12-x 在(-∞,-1]上为减函数. 例3(1)y =4-223x x -+;(2)y =2x -x 21-;(3)y =x +x4;(4)y =4)2(122+-++x x . 解 (1)由3+2x -x 2≥0得函数定义域为[-1,3],又t =3+2x -x 2=4-(x -1)2.∴t ∈[0,4],t ∈[0,2],从而,当x =1时,y min =2,当x =-1或x =3时,y max =4.故值域为[2,4]. (2) 方法一 令x 21-=t (t ≥0),则x =212t -.∴y =1-t 2-t =-(t +)212+45.∵二次函数对称轴为t =-21,∴在[0,+∞)上y =-(t +)212+45故y max =-(0+)212+45=1.故函数有最大值1,无最小值,其值域为(-∞,1].方法二 ∵y =2x 与y=-x 21-均为定义域上的增函数,∴y =2x -x 21-是定义域为{x |x ≤21}上的增函数, 故y max =2×212121⨯--=1,无最小值.故函数的值域为(-∞,1]. (3)方法一 函数y =x +x4是定义域为{x |x ≠0}上的奇函数,故其图象关于原点对称,故只讨论x >0时,即可知x <0时的最值. ∴当x >0时,y =x +x 4≥2xx 4⋅=4,等号当且仅当x =2时取得. 当x <0时,y ≤-4,等号当且仅当x =-2时取得.综上函数的值域为(-∞,-4]∪[4,+∞),无最值. 方法二 任取x 1,x 2,且x 1<x 2, 因为f (x1)-f (x 2)=x 1+14x -(x 2+24x )=,)4)((212121x x x x x x --所以当x ≤-2或x ≥2时,f (x )递增,当-2<x <0或0<x <2时,f (x )递减. 故x =-2时,f (x )最大值=f (-2)=-4,x =2时,f (x )最小值=f (2)=4,所以所求函数的值域为(-∞,-4]∪[4,+∞),无最大(小)值. (4y =2222)20()2()10()0(++-+-+-x x ,可视为动点M (x ,0)与定点A (0,1)、B (2,-2)距离之和,连结AB ,则直线AB 与x 轴的交点(横坐标)即为所求的最小值点.ymin =|AB |=13)21()20(22=++-,可求得x=32时,y min =13.显然无最大值.故值域为[13,+∞).例4 (14分)函数f (x )对任意的a 、b ∈R ,都有f (a +b )=f (a )+f (b )-1,并且当x >0时,f (x )>1.(1)求证:f (x )是R(2)若f (4)=5,解不等式f (3m 2-m -2)<3.解 (1)设x1,x 2∈R ,且x 1<x 2,则x2-x 1>0,∴f (x 2-x 1)>1. 2f (x2)-f (x 1)=f ((x 2-x 1)+x 1)-f (x 1)=f (x 2-x 1)+f (x 1)-1-f (x 1)=f (x 2-x 1)-1>0. 5分∴f (x 2)>f (x 1).即f (x )是R 上的增函数. 7分 (2)∵f (4)=f (2+2)=f (2)+f (2)-1=5∴f (2)=3, 10分∴原不等式可化为f (3m 2-m -2)<f (2),∵f (x )是R 上的增函数,∴3m 2-m -2<2, 12分 解得-1<m <34,故解集为(-1, 34). 14分1.讨论函数f (x )=x +xa(a >0)的单调性.解 方法一 显然f (x )为奇函数,所以先讨论函数f (x )在(0,+∞)上的单调性,设x 1>x 2>0,f (x 1)-f (x 2) =(x 1+1x a )-(x 2+2x a)=(x 1-x 2)·(1-21x x a ).∴当0<x 2<x 1≤a 时,21x x a>1, 则f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),故f (x )在(0,a ]上是减函数. 当x 1>x 2≥a 时,0<21x x a<1,则f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 故f (x )在[a ,+∞)上是增函数.∵f (x ∴f (x )分别在(-∞,-a ]、[a ,+f (x )分别在[-a ,0)、(0,a ]上为减函数. 方法二 由f ′(x )=1-2x a =0可得x =±a当x >a 时或x <-a 时,f ′(x )>0,∴f (x )分别在(a ,+∞)、(-∞,-a ]上是增函数. 同理0<x <a 或-a <x <0时,f ′(x )<0即f (x )分别在(0,a ]、[-a ,0)上是减函数. 2.求函数y =21log (4x -x 2)的单调区间.解 由4x -x 2>0,得函数的定义域是(0,4).令t =4x -x 2,则y = 21log t .∵t =4x -x 2=-(x -2)2+4,∴t =4x -x 2的单调减区间是[2,4),增区间是(0,2]. 又y =21log t 在(0,+∞)上是减函数,∴函数y =21log (4x -x 2)的单调减区间是(0,2],单调增区间是[2,4).3.在经济学中,函数f (x )的边际函数Mf (x )定义为Mf (x )=f (x +1)-f (x ).某公司每月最多生产100台报警系统装置,生产x (x >0)台的收入函数为R (x )=3 000x -20x 2(单位:元),其成本函数为C (x )=500x +4 000(单位:元),利润是收入与成本之差.(1)求利润函数P (x )及边际利润函数MP (x(2)利润函数P (x )与边际利润函数MP (x解 (1)P (x )=R (x )-C (x )=(3 000x -20x 2)-(500x +4 000) =-20x 2+2 500x -4 000(x ∈[1,100]且x ∈N ).MP (x )=P (x +1)-P (x )=-20(x +1)2+2 500(x +1)-4 000-(-20x 2+2 500x -4 000) =2 480-40x (x ∈[1,100]且x ∈N ). (2)P (x )=-20(x -)21252+74 125,当x =62或63时,P (x )max =74 120(元).因为MP (x )=2 480-40x 是减函数,所以当x =1时,MP (x )max =2 440(元). 因此,利润函数P (x )与边际利润函数MP (x )不具有相同的最大值. 4.已知定义在区间(0,+∞)上的函数f (x )满足f ()21x x =f (x 1)-f (x 2),且当x >1时,f (x )<0. (1)求f (1)(2)判断f (x(3)若f (3)=-1,解不等式f (|x |)<-2.解 (1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0. (2)任取x 1,x 2∈(0,+∞),且x 1>x 2,则21x x >1, 由于当x >1时,f (x )<0, 所以f )(21x x <0,即f (x 1)-f (x 2)<0, 因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数. (3)由f (21x x )=f (x 1)-f (x 2)f ()39=f (9)-f (3),而f (3)=-1,所以f (9)=-2. 由于函数f (x )在区间(0,+由f (|x |)<f (9),得|x |>9,∴x >9或x <-9.因此不等式的解集为{x |x >9或x <-9}.一、填空题1.函数f (x )=ln(4+3x -x 2)的单调递减区间是 .答案 [23,4) 2.已知函数f (x )在区间[a ,b ]上单调,且f (a )·f (b )<0,则下列对方程f (x )=0在区间[a ,b ]上根的分布情况的判断有误的是 (填序号).①至少有一实根 ②至多有一实根 ③没有实根 ④必有惟一的实根 答案 ①③3.函数y =lg(x 2+2x +m )的值域是R ,则m 的取值范围是 . 答案 m ≤14.函数f (x )(x ∈R )的图象如下图所示,则函数g (x )=f (log a x ) (0<a <1)的单调减区间是 . 答案 [a ,1]5.已知f (x )=⎩⎨⎧≥<+-)1(log )1(4)13(x xx a x a a 是(-∞,+∞)上的减函数,那么a 的取值范围是 .答案 [71,31) 6.若函数f (x )=(m -1)x 2+mx +3 (x ∈R )是偶函数,则f (x )的单调减区间是 .答案 [0,+∞)7.已知y =f (x )是定义在(-2,2)上的增函数,若f (m -1)<f (1-2m ),则m 的取值范围是 .答案 (-)32,21 8.已知下列四个命题:①若f (x )为减函数,则-f (x )为增函数;②若f (x )为增函数,则函数g (x )=)(1x f 在其定义域内为减函数;③若f (x )与g (x )均为(a ,b )上的增函数,则f (x )·g (x )也是区间(a ,b )上的增函数;④若f (x )与g (x )在(a ,b )上分别是递增与递减函数,且g (x )≠0,则)()(x g x f 在(a ,b )上是递增函数.其中命题正确的是 (填序号) 答案 ① 二、解答题9.已知f (x )在定义域(0,+∞)上为增函数,且满足f (xy )=f (x )+f (y ),f (3)=1,试解不等式f (x )+f (x -8)≤2. 解 根据题意,由f (3)=1,得f (9)=f (3)+f (3)=2. 又f (x )+f (x -8)=f [x (x -8)],故f [x (x -8)]≤f (9).∵f (x )在定义域(0,+∞)上为增函数,∴⎪⎩⎪⎨⎧≤->->,9)8(080x x x x ,,解得8<x ≤9.10.函数f (x )对任意的实数m 、n 有f (m +n )=f (m )+f (n ),且当x >0时有f (x )>0. (1)求证:f (x )在(-∞,+∞)上为增函数;(2)若f (1)=1,解不等式f [log 2(x 2-x -2)]<2. (1)证明 设x 2>x 1,则x 2-x 1>0.∵f (x 2)-f (x 1)=f (x 2-x 1+x 1)-f (x 1)=f (x 2-x 1)+f (x 1)-f (x 1)=f (x 2-x 1)>0, ∴f (x 2)>f (x 1),f (x )在(-∞,+∞)上为增函数. (2)解 ∵f (1)=1,∴2=1+1=f (1)+f (1)=f (2). 又f [log 2(x 2-x -2)]<2,∴f [log 2(x 2-x -2)]<f (2).∴log 2(x 2-x -2)<2,于是⎪⎩⎪⎨⎧<-->--.060222x x x x ,∴⎩⎨⎧<<->-<,32,21x x x 或即-2<x <-1或2<x <3.∴原不等式的解集为{x |-2<x <-1或2<x <3}. 11.已知f (x )=ax x-(x ≠a).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围.(1)证明 任设x 1<x 2<-2,则f (x 1)-f (x 2)=.)2)(2()(22221212211++-=+-+x x x x x x xx∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)内单调递增. (2)解 任设1<x 1<x 2,则f (x 1)-f (x 2)=.))(()(21122211a x a x x x a a x x a x x ---=---∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立, ∴a ≤1.综上所述知0<a ≤1.12.已知函数y =f (x )对任意x ,y ∈R 均有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-32.(1)判断并证明f (x )在R 上的单调性; (2)求f (x )在[-3,3]上的最值. 解 (1)f (x )在R上是单调递减函数证明如下:令x =y =0,f (0)=0,令x =-y 可得:f (-x )=-f (x ),在R 上任取x 1<x 2,则x 2-x 1>0, ∴f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (x 2-x 1).又∵x >0时,f (x )<0,∴f (x 2-x 1)<0,即f (x 2)<f (x 1).由定义可知f (x )在R 上为单调递减函数. (2)∵f (x )在R 上是减函数, ∴f (x )在[-3,3]上也是减函数.∴f (-3)最大,f (3)最小.f (3)=f (2)+f (1)=f (1)+f (1)+f (1)=3×(-)32=-2.∴f (-3)=-f (3)=2.即f (x )在[-3,3]上最大值为2,最小值为-2.§ 2.3 函数的奇偶性基础自测1.(2008·福建理,4)函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为 .答案02.已知定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),则f (6)的值为 . 答案03.设偶函数f (x )=log a |x -b |在(-∞,0)上单调递增,则f (a +1) f (b +2)(用“≤”,“≥”,“<”,“>”填空).答案>4.已知f (x )=122)12(+-+xx a 是奇函数,则实数a 的值为 .答案15.函数f (x ),g (x )在区间[-a ,a ] (a >0)上都是奇函数,则下列结论:①f (x )-g (x )在[-a ,a ]上是奇函数;②f (x )+g (x )在[-a ,a ]上是奇函数;③f (x )·g (x )在[-a ,a ]上是偶函数;④f (0)+ g (0)=0,则其中正确结论的个数是 . 答案 4例1判断下列函数的奇偶性.(1)f (x )=2211x x -⋅-;(2)f (x )=log2(x +12+x ) (x ∈R ); (3)f (x )=lg|x -2|.解 (1)∵x 2-1≥0且1-x 2≥0,∴x =±1,即f (x )的定义域是{-1,1}. ∵f (1)=0,f (-1)=0,∴f (1)=f (-1),f (-1)=-f (1), 故f (x )既是奇函数又是偶函数.(2)方法一 易知f (x )的定义域为R , 又∵f (-x )=log 2[-x +1)(2+-x ]=log 2112++x x =-log 2(x +12+x )=-f (x ),∴f (x )是奇函数.方法二 易知f (x )的定义域为R ,又∵f (-x )+f (x )=log 2[-x +1)(2+-x ]+log 2(x +12+x )=log 21=0,即f (-x )=-f (x ),∴f (x )为奇函数.(3)由|x -2|>0,得x ≠2.∴f (x )的定义域{x |x ≠2}关于原点不对称,故f (x )为非奇非偶函数. 例2已知函数f (x ),当x ,y ∈R 时,恒有f (x +y )=f (x )+f (y ). (1)求证:f (x )(2)如果x ∈R +,f (x )<0,并且f (1)=-21,试求f (x )在区间[-2,6]上的最值. (1)证明∵函数定义域为R ,其定义域关于原点对称.∵f (x +y )-f (x )+f (y ),令y =-x,∴f (0)=f (x )+f (-x ).令x =y =0, ∴f (0)-f (0)+f (0),得f (0)=0.∴f (x )+f (-x )=0,得f (-x )=-f (x ), ∴f (x )为奇函数.(2)解 方法一 设x ,y ∈R +,∵f (x +y )=f (x )+f (y∴f (x +y )-f (x )=f (y ).x ∈R +,f (x )<0,∴f (x +y )-f (x )<0,∴f (x +y )<f (x ).∵x +y >x ,f (x )在(0,+∞)上是减函数.又∵f (x )为奇函数,f (0)=0∴f (x )在(-∞,+∞)上是减函数.∴f (-2)为最大值,f (6)为最小值. ∵f (1)=-21,∴f (-2)=-f (2)=-2f (1)=1, f (6)=2f (3)=2[f (1)+f (2)]=-3.∴所求f (x )在区间[-2,6]上的最大值为1,最小值为-3. 方法二 设x 1<x 2,且x 1,x 2∈R .则f (x 2-x 1)=f [x 2+(-x 1)]=f (x 2)+f (-x 1)=f (x 2)-f (x 1).∵x 2-x 1>0,∴f (x 2-x 1)<0.∴f (x 2)-f (x 1)<0.即f (x )在R 上单调递减. ∴f (-2)为最大值,f (6)为最小值.∵f (1)=-21∴f (-2)=-f (2)=-2f (1)=1,f (6)=2f (3)=2[f (1)+f (2)]=-3.∴所求f (x )在区间[-2,6]上的最大值为1,最小值为-3. 例3(16分)已知函数f (x )的定义域为R ,且满足f (x +2)=-f (x ).(1)求证:f (x )(2)若f (x )为奇函数,且当0≤x ≤1时,f (x )=21x ,求使f (x )=-21在[0,2 009]上的所有x 的个数.(1)证明 ∵f (x +2)=-f (x∴f (x +4)=-f (x +2)=-[-f (x )]=f (x ), 2∴f (x )是以4为周期的周期函数, 4(2)解 当0≤x ≤1时,f (x )=21x , 设-1≤x ≤0,则0≤-x ≤1,∴f (-x )=21(-x )=-21x . ∵f (x )是奇函数,∴f (-x )=-f (x ), ∴-f (x )=-21x ,即f (x )=21x . 7 故f (x )=21x (-1≤x ≤1) 8又设1<x <3,则-1<x -2<1,∴f (x -2)=21(x -2), 10分 又∵f (x -2)=-f (2-x )=-f ((-x )+2)=-[-f (-x )]=-f (x∴-f (x )=21(x -2∴f (x )=-21(x -2)(1<x <3). 11∴f (x )=⎪⎪⎩⎪⎪⎨⎧<<--≤≤-)31()2(21)11(21x x x x12由f (x )=-21,解得x =-1. ∵f (x )是以4为周期的周期函数. ∴f (x )=-21的所有x =4n -1 (n ∈Z). 14令0≤4n -1≤2 009,则41≤n ≤20051, 又∵n ∈Z ,∴1≤n ≤502 (n ∈Z ), ∴在[0,2 009]上共有502个x 使f (x )=-21. 16分1.(1)f (x )=(x -2)xx -+22(2)f (x )=2|2|)1lg(22---xx(3)f (x )=⎪⎩⎪⎨⎧>+-≤-<+.1(2),1|(|0),1(2)x x x x x 解 (1)由xx-+22≥0,得定义域为[-2,2),关于原点不对称,故f (x )为非奇非偶函数. (2)由⎪⎩⎪⎨⎧≠-->-.02|2|0122x x ,得定义域为(-1,0)∪(0,1).这时f (x )=2222)1lg(2)2()1lg(x x x x --=----.∵f (-x )=-[]),()1lg()()(1lg 2222x f x x x x =--=---∴f (x )为偶函数.(3)x <-1时,f (x )=x +2,-x >1, ∴f (-x )=-(-x )+2=x +2=f (x ). x >1时,f (x )=-x +2-x <-1,f (-x )=x +2=f (x ). -1≤x ≤1时,f (x )=0,-1≤-x ≤1f (-x )=0=f (x ).∴对定义域内的每个x 都有f (-x )=f (x ). 因此f (x )是偶函数.2.已知函数y =f (x )的定义域为R ,且对任意a ,b ∈R ,都有f (a +b )=f (a )+f (b ),且当x >0时,f (x )<0恒成立,f (3)=-3. (1)证明:函数y =f (x )是R(2)证明:函数y =f (x )(3)试求函数y =f (x )在[m ,n ](m ,n ∈Z )上的值域.(1)证明 设∀x 1,x 2∈R ,且x 1<x 2,f (x 2)=f [x 1+(x 2-x 1)]=f (x 1)+f (x 2-x 1). ∵x 2-x 1>0,∴f (x 2-x 1)<0.∴f (x 2)=f (x 1)+f (x 2-x 1)<f (x 1). 故f (x )是R 上的减函数.(2)证明 ∵f (a +b )=f (a )+f (b )恒成立,∴可令a =-b =x ,则有f (x )+f (-x )=f (0又令a =b =0,则有f (0)=f (0)+f (0),∴f (0)=0.从而∀x ∈R ,f (x )+f (-x )=0∴f (-x )=-f (x ).故y =f (x )是奇函数. (3)解 由于y =f (x )是R∴y =f (x )在[m ,n ]上也是减函数,故f (x )在[m ,n ]上的最大值f (x )max =f (m ),最小值f (x )min =f (n ). 由于f (n )=f (1+(n -1))=f (1)+f (n -1)=…=nf (1),同理f (m )=mf (1). 又f (3)=3f (1)=-3,∴f (1)=-1,∴f (m )=-m , f (n )=-n . ∴函数y =f (x )在[m ,n ]上的值域为[-n ,-m ].3.设f (x )是定义在R 上的偶函数,其图象关于直线x =1对称,对任意x 1、x 2∈[0,21]都有f (x 1+x 2) =f (x 1)·f (x 2),且f (1)=a >0. (1)求f (21)及f (41) (2)证明:f (x(3)记an =f (2n +)21n,求a n . (1)解 ∵对x 1、x 2∈⎥⎦⎤⎢⎣⎡21,0 都有f (x 1+x 2)=f (x 1)·f (x 2∴f (x )=f ()2()2()22xf x f x x ⋅=+≥0,x ∈[0,1].∴f (1)=f (,)21()21()21()21212⎥⎦⎤⎢⎣⎡=⋅=+f f ff (2)41()41()41()4141()21⎥⎦⎤⎢⎣⎡=⋅=+=f f f f .∵f (1)=a >0, ∴f (.)41(,)214121a f a ==(2)证明 ∵y =f (x )的图象关于直线x =1∴f (x )=f (1+1-x ),即f (x )=f (2-x ),x ∈R .又由f (x )是偶函数知,f (-x )=f (x ),x ∈R∴f (-x )=f (2-x ),x ∈R .将上式中-x 用x 代换,得f (x )=f (x +2),x ∈R .这表明f (x )是R 上的周期函数,且2是它的一个周期. (3)解 由(1)知f (x )≥0,x ∈[0,1].∵f (⎥⎦⎤⎢⎣⎡⋅-+=⋅=n n n f nn f 21)1(21)21()21=f (=⎥⎦⎤⎢⎣⎡⋅-⋅n n f n 21)1()21…=f (⋅⋅)21()21n f n …·f (.)21()21nn f n ⎥⎦⎤⎢⎣⎡=又f (.2121)21(,)21n a n f a =∴=∵f (x )的一个周期是2,∴a n =f (2n +n 21)=f (n21),∴a n =a n 21.一、填空题1.f (x ),g (x )是定义在R 上的函数,h (x )=f (x )+g (x ),则“f (x ),g (x )均为偶函数”是“h (x )为偶函数”的 条件.答案 充分不必要2.设函数f (x )=(x +1)(x +a )为偶函数,则a = . 答案 -13.已知函数f (x )是R 上的偶函数,g (x )是R 上的奇函数,且g (x )=f (x -1),若f (0)=2,则f (2 008)的值为 .答案 24.已知函数y =f (x )是定义在R 上的奇函数,则下列函数中是奇函数的是 (填序号). ①y =f (|x |);②y =f (-x );③y =x ·f (x );④y =f (x )+x . 答案5.(2009· 徐州六县一区联考)设f (x )是定义在R 上的奇函数,且当x >0时,f (x )=2x-3,则f (-2)= . 答案 -16.已知y =f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则在R 上f (x )的表达式为 .答案 f(x)=x (|x |-2)7.已知函数f (x )=g (x )+2,x ∈[-3,3],且g (x )满足g (-x )=-g (x ),若f (x )的最大值、最小值分别为M 、N ,则M +N = .答案 48.f (x )、g (x )都是定义在R 上的奇函数,且F (x )=3f (x )+5g (x )+2,若F (a )=b ,则F (-a )= .答案 -b +4二、解答题9.已知f (x )是实数集R 上的函数,且对任意x ∈R ,f (x )=f (x +1)+f (x -1)恒成立. (1)求证:f (x )是周期函数. (2)已知f (3)=2,求f (2 004).(1)证明 ∵f (x )=f (x +1)+f (x -1),∴f (x +1)=f (x )-f (x -1),则f (x +2)=f []).1()()1()()()1(1)1(--=---=-+=++x f x f x f x f x f x f x ∴f (x +3)=f [][]).(1)1(2)1(x f x f x -=-+-=++ ∴f (x +6)=f []).()3(3)3(x f x f x =+-=++ ∴f (x )是周期函数且6是它的一个周期. (2)解 f (2 004)=f (334×6)=f (0)=-f (3)=-2.10.已知f (x )是R 上的奇函数,且当x ∈(-∞,0)时,f (x )=-x lg(2-x ),求f (x )的解析式.解 ∵f (x )是奇函数,可得f (0)=-f (0),∴f (0)=0.当x >0时,-x <0,由已知f (-x )=x lg(2+x ),∴-f (x )=x lg (2+x ),即f (x )=-x lg (2+x ) (x >0).∴f (x )=⎩⎨⎧≥+-<--).0()2lg(),0()2lg(x x x x x x即f (x )=-x lg(2+|x |) (x ∈R ). 11.已知函数f (x )=x 2+|x -a |+1,a ∈R .(1)试判断f (x )的奇偶性;(2)若-21≤a ≤21,求f (x )的最小值. 解 (1)当a =0时,函数f (-x )=(-x )2+|-x |+1=f (x ),此时,f (x )为偶函数.当a ≠0时,f (a )=a 2+1,f (-a )=a 2+2|a |+1, f (a )≠f (-a ),f (a )≠-f (-a ),此时,f (x ) 为非奇非偶函数. (2)当x ≤a 时,f (x )=x 2-x +a +1=(x -21)2+a +43,∵a ≤21,故函数f (x )在(-∞,a ]上单调递减, 从而函数f (x )在(-∞,a ]上的最小值为f (a )=a 2+1. 当x ≥a 时,函数f (x )=x 2+x -a +1=(x +21)2-a +43,∵a ≥-21,故函数f (x )在[a ,+∞)上单调递增,从而函数f (x )在[a ,+∞)上的最小值为f (a )=a 2+1. 综上得,当-21≤a ≤21时,函数f (x )的最小值为a 2+1. 12.设函数f (x )在(-∞,+∞)上满足f (2-x )=f (2+x ),f (7-x )=f (7+x ),且在闭区间[0,7]上,只有f (1)=f (3)=0. (1)试判断函数y =f (x )的奇偶性;(2)试求方程f (x )=0在闭区间[-2 005,2 005]上的根的个数,并证明你的结论. 解 (1)由),10()()14()4()14()()4()()7()7()2()2(+=⇒-=-⇒⎩⎨⎧-=-=⇒⎩⎨⎧+=-+=-x f x f x f x f x f x f x f x f x f x f x f x f 从而知函数y =f (x )的周期为T =10.又f (3)=f (1)=0,而f (7)≠0,故f (-3)≠0. 故函数y =f (x )是非奇非偶函数. (2)由(1)知y =f (x )的周期为10.又f (3)=f (1)=0,f (11)=f (13)=f (-7)=f (-9)=0,故f (x )在[0,10]和[-10,0]上均有两个解,从而可知函数y =f (x )在[0,2 005]上有402个解,在[-2 005,0]上有400个解,所以函数y =f (x )在[-2 005,2 005]上有802个解.§2.4指数与指数函数基础自测1. 已知a <41,则化简42)14(-a 的结果是 . 答案 a 41-2.设指数函数f (x )=a x(a >0且a ≠1),则下列等式正确的有 (填序号). ①f (x +y )=f (x )·f (y ) ②f (xy )n=f n(x )·f n(y ) ③f (x -y )=)()(y f x f ④f (nx )=f n(x )答案 ①③④3.函数f (x )=a x-b的图象如图所示,其中a 、b 为常数,则下列结论不正确的有 (填序号).①a >1,b <0 ②a >1,b >0 ③0<a <1,b >0 ④0<a <1,b <0 答案①②③4.关于函数f (x )=2x-2-x(x ∈R )①f (x )的值域为R②f (x )是R③对任意x ∈R ,有f (-x )+f (x )=0成立.其中正确结论的序号是 .答案 ①②③5.已知集合M ={}⎭⎬⎫⎩⎨⎧∈<<=-+Z x x N x ,4221|,1,11,则M N= .答案 {}1-例1已知a =91,b =9.求: (1);315383327a a a a ⋅÷--(2)111)(---+ab b a .解 (1)原式=3127⨯a .3123⨯-a÷[a21)38(⨯-·21315⨯a= 2167-a )2534(+--=a 21-.∵a =91,∴原式=3. (2)方法一 化去负指数后解..11)(11b a abab b a ab b a ab ba+=+=+=+--∵a =,9,91=b ∴a +b =.982方法二 利用运算性质解. .11)(11111111111a b a b b a b b a a ab b a +=+=+=+-----------∵a =,9,91=b ∴a +b =.982例2函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且f (0)=3,则f (b x) f (c x).(用“≤”,“≥”,“<”,“>”填空)答案例3(1)f (x )=3452+-x x;(2)g (x )=-(5)21(4)41++x x .解 (1)依题意x 2-5x +4≥0, 解得x ≥4或x ≤1,∴f (x )的定义域是(-∞,1]∪[4,+∞).令u =,49)25(4522--=+-x x x ∵x ∈(-∞,1]∪[4,+∴u ≥0,即452+-x x ≥0,而f (x )=3452+-x x ≥30=1,∴函数f (x )的值域是[1,+∞).∵u =49)25(2--x ,∴当x ∈(-∞,1]时,u当x ∈[4,+∞)时,u 是增函数.而3>1,∴由复合函数的单调性可f (x )=3452+-x x 在(-∞,1]上是减函数,在[4,+∞)上是增函数.故f (x )的增区间是[4,+∞),减区间是(-∞,1]. (2)由g (x )=-(,5)21(4)21(5)21(4)412++-=++x x xx∴函数的定义域为R ,令t =()21x (t >0),∴g (t )=-t 2+4t +5=-(t -2)2+9,∵t >0,∴g (t )=-(t -2)2+9≤9,等号成立条件是t =2,即g (x )≤9,等号成立条件是(x )21=2,即x =-1,∴g (x )的值域是(-∞,9].由g (t )=-(t -2)2+9 (t >0),而t =(x )21是减函数,∴要求g (x )的增区间实际上是求g (t )求g (x )的减区间实际上是求g (t )的增区间. ∵g (t )在(0,2]上递增,在[2,+由0<t =(x )21≤2,可得x ≥-1,t =(x )21≥2,可得x ≤-1.∴g (x )在[-1,+∞)上递减,在(-∞,-1故g (x )的单调递增区间是(-∞,-1],单调递减区间是[-1,+∞). 例4(14分)设a >0,f (x )=x x aa ee +是R 上的偶函数. (1)求a 的值;(2)求证:f (x )在(0,+∞)上是增函数.(1)解 ∵f (x )是R 上的偶函数,∴f (-x )=f (x ), 2分∴,e e ee x x x x a a a a +=+--∴(a -)e 1e )(1x x a -=0对一切x 均成立, 4分∴a -a1=0,而a >0,∴a =1. 6分 (2)证明 在(0,+∞)上任取x 1、x 2,且x 1<x 2, 8分则f (x 1)-f (x 2)=1e x +1e 1x -2e x -2e 1x=)e e (12x x - ().1e 121-+x x10分∵x 1<x 2,∴,e e 21x x <有.0e e 12>-xx∵x 1>0,x 2>0,∴x 1+x 2>0,∴21e x x +>1, 12分21e 1x x +-1<0.∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),故f (x )在(0,+∞)上是增函数. 14分1.化简下列各式(其中各字母均为正数):(1);)(65312121132ba b a b a ⋅⋅⋅⋅--(2).)4()3(6521332121231----⋅÷-⋅⋅b a b a b a解 (1)原式=.100653121612131656131212131=⋅=⋅=⋅-+-+--b a b a b a b a b a(2)原式=-)(45)4(25233136121332361------÷-=⋅÷b a b a b a b a.4514545232321ab abab b a -=⋅-=⋅-=--2.已知实数a 、b 满足等式b a )31()21(=,下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b.其中不可能成立的有 (填序号).答案③④3.求下列函数的单调递增区间:(1)y =(226)21x x -+;(2)y =262--x x .解 (1)函数的定义域为R . 令u =6+x -2x 2,则y =(u )21.∵二次函数u =6+x -2x 2的对称轴为x =41, 在区间[41,+∞)上,u =6+x -2x 2是减函数, 又函数y =()21u是减函数,∴函数y =(226)21x x -+在[41,+∞)上是增函数.故y =(226)21x x -+的单调递增区间为[41,+∞).(2)令u =x 2-x -6,则y =2u, ∵二次函数u =x 2-x -6的对称轴是x =21, 在区间[21,+∞)上u =x 2-x -6是增函数. 又函数y =2u为增函数,∴函数y =262--x x 在区间[21,+∞)上是增函数. 故函数y =262--x x 的单调递增区间是[21,+∞). 4.已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=142+xx.(1)求f (x )在[-1,1]上的解析式; (2)证明:f (x )在(0,1)上是减函数.(1)解 当x ∈(-1,0)时,-x ∈(0,1). ∵f (x )是奇函数,∴f (x )=-f (-x )=-.142142+-=+--x x x x .由f (0)=f (-0)=-f (0),且f (1)=-f (-1)=-f (-1+2)=-f (1),得f (0)=f (1)=f (-1)=0.∴在区间[-1,1]上,有f (x )={}⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-∈-∈+-∈+1,0,10)0,1(142)1,0(142x x x xx xx (2)证明 当x ∈(0,1)时,f (x )=.142+xx设0<x 1<x 2<1,则f (x 1)-f (x 2)=,)14)(14()12)(22(1421422211222111++--=+-++x x x x x x x x x x∵0<x 1<x 2<1,∴22x -12x >0,212x x + -1>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),故f (x )在(0,1)上单调递减.一、填空题1.2311213,)32(,-的大小顺序为 .答案 213121)32(3-<< 2.若a <0,则2a ,,)21(a (0.2)a的大小顺序为 . 答案 (0.2)a>a )21(>2a3.若函数y =4x-3·2x+3的定义域为集合A ,值域为[1,7],集合B =(-∞,0]∪[1,2],则集合A 与集合B 的关系为 . 答案 A =B4.若f (x )=-x 2+2ax 与g (x )=(a +1)1-x在区间[1,2]上都是减函数,则a 的取值范围是 .答案 (0,1]5.(2009·常州二中期中)当函数f (x )=2-|x -1|-m 的图象与x 轴有公共点时,实数m 的取值范围是 .答案 (0,1]6.当x >0时,函数f (x )=(a 2-1)x的值总大于1,则实数a 的取值范围是 .答案 a >2或a <-27.若函数f (x )=a x-1 (a >0,a ≠1)的定义域和值域都是[0,2],则实数a 等于 .答案 38.函数y =a x(a >0,且a ≠1)在[1,2]上的最大值比最小值大2a,则a 的值是 . 答案21或23二、解答题9.要使函数y =1+2x+4xa 在x ∈(-∞,1]上y >0恒成立,求a 的取值范围.解 由题意得1+2x+4xa >0在x ∈(-∞,1]上恒成立,即a >-xx 421+在x ∈(-∞,1]上恒成立.又∵-xx 421+=-(,4121)21()21()2122+⎥⎦⎤⎢⎣⎡+-=-x x x∵x (],1,-∞∈∴(⎪⎭⎫⎢⎣⎡+∞∈,21)21x .令t =(.,21,41)21()(,)212⎪⎭⎫⎢⎣⎡+∞∈++-=t t t f x 则则f (t )在[21,+∞)上为减函数,f (t )≤f ()21=-(,4341)21212-=++即f (t )∈⎥⎦⎤ ⎝⎛-∞-43,.∵a >f (t ),∴a ∈(-43,+∞). 10.已知函数f (x )=(.)211213x x +-(1)求f (x )的定义域;(2)讨论f (x )的奇偶性;(3)证明:f (x )>0.(1)解 由2x-1≠0⇒x ≠0,∴定义域为(-∞,0)∪(0,+∞).(2)解 f (x )=(3)21121x +- 可化为f (x )=,)12(2123x x x -⋅+ 则f (-x )=).()12(212)()12(21233x f x x xx xx =-⋅+=--⋅+--∴f (x )=()21121+-x x 3是偶函数. (3)证明 当x >0时,2x>1,x 3>0. ∴()21121+-x x 3>0. ∵f (x )为偶函数,∴当x <0时,f (x )=f (-x )>0. 综上可得f (x )>0. 11.已知函数f (x )=12-a a (a x -a -x) (a >0,且a ≠1).(1)判断f (x )的单调性;(2)验证性质f (-x )=-f (x ),当x ∈(-1,1)时,并应用该性质求满足f (1-m )+f (1-m 2)<0的实数m 的范围.解 (1)设x 1<x 2,x 1-x 2<0,1+211x x a+>0.若a >1,则21x x a a <,12-a a >0,所以f (x 1)-f (x 2)=)11)((121212x x x x a a a a a ++--<0,即f (x 1)<f (x 2),f (x )在(-∞,+∞)上为增函数; 同理,若0<a <1,则21x x a a >,12-a a <0, f (x 1)-f (x 2)=)(1212x x a a a a --(1+211x x a+)<0,即f (x 1)<f (x 2),f (x )在(-∞,+∞)上为增函数. 综上,f (x )在R 上为增函数. (2)f (x )=),(12x x a a a a ---则f (-x )=)(1x x a a a a ---,。

2013年高考数学(理)一轮复习导学案50

2013年高考数学(理)一轮复习导学案50

学案50 直线、圆的位置关系导学目标: 1.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系.2.能用直线和圆的方程解决一些简单的问题.3.在学习过程中,体会用代数方法处理几何问题的思想.自主梳理1.直线与圆的位置关系位置关系有三种:________、________、________.判断直线与圆的位置关系常见的有两种方法:(1)代数法:利用判别式Δ,即直线方程与圆的方程联立方程组消去x 或y 整理成一元二次方程后,计算判别式Δ(2)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系:d <r ⇔________,d =r ⇔________,d >r ⇔________.2.圆的切线方程若圆的方程为x 2+y 2=r 2,点P (x 0,y 0)在圆上,则过P 点且与圆x 2+y 2=r 2相切的切线方程为____________________________.注:点P 必须在圆x 2+y 2=r 2上.经过圆(x -a )2+(y -b )2=r 2上点P (x 0,y 0)的切线方程为________________________.3.计算直线被圆截得的弦长的常用方法(1)几何方法运用弦心距(即圆心到直线的距离)、弦长的一半及半径构成直角三角形计算.(2)代数方法运用韦达定理及弦长公式|AB |=1+k 2|x A -x B |=(1+k 2)[(x A +x B )2-4x A x B ].说明:圆的弦长、弦心距的计算常用几何方法.4.圆与圆的位置关系(1)圆与圆的位置关系可分为五种:________、________、________、________、________. 判断圆与圆的位置关系常用方法:(几何法)设两圆圆心分别为O 1、O 2,半径为r 1、r 2 (r 1≠r 2),则|O 1O 2|>r 1+r 2________;|O1O 2|=r 1+r 2______;|r 1-r 2|<|O 1O 2|<r 1+r 2________;|O 1O 2|=|r 1-r 2|________;0≤|O 1O 2|<|r 1-r 2.(2)已知两圆x 2+y 2+D 1x +E 1y +F 1=0和x 2+y 2+D 2x +E 2y +F 2=0相交,则与两圆共交点的圆系方程为________________________________________________________________,其中λ为λ≠-1的任意常数,因此圆系不包括第二个圆.当λ=-1时,为两圆公共弦所在的直线,方程为(D 1-D 2)x +(E 1-E 2)y +(F 1-F 2)=0. 自我检测1.(2010·江西)直线y =kx +3与圆(x -3)2+(y -2)2=4相交于M ,N 两点,若|MN |≥23,则k 的取值范围是( )A.⎣⎡⎦⎤-34,0 B.⎝⎛⎦⎤-∞,-34∪[)0,+∞C.⎣⎡⎦⎤-33,33 D.⎣⎡⎦⎤-23,0 2.圆x 2+y 2-4x =0在点P (1,3)处的切线方程为( )A .x +3y -2=0B .x +3y -4=0C .x -3y +4=0D .x -3y +2=03.(2011·宁夏调研)圆C 1:x 2+y 2+2x +2y -2=0与圆C 2:x 2+y 2-4x -2y +1=0的公切线有且仅有( )A .1条B .2条C .3条D .4条4.过点(0,1)的直线与x 2+y 2=4相交于A 、B 两点,则|AB |的最小值为( )A .2B .2 3C .3D .2 55.(2011·聊城月考)直线y =x +1与圆x 2+y 2=1的位置关系是( ) A .相切 B .相交但直线不过圆心C .直线过圆心D .相离探究点一 直线与圆的位置关系例1 已知圆C :x 2+y 2+2x -4y +3=0.(1)若圆C 的切线在x 轴和y 轴上的截距相等,求此切线的方程;(2)从圆C 外一点P (x 1,y 1)向该圆引一条切线,切点为M ,O 为坐标原点,且有|PM |=|PO |,求使得|PM |取得最小值时点P 的坐标.变式迁移1 从圆C :(x -1)2+(y -1)2=1外一点P (2,3)向该圆引切线,求切线的方程及过两切点的直线方程.探究点二 圆的弦长、中点弦问题例2 (2011·汉沽模拟)已知点P (0,5)及圆C :x 2+y 2+4x -12y +24=0.(1)若直线l 过点P 且被圆C 截得的线段长为43,求l 的方程;(2)求过P 点的圆C 的弦的中点的轨迹方程.变式迁移2已知圆C:x2+y2-6x-8y+21=0和直线kx-y-4k+3=0.(1)证明:不论k取何值,直线和圆总有两个不同交点;(2)求当k取什么值时,直线被圆截得的弦最短,并求这条最短弦的长.探究点三圆与圆的位置关系例3已知圆C1:x2+y2-2mx+4y+m2-5=0,圆C2:x2+y2+2x-2my+m2-3=0,m为何值时,(1)圆C1与圆C2相外切;(2)圆C1与圆C2内含.变式迁移3已知⊙A:x2+y2+2x+2y-2=0,⊙B:x2+y2-2ax-2by+a2-1=0.当a,b变化时,若⊙B始终平分⊙A的周长,求:(1)⊙B的圆心B的轨迹方程;(2)⊙B的半径最小时圆的方程.探究点四 综合应用例4 已知圆C :x 2+y 2-2x +4y -4=0.问在圆C 上是否存在两点A 、B 关于直线y =kx -1对称,且以AB 为直径的圆经过原点?若存在,写出直线AB 的方程;若不存在,说明理由.变式迁移4 已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1相交于M 、N 两点.(1)求实数k 的取值范围;(2)若O 为坐标原点,且OM →·ON →=12,求k 的值.1.求切线方程时,若知道切点,可直接利用公式;若过圆外一点求切线,一般运用圆心到直线的距离等于半径来求,但注意有两条.2.解决与弦长有关的问题时,注意运用由半径、弦心距、弦长的一半构成的直角三角形,也可以运用弦长公式.这就是通常所说的“几何法”和“代数法”.3.判断两圆的位置关系,从圆心距和两圆半径的关系入手.(满分:75分)一、选择题(每小题5分,共25分)1.直线l :y -1=k (x -1)和圆x 2+y 2-2y =0的位置关系是( )A .相离B .相切或相交C .相交D .相切2.(2011·珠海模拟)直线3x -y +m =0与圆x 2+y 2-2x -2=0相切,则实数m 等于( ) A.3或- 3 B .-3或3 3C .-33或 3D .-33或3 33.过原点且倾斜角为60°的直线被圆x 2+y 2-4y =0所截得的弦长为( )A. 3 B .2C. 6 D .2 34.若圆(x -3)2+(y +5)2=r 2上有且仅有两个点到直线4x -3y -2=0的距离为1,则半径r 的取值范围是( )A .(4,6)B .[4,6)C .(4,6]D .[4,6]5.(2010·全国Ⅰ)已知圆O 的半径为1,P A 、PB 为该圆的两条切线,A 、B 为两切点,那么P A →·PB →的最小值为( )A .-4+ 2B .-3+ 2C .-4+2 2D .-3+2 2二、填空题(每小题4分,共12分)6.若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦的长为23,则a =________.7.(2011·三明模拟)已知点A 是圆C :x 2+y 2+ax +4y -5=0上任意一点,A 点关于直线x +2y -1=0的对称点也在圆C 上,则实数a =________.8.(2011·杭州高三调研)设直线3x +4y -5=0与圆C 1:x 2+y 2=4交于A ,B 两点,若圆C 2的圆心在线段AB 上,且圆C 2与圆C 1相切,切点在圆C 1的劣弧AB 上,则圆C 2的半径的最大值是________.三、解答题(共38分)9.(12分)圆x 2+y 2=8内一点P (-1,2),过点P 的直线l 的倾斜角为α,直线l 交圆于A 、B 两点.(1)当α=3π4时,求AB 的长; (2)当弦AB 被点P 平分时,求直线l 的方程.10.(12分)(2011·湛江模拟)自点A (-3,3)发出的光线l 射到x 轴上,被x 轴反射,其反射光线所在直线与圆x 2+y 2-4x -4y +7=0相切,求光线l 所在直线的方程.11.(14分)已知两圆x 2+y 2-2x -6y -1=0和x 2+y 2-10x -12y +m =0.求:(1)m 取何值时两圆外切?(2)m 取何值时两圆内切?(3)m =45时两圆的公共弦所在直线的方程和公共弦的长.学案50直线、圆的位置关系自主梳理1.相切相交相离(1)相交相切相离(2)相交相切相离 2.x0x+y0y=r2 (x0-a)(x-a)+(y0-b)(y-b)=r2 4.(1)相离外切相交内切内含相离外切相交内切内含(2)(x2+y2+D1x+E1y+F1)+λ(x2+y2+D2x+E2y+F2)=0 自我检测1.A 2.D 3.B 4.B 5.B课堂活动区例1解题导引(1)过点P作圆的切线有三种类型:当P在圆外时,有2条切线;当P在圆上时,有1条切线;当P在圆内时,不存在.(2)利用待定系数法设圆的切线方程时,一定要注意直线方程的存在性,有时要进行恰当分类.(3)切线长的求法:过圆C外一点P作圆C的切线,切点为M,半径为R,则|PM|=|PC|2-R2.解(1)将圆C配方得(x+1)2+(y-2)2=2.①当直线在两坐标轴上的截距为零时,设直线方程为y=kx,由|k+2|1+k2=2,解得k=2±6,得y=(2±6)x.②当直线在两坐标轴上的截距不为零时,设直线方程为x+y-a=0,由|-1+2-a|2=2,得|a-1|=2,即a=-1,或a=3.∴直线方程为x+y+1=0,或x+y-3=0.综上,圆的切线方程为y=(2+6)x,或y=(2-6)x,或x+y+1=0,或x+y-3=0.(2)由|PO|=|PM|,得x21+y21=(x1+1)2+(y1-2)2-2,整理得2x1-4y1+3=0.即点P在直线l:2x-4y+3=0上.当|PM|取最小值时,即OP 取得最小值,直线OP ⊥l ,∴直线OP 的方程为2x +y =0.解方程组⎩⎪⎨⎪⎧2x +y =0,2x -4y +3=0,得点P 的坐标为⎝⎛⎭⎫-310,35. 变式迁移1 解 设圆切线方程为y -3=k(x -2),即kx -y +3-2k =0,∴1=|k +2-2k|k 2+1, ∴k =34,另一条斜率不存在,方程为x =2. ∴切线方程为x =2和3x -4y +6=0.圆心C 为(1,1),∴k PC =3-12-1=2, ∴过两切点的直线斜率为-12,又x =2与圆交于(2,1), ∴过切点的直线为x +2y -4=0.例2 解题导引 (1)有关圆的弦长的求法:已知直线的斜率为k ,直线与圆C 相交于A(x 1,y 1),B(x 2,y 2)两点,点C 到l 的距离为d ,圆的半径为r.方法一 代数法:弦长|AB|=1+k 2|x 2-x 1| =1+k 2·(x 1+x 2)2-4x 1x 2;方法二 几何法:弦长|AB|=2r 2-d 2. (2)有关弦的中点问题:圆心与弦的中点连线和已知直线垂直,利用这条性质可确定某些等量关系.解 (1)方法一如图所示,|AB|=43,取AB 的中点D ,连接CD ,则CD ⊥AB ,连接AC 、BC , 则|AD|=23,|AC|=4,在Rt △ACD 中,可得|CD|=2.当直线l 的斜率存在时,设所求直线的斜率为k ,则直线的方程为y -5=kx ,即kx -y +5=0.由点C 到直线AB 的距离公式,得|-2k -6+5|k 2+(-1)2=2, 解得k =34. 当k =34时,直线l 的方程为3x -4y +20=0.又直线l 的斜率不存在时,也满足题意,此时方程为x =0.∴所求直线的方程为3x -4y +20=0或x =0.方法二 当直线l 的斜率存在时,设所求直线的斜率为k ,则直线的方程为y -5=kx ,即y =kx +5.联立直线与圆的方程⎩⎪⎨⎪⎧y =kx +5,x 2+y 2+4x -12y +24=0,消去y ,得(1+k 2)x 2+(4-2k)x -11=0.①设方程①的两根为x 1,x 2, 由根与系数的关系,得⎩⎨⎧x 1+x 2=2k -41+k 2,x 1x 2=-111+k 2.② 由弦长公式,得1+k 2|x 1-x 2| =(1+k 2)[(x 1+x 2)2-4x 1x 2]=4 3.将②式代入,解得k =34, 此时直线方程为3x -4y +20=0.又k 不存在时也满足题意,此时直线方程为x =0.∴所求直线的方程为x =0或3x -4y +20=0.(2)设过P 点的圆C 的弦的中点为D(x ,y),则CD ⊥PD ,即CD →·PD →=0,(x +2,y -6)·(x ,y -5)=0,化简得所求轨迹方程为x 2+y 2+2x -11y +30=0.变式迁移2 (1)证明 由kx -y -4k +3=0,得(x -4)k -y +3=0.∴直线kx -y -4k +3=0过定点P(4,3).由x 2+y 2-6x -8y +21=0,即(x -3)2+(y -4)2=4,又(4-3)2+(3-4)2=2<4.∴直线和圆总有两个不同的交点.(2)解 k PC =3-44-3=-1. 可以证明与PC 垂直的直线被圆所截得的弦AB 最短,因此过P 点斜率为1的直线即为所求,其方程为y -3=x -4,即x -y -1=0.|PC|=|3-4-1|2=2, ∴|AB|=2|AC|2-|PC|2=2 2.例3 解题导引 圆和圆的位置关系,从交点个数也就是方程组解的个数来判断,有时得不到确切的结论,通常还是从圆心距d 与两圆半径和、差的关系入手.解 对于圆C 1与圆C 2的方程,经配方后C 1:(x -m)2+(y +2)2=9;C 2:(x +1)2+(y -m)2=4.(1)如果C 1与C 2外切, 则有(m +1)2+(-2-m )2=3+2.(m +1)2+(m +2)2=25.m 2+3m -10=0,解得m =-5或m =2.(2)如果C 1与C 2内含, 则有(m +1)2+(m +2)2<3-2.(m +1)2+(m +2)2<1,m 2+3m +2<0,得-2<m<-1,∴当m =-5或m =2时,圆C 1与圆C 2外切;当-2<m<-1时,圆C 1与圆C 2内含.变式迁移3 解 (1)两圆方程相减得公共弦方程2(a +1)x +2(b +1)y -a 2-1=0.①依题意,公共弦应为⊙A 的直径,将(-1,-1)代入①得a 2+2a +2b +5=0.②设圆B 的圆心为(x ,y),∵⎩⎪⎨⎪⎧ x =ay =b , ∴其轨迹方程为x 2+2x +2y +5=0.(2)⊙B 方程可化为(x -a)2+(y -b)2=1+b 2.由②得b =-12[(a +1)2+4]≤-2, ∴b 2≥4,b 2+1≥5.当a =-1,b =-2时,⊙B 半径最小,∴⊙B 方程为(x +1)2+(y +2)2=5.例4 解题导引 这是一道探索存在性问题,应先假设存在圆上两点关于直线对称,由垂径定理可知圆心应在直线上,以AB 为直径的圆经过原点O ,应联想直径所对的圆周角为直角利用斜率或向量来解决.因此能否将问题合理地转换是解题的关键.解 圆C 的方程可化为(x -1)2+(y +2)2=9,圆心为C(1,-2).假设在圆C 上存在两点A 、B ,则圆心C(1,-2)在直线y =kx -1上,即k =-1. 于是可知,k AB =1.设l AB :y =x +b ,代入圆C 的方程,整理得2x 2+2(b +1)x +b 2+4b -4=0,Δ=4(b +1)2-8(b 2+4b -4)>0,b 2+6b -9<0,解得-3-32<b<-3+3 2.设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=-b -1,x 1x 2=12b 2+2b -2. 由OA ⊥OB ,知x 1x 2+y 1y 2=0,也就是x 1x 2+(x 1+b)(x 2+b)=0,∴2x 1x 2+b(x 1+x 2)+b 2=0,∴b 2+4b -4-b 2-b +b 2=0,化简得b 2+3b -4=0, 解得b =-4或b =1,均满足Δ>0.即直线AB 的方程为x -y -4=0,或x -y +1=0.变式迁移4 解 (1)方法一 ∵直线l 过点A(0,1)且斜率为k , ∴直线l 的方程为y =kx +1.将其代入圆C :(x -2)2+(y -3)2=1,得(1+k 2)x 2-4(1+k)x +7=0.①由题意:Δ=[-4(1+k)]2-4×(1+k 2)×7>0, 得4-73<k<4+73. 方法二 同方法一得直线方程为y =kx +1,即kx -y +1=0.又圆心到直线距离d =|2k -3+1|k 2+1=|2k -2|k 2+1, ∴d =|2k -2|k 2+1<1,解得4-73<k<4+73. (2)设M(x 1,y 1),N(x 2,y 2),则由①得⎩⎨⎧ x 1+x 2=4+4k 1+k 2x 1x 2=71+k 2,∴OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k(x 1+x 2)+1=4k (1+k )1+k2+8=12⇒k =1(经检验符合题意),∴k =1. 课后练习区1.C 2.C 3.D 4.A 5.D6.1 7.-10 8.19.解 (1)当α=3π4时,k AB =-1, 直线AB 的方程为y -2=-(x +1),即x +y -1=0.(3分) 故圆心(0,0)到AB 的距离d =|0+0-1|2=22, 从而弦长|AB|=2 8-12=30.(6分) (2)设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=-2,y 1+y 2=4.由⎩⎪⎨⎪⎧x 21+y 21=8,x 22+y 22=8, 两式相减得(x 1+x 2)(x 1-x 2)+(y 1+y 2)(y 1-y 2)=0,即-2(x 1-x 2)+4(y 1-y 2)=0,∴k AB =y 1-y 2x 1-x 2=12.(10分) ∴直线l 的方程为y -2=12(x +1), 即x -2y +5=0.(12分)10.解 已知圆C :x 2+y 2-4x -4y +7=0关于x 轴对称的圆为C 1:(x -2)2+(y +2)2=1,其圆心C 1的坐标为(2,-2),半径为1,由光的反射定律知,入射光线所在直线方程与圆C 1相切.(4分)设l 的方程为y -3=k(x +3),则 |5k +2+3|12+k2=1,(8分) 即12k 2+25k +12=0.∴k 1=-43,k 2=-34. 则l 的方程为4x +3y +3=0或3x +4y -3=0.(12分)11.解 两圆的标准方程分别为(x -1)2+(y -3)2=11,(x -5)2+(y -6)2=61-m ,圆心分别为M(1,3),N(5,6), 半径分别为11和61-m. (1)当两圆外切时,(5-1)2+(6-3)2=11+61-m. 解得m =25+1011.(4分)(2)当两圆内切时,因定圆的半径11小于两圆圆心间距离,故只有61-m -11=5.解得m =25-1011.(8分)(3)两圆的公共弦所在直线的方程为(x 2+y 2-2x -6y -1)-(x 2+y 2-10x -12y +45)=0, 即4x +3y -23=0.(12分)由圆的半径、弦长、弦心距间的关系,不难求得公共弦的长为 2× 112-⎣⎢⎢⎡⎦⎥⎥⎤|4+3×3-23|42+322=27.(14分)。

2013年高考数学(理)一轮复习导学案23

2013年高考数学(理)一轮复习导学案23

第五章解三角形与平面向量学案23正弦定理和余弦定理导学目标: 1.利用正弦定理、余弦定理进行边角转化,进而进行恒等变换解决问题.2.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.自主梳理1.三角形的有关性质(1)在△ABC中,A+B+C=________;(2)a+b____c,a-b<c;(3)a>b⇔sin A____sin B⇔A____B;(4)三角形面积公式:S△ABC=12ah=12ab sin C=12ac sin B=_________________;(5)在三角形中有:sin 2A=sin 2B⇔A=B或________________⇔三角形为等腰或直角三角形;sin(A+B)=sin C,sin A+B2=cosC2.自我检测1.(2010·上海)若△ABC的三个内角满足sin A∶sin B∶sin C=5∶11∶13,则△ABC()A.一定是锐角三角形B.一定是直角三角形C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形2.(2010·天津)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=3bc,sin C=23sin B,则A等于()A.30°B.60°C.120°D.150°3.(2011·烟台模拟)在△ABC中,A=60°,b=1,△ABC的面积为3,则边a的值为()A .27 B.21C.13 D .34.(2010·山东)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,b =2,sin B +cos B =2,则角A 的大小为________.5.(2010·北京)在△ABC 中,若b =1,c =3,C =2π3,则a =________.探究点一 正弦定理的应用例1 (1)在△ABC 中,a =3,b =2,B =45°,求角A 、C 和边c ;(2)在△ABC 中,a =8,B =60°,C =75°,求边b 和c .变式迁移1 (1)在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________; (2)在△ABC 中,若a =50,b =256,A =45°,则B =________.探究点二 余弦定理的应用例2 (2011·咸宁月考)已知a 、b 、c 分别是△ABC 中角A 、B 、C 的对边,且a 2+c 2-b 2=ac .(1)求角B 的大小;(2)若c =3a ,求tan A 的值.变式迁移2 在△ABC 中,a 、b 、c 分别为A 、B 、C 的对边,B =2π3,b =13,a +c =4,求a .探究点三 正、余弦定理的综合应用例3 在△ABC 中,a 、b 、c 分别表示三个内角A 、B 、C 的对边,如果(a 2+b 2)sin(A-B )=(a 2-b 2)sin(A +B ),试判断该三角形的形状.变式迁移3 (2010·天津)在△ABC 中,AC AB =cos B cos C. (1)证明:B =C ;(2)若cos A =-13,求sin ⎝⎛⎭⎫4B +π3的值.1.解斜三角形可以看成是三角变换的延续和应用,用到三角变换的基本方法,同时它是对正、余弦定理,三角形面积公式等的综合应用.2.在利用正弦定理解已知三角形的两边和其中一边的对角,求另一边的对角,进而求出其他的边和角时,有可能出现一解、两解或无解的情况,应结合图形并根据“三角形中大边对大角”来判断解的情况,作出正确取舍.3.在解三角形中的三角变换问题时,要注意两点:一是要用到三角形的内角和及正、余弦定理,二是要用到三角变换、三角恒等变形的原则和方法.“化繁为简”“化异为同”是解此类问题的突破口.(满分:75分) 一、选择题(每小题5分,共25分)1.(2010·湖北)在△ABC 中,a =15,b =10,A =60°,则cos B 等于 ( )A .-223 B.223 C .-63 D.632.在△ABC 中AB =3,AC =2,BC 则AB →⋅AC →等于 ( )A .-32B .-23 C.23 D.323.在△ABC 中,sin 2A 2=c -b 2c(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰直角三角形D .等腰三角形4.(2011·聊城模拟)在△ABC 中,若A =60°,BC =43,AC =42,则角B 的大小为( )A .30°B .45°C .135°D .45°或135°5.(2010·湖南)在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若C =120°,c =2a ,则( )A .a >bB .a <b6.在△ABC 中,B =60°,b 2=ac ,则△ABC 的形状为________________.7.(2010·广东)已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b=3,A +C =2B ,则sin C =________.8.(2011·龙岩模拟)在锐角△ABC 中,AD ⊥BC ,垂足为D ,且BD ∶DC ∶AD =2∶3∶6,则∠BAC 的大小为________.三、解答题(共38分)9.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos 25A =,AB →AC →=3. (1)求△ABC 的面积;(2)若b +c =6,求a 的值.10.(12分)(2010·陕西)在△ABC 中,已知B =45°,D 是BC 边上的一点,AD =10,AC=14,DC =6,求AB 的长.11.(14分)(2010·重庆)设△ABC 的内角A 、B 、C 的对边长分别为a 、b 、c ,且3b 2+3c 2-3a 2=42bc .(1)求sin A 的值;(2)求2sin ⎝⎛⎭⎫A +π4sin ⎝⎛⎭⎫B +C +π41-cos 2A的值.答案 自主梳理1.(1)π (2)> (3)> > (4)12bc sin A (5)A +B =π2 2.a sin A =b sin B =c sin Cb 2+c 2-2bc cos A a 2+c 2-2ac cos B a 2+b 2-2ab cos C ①2R sin A 2R sin B 2R sin C ②a 2R b 2Rc 2R ③sin A ∶sin B ∶sin C b 2+c 2-a 22bc a 2+c 2-b 22ac a 2+b 2-c 22ab自我检测1.C 2.A 3.C4.π65.1 课堂活动区例1 解题导引 已知三角形的两边和其中一边的对角,可利用正弦定理求其他的角和边,但要注意对解的情况进行判断,这类问题往往有一解、两解、无解三种情况.具体判断方法如下:在△ABC 中.已知a 、b 和A ,求B .若A 为锐角,①当a ≥b 时,有一解;②当a =b sin A 时,有一解;③当b sin A <a <b 时,有两解;④当a <b sin A 时,无解.若A 为直角或钝角,①当a >b 时,有一解;②当a ≤b 时,无解.解 (1)由正弦定理a sin A =b sin B 得,sin A =32. ∵a >b ,∴A >B ,∴A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°,c =b sin C sin B =6+22; 当A =120°时,C =180°-45°-120°=15°,c =b sin C sin B =6-22. 综上,A =60°,C =75°,c =6+22, 或A =120°,C =15°,c =6-22. (2)∵B =60°,C =75°,∴A =45°.由正弦定理a sin A =b sin B =c sin C, 得b =a ·sin B sin A =46,c =a ·sin C sin A=43+4. ∴b =46,c =43+4.变式迁移1 (1)102(2)60°或120°解析 (1)∵在△ABC 中,tan A =13,C =150°, ∴A 为锐角,∴sin A =110. 又∵BC =1.∴根据正弦定理得AB =BC ·sin C sin A =102. (2)由b >a ,得B >A ,由a sin A =b sin B, 得sin B =b sin A a =25650×22=32, ∵0°<B <180°∴B =60°或B =120°.例2 解 (1)∵a 2+c 2-b 2=ac ,∴cos B =a 2+c 2-b 22ac =12. ∵0<B <π,∴B =π3. (2)方法一 将c =3a 代入a 2+c 2-b 2=ac ,得b =7a .由余弦定理,得cos A =b 2+c 2-a 22bc =5714. ∵0<A <π,∴sin A =1-cos 2A =2114, ∴tan A =sin A cos A =35. 方法二 将c =3a 代入a 2+c 2-b 2=ac ,得b =7a .由正弦定理,得sin B =7sin A .由(1)知,B =π3,∴sin A =2114. 又b =7a >a ,∴B >A ,∴cos A =1-sin 2A =5714. ∴tan A =sin A cos A =35. 方法三 ∵c =3a ,由正弦定理,得sin C =3sin A . ∵B =π3,∴C =π-(A +B )=2π3-A , ∴sin(2π3-A )=3sin A , ∴sin 2π3cos A -cos 2π3sin A =3sin A , ∴32cos A +12sin A =3sin A , ∴5sin A =3cos A ,∴tan A =sin A cos A =35. 变式迁移2 解 由余弦定理得,b 2=a 2+c 2-2ac cos B=a 2+c 2-2ac cos 23π =a 2+c 2+ac =(a +c )2-ac .又∵a +c =4,b =13,∴ac =3,联立⎩⎪⎨⎪⎧a +c =4ac =3,解得a =1,c =3,或a =3,c =1. ∴a 等于1或3.例3 解题导引 利用正弦定理或余弦定理进行边角互化,转化为边边关系或角角关系.解 方法一 ∵(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B )⇔a 2[sin(A -B )-sin(A +B )]=b 2[-sin(A +B )-sin(A -B )],∴2a 2cos A sin B =2b 2cos B sin A ,由正弦定理,得sin 2A cos A sin B =sin 2B cos B sin A ,∴sin A sin B (sin A cos A -sin B cos B )=0,∴sin 2A =sin 2B ,由0<2A <2π,0<2B <2π,得2A =2B 或2A =π-2B ,即△ABC 是等腰三角形或直角三角形.方法二 同方法一可得2a 2cos A sin B =2b 2cos B sin A ,由正、余弦定理,即得a 2b ×b 2+c 2-a 22bc =b 2a ×a 2+c 2-b 22ac, ∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2),即(a 2-b 2)(c 2-a 2-b 2)=0,∴a =b 或c 2=a 2+b 2,∴三角形为等腰三角形或直角三角形.变式迁移3 解题导引 在正弦定理a sin A =b sin B =c sin C=2R 中,2R 是指什么?a =2R sin A ,b =2R sin B ,c =2R sin C 的作用是什么?(1)证明 在△ABC 中,由正弦定理及已知得sin B sin C =cos B cos C. 于是sin B cos C -cos B sin C =0,即sin(B -C )=0.因为-π<B -C <π,从而B -C =0.所以B =C .(2)解 由A +B +C =π和(1)得A =π-2B ,故cos 2B =-cos(π-2B )=-cos A =13. 又0<2B <π,于是sin 2B =1-cos 22B =223. 从而sin 4B =2sin 2B cos 2B =429, cos 4B =cos 22B -sin 22B =-79. 所以sin ⎝⎛⎭⎫4B +π3 =sin 4B cos π3+cos 4B sin π3=42-7318. 课后练习区1.D 2.D 3.B 4.B 5.A6.等边三角形解析 ∵b 2=a 2+c 2-2ac cos B ,∴ac =a 2+c 2-ac ,∴(a -c )2=0,∴a =c ,又B =60°,∴△ABC 为等边三角形.7.1解析 由A +C =2B 及A +B +C =180°知,B =60°.由正弦定理知,1sin A =3sin 60°, 即sin A =12. 由a <b 知,A <B ,∴A =30°,C =180°-A -B =180°-30°-60°=90°,∴sin C =sin 90°=1. 8.π4解析 设∠BAD =α,∠DAC =β,则tan α=13,tan β=12, ∴tan ∠BAC =tan(α+β)=tan α+tan β1-tan αtan β=13+121-13×12=1. ∵∠BAC 为锐角,∴∠BAC 的大小为π4. 9.解 (1)因为cos A 2=255, 所以cos A =2cos 2A 2-1=35,sin A =45.……………………………………………………(4分)又由AB →·AC →=3得bc cos A =3,所以bc =5,因此S △ABC =12bc sin A =2.…………………………………………………………………(8分)(2)由(1)知,bc =5,又b +c =6,由余弦定理,得a 2=b 2+c 2-2bc cos A =(b +c )2-165bc =20,所以a =2 5 (12)) 10.解在△ADC 中,AD =10,AC =14,DC =6,由余弦定理得,cos ∠ADC =AD 2+DC 2-AC 22AD ·DC=100+36-1962×10×6=-12,…………………………………………………………………(6分)∴∠ADC =120°,∠ADB =60°.…………………………………………………………(8分) 在△ABD 中,AD =10,B =45°,∠ADB =60°,由正弦定理得AB sin ∠ADB =AD sin B, ∴AB =AD ·sin ∠ADB sin B =10sin 60°sin 45°=10×3222=5 6.…………………………………………………………………………(12分)11.解 (1)∵3b 2+3c 2-3a 2=42bc ,∴b 2+c 2-a 2=423bc . 由余弦定理得,cos A =b 2+c 2-a 22bc =223,……………………………………………(4分) 又0<A <π,故sin A =1-cos 2A =13.……………………………………………………(6分) (2)原式=2sin ⎝⎛⎭⎫A +π4sin ⎝⎛⎭⎫π-A +π41-cos 2A………………………………………………………(8分)=2sin ⎝⎛⎭⎫A +π4sin ⎝⎛⎭⎫A -π42sin 2A=2⎝⎛⎭⎫22sin A +22cos A ⎝⎛⎭⎫22sin A -22cos A 2sin 2A…………………………………………(11分) =sin 2A -cos 2A 2sin 2A =-72. 所以2sin (A +π4)sin (B +C +π4)1-cos 2A=-72.……………………………………………………(14分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学案71基本算法语句导学目标:理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.自主梳理1.输入、输出语句输入语句的格式为____________________.输出语句的格式为____________________.2.赋值语句的格式为______________,赋值语句中“=”叫做赋值号,计算机执行赋值语句时,先计算“=”右边表达式的值,然后把这个值赋给“=”左边的变量.一个赋值语句只能给一个变量赋值.3.条件语句表达算法中的条件结构.条件语句的一般格式是IF条件THEN语句体1ELSE语句体2END IF或IF—THEN语句的一般格式是IF条件THEN语句体END IF4.算法中的循环结构是由循环语句来实现的,包括WHILE语句和UNTIL语句两种语句结构.WHILE语句的一般格式是WHILE条件循环体WEND,UNTIL语句的一般格式是DO循环体LOOP UNTIL条件自我检测1.(2011·汉沽模拟)已知变量a,b已被赋值,要交换a、b的值,采用的算法是() A.a=b,b=a B.a=c,b=a,c=bC.a=c,b=a,c=a D.c=a,a=b,b=c2.当a=1,b=3时,执行完如下的一段程序后x的值是()IF a<b THENx=a+bELSEx=a-bEND IFA.1 B.3 C.4 D.-23.(2011·淄博月考)当x=2时,下面的程序运行结果是()i =1s =0WHILE i<=4 s =s*x +1i =i +1WEND PRINT s ENDA .3B .7C .15D .174.(2011届温州期末)下列程序执行后输出的结果是________________________.i =11s =1DOs =s*i i =i -1LOOP UNTIL i<9PRINT s END探究点一 输入、输出和赋值语句的应用例1 写出下列语句描述的算法的输出结果: (1)a =5b =3c =(a +b )/2d =c*c PRINT “d =”;d (2) a =1b =2c =a +b b =a +c -b PRINT “a =,b =,c =”;a ,b ,c变式迁移1 请写出下面运算输出的结果__________. a =10b =20c =30a =b b =c c =aPRINT “a =,b =,c =”;a ,b ,c探究点二 条件语句的应用 例2 阅读下面的程序,当分别输入x =2,x =1,x =0时,输出的y 值分别为________、________、________.INPUT “x=”;xIF x>1 THENy=1/(x-1)ELSEIF x=1THENy=x^2ELSEy=x^2+1/(x-1)END IFEND IFPRINT yEND变式迁移2阅读下面的程序,写出程序运行的结果.(1)若x=6,则P=______;(2)若x=20,则P=______.探究点三循环语句的应用例3(2011·温州期末)下列程序执行后输出的结果是()n=5s=0WHILE s<14s=s+nn=n-1WENDPRINT nENDA.-1B.0C.1 D.2变式迁移3下列程序运行的结果是________________________________________.x=100i=1DOx=x+10PRINT i,xi=i+1LOOP UNTIL x>=200END1.条件语句一般有两种:IF—THEN语句;IF—THEN—ELSE语句.语句格式及框图如下.(1)IF—THEN —ELSE 格式当计算机执行这种形式的条件语句时,首先对IF 后的条件进行判断,如果条件符合,就执行THEN 后的语句体1,否则执行ELSE 后的语句体2. (2)IF —THEN 格式2.算法中的循环结构是由循环语句来实现的.对应于程序框图中的两种循环结构,一般程序设计语言中有当型(WHILE 型)和直到型(UNTIL 型)两种语句结构,即WHILE 语句和UNTIL 语句. (1)WHILE 语句(2)UNTIL 语句(满分:75分)一、选择题(每小题5分,共25分) 1.(2011·枣庄模拟)以下程序: x =-1DOx =x*xUNTIL x>10PRINT x ENDA .不能执行B .能执行一次C .能执行十次D .有语法错误2.下面的程序运行后第3个输出的数是()A .1B.32 C .2 D.523.(2011·银川模拟)下面程序运行的结果是( ) i =1S =0WHILE i<=100 S =S +ii =i +1WEND PRINT S ENDA .5 050B .5 049C .3D .24.下面程序运行后,输出的值是( ) i =0DOi =i +1LOOP UNTIL i*i>=2 000 i =i -1PRINT i ENDA .42B .43C .44D .45 5.程序INPUT xIF x>0 AND x<100 THEN a =x[ST0 b =x MOD 10 x =10]PRINT x END IF END上述程序如果输入的值是51,则运行结果是( ) A .51 B .15 C .105 D .501 二、填空题(每小题4分,共12分)6.利用计算机计算:s =11×2+12×3+13×4+…+199×100,某同学编写的程序语句中,①处应填________.7.为了在运行下面的程序之后得到y =25,键盘输入的x 应该是________. INPUT xIF x<0 THEN y =(x +1)*(x +1)ELSEy =(x -1)*(x -1)END IF PRINT y END8.(2011·南通模拟)有一列数:1,1,2,3,5,8,13,21,…,这列数有下面的特点:前两个数都是1,从第三个数开始,每个数都是前两个数的和,这样的一列数一般称为斐波那契数.图中程序所描述的算法功能是输出前10个斐波那契数.请把这个算法填写完整.三、解答题(共38分)9.(12分)现欲求1+13+15+…+12n -1的和(其中n 的值由键盘输入),已给出了其程序框图,请将其补充完整并设计出程序.10.(12分)设计一个计算1×3×5×7×…×99的程序并画出程序框图.11.(14分)(2011·南京模拟)某商场为了促销,采用购物打折的优惠办法:每位顾客一次购物①在1 000元以上者总额按九五折优惠;②在2 000元以上者总额按九折优惠;③在3 000元以上者总额按八五折优惠;④在5 000元以上者总额按八折优惠.试编写程序求优惠价.学案71基本算法语句自主梳理1.INPUT“提示内容”;变量PRINT“提示内容”;表达式 2.变量=表达式自我检测1.D[由赋值语句知选D.]2.C[∵1<3,∴x=1+3=4.]3.C[当x=2时,i=1≤4,s=0×2+1=1;i=1+1=2≤4,s=1×2+1=3;i=2+1=3≤4,s=3×2+1=7;i=3+1=4≤4,s=7×2+1=15;i=4+1=5>4,输出s=15.]4.990解析由题意s=11×10×9=990.课堂活动区例1 解题导引 (1)赋值语句左边只能是变量名字,而不是表达式,右边可以是一个常量、变量或含变量的运算式.(2)赋值号的左右两边不能对换.赋值语句是将赋值号右边的表达式的值赋给赋值号左边的变量.如“A =B ”和“B =A ”的运行结果是不同的.解 (1)∵a =5,b =3,c =a +b2=4,∴d =c 2=16,即输出d =16.(2)∵a =1,b =2,c =a +b ,∴c =3,又∵b =a +c -b , 即b =1+3-2=2,∴a =1,b =2,c =3, 即输出a =1,b =2,c =3.变式迁移1 a =20,b =30,c =20解析 经过语句a =b ,b =c 后,b 的值赋给a ,c 的值赋给b ,即a =20,b =30,再经过语句c =a 后,a 的当前值20赋给c ,∴c =20.故输出结果a =20,b =30,c =20.例2 解题导引 计算机执行这种形式的条件语句时,是首先对IF 后的条件进行判断,如果条件符合,就执行THEN 后的语句;如果条件不符合,则直接结束该条件语句,转而执行其他语句,嵌套时注意内外分层,避免逻辑混乱.1,1,-1解析 由程序可知分段函数是:y =⎩⎨⎧x 2+1x -1, x<1x 2, x =11x -1, x>1∴输入x =2,输出1; 输入x =1,输出1; 输入x =0,输出-1.变式迁移2 (1)2.1 (2)10.5例3 解题导引 解答这类问题的关键是认真阅读程序,理解程序功能.必要时,根据程序画出框图辅助分析.C [由程序画出对应的程序框图,这是一个当型循环语句.由框图可知,该程序的功能是计算s =5+4+…+n 到首次不小于14的n -1的值,即(s ,n)由以下运算得:(0,5)→(0+5,5-1)→(5+4,4-1)→(9+3,3-1)→(12+2,2-1),所以输出n =1.]变式迁移3 1,110;2,120;3,130;4,140;5,150;6,160;7,170;8,180;9,190;10,200 课后练习区1.D [程序中存在语法错误,应为LOOP UNTIL ,考查程序的严密性.] 2.C [该程序中关键是循环语句,第一次输出的数是1,第二次输出的数是x =1+12=32,第三次输出的数是x =1+12+12=2.]3.A [该程序的功能是求S =1+2+…+100的值.由等差数列求和公式得,S =1002×(1+100)=5 050.]4.C [程序功能是求使i 2≥2 000成立的最小i 值,输出结果为i -1.∵442=1 936,452=2 025>2 000,∴输出结果为44.]5.B [因为算术运算符“\”和“MOD ”分别用来取商和余数,所以a =5,b =1,x =10×1+5=15.]6.k >99解析 循环体执行到k =99. 7.-6或6解析 程序对应的函数是y =⎩⎪⎨⎪⎧(x +1)2,x<0(x -1)2,x ≥0. 由题意得,⎩⎪⎨⎪⎧x<0(x +1)2=25,或⎩⎪⎨⎪⎧x ≥0(x -1)2=25, 解得x =-6或x =6. 8.a =b9.解 ①i =i +1 ②S =S +1/(2](4分) 程序如下:(12分)10.解 方法一 (当型语句) 程序为: s =1i =3WHILE i<=99s =s*ii =i +2WEND PRINT s END(5分)程序框图如图所示,(12分)方法二 (直到型语句) 程序为:s =1i =3DOs =s*ii =i +2LOOP UNTIL i>99PRINT s END(5分)程序框图如图所示,(12分)11.解 设购物款数原为x 元,优惠后价格为y 元,则优惠付款方式可用分段函数表示为y =⎩⎪⎨⎪⎧x , x <1 000,0.95x , 1 000≤x <2 000,0.9x , 2 000≤x <3 000,0.85x , 3 000≤x <5 000,0.8x , x ≥5 000.(6分)用条件语句表示为:(14分)。

相关文档
最新文档