平行四边形习题课
第6章 平行四边形- 北师大版数学八年级下册教材习题课件

边数
3
4
5
6…
多边形的内角和 180° 360° 540° 720°
正多边形内角的度数 60° 90° 108° 120°
知识技能
13. 过多边形某个顶点的所有对角线,将这个多边形分 成7个三角形,这个多边形是几边形? 解:过n边形某个顶点的对角线,将这个多边形分 成(n-2)个三角形,根据题意,得n-2=7,解得n=9. 所以这个多边形是九边形.
位线定理可知连接各边的中点得到的三角形的三边长
分别是 1 a, 1 b, 1 c,所以此三角形的周长为 1(a+b+c),
222
同理,再次得到的三角形的周长为
2A
1 (a+b+c).
4
B
C
知识技能
12. 分别确定一般三角形、四边形、五边形、六边 形……的内角和,以及正三角形、正四边形、正五 边形、正六边形……内角的度数,并填入下表:
于点E,∠BCD的平分线交AD于点F,交BE于点G.
求证:AF=DE.
AF
ED
证明:∵四边形ABCD是平行四边形, G
∴AB=DC,AD∥BC.
B
C
∴∠AEB=∠EBC,∠DFC=∠FCB.
∵BE平分∠ABC,CF平分∠BCD,
知识技能
∴∠ABE=∠EBC,∠DCF=∠FCB.
∴∠AEB=∠ABE,∠DFC=∠DCF.
A
F
∴AB=AE,DF=DC.
ED
∵AB=DC,
G
∴AE=DF.
B
C
∴AE-EF=DF-EF,即AF=DE.
知识技能
11. 如图,△ABC的三边长分别为a,b,c,以它的三边 中点为顶点组成一个新三角形,再以这个新三角形
(完整版)平行四边形练习题及答案(DOC)

20.1平行四边形的判断一、选择题1 .四边形A BCD,从( 1)AB∥CD;( 2)AB=CD;( 3)BC∥AD;( 4) BC=AD这四个条件中任选两个,此中能使四边形ABCD是平行四边形的选法有()A .3种B.4种C.5种D.6种2.四边形的四条边长分别是a, b, c,d,此中 a,b 为一组对边边长, c,d?为另一组对边边长且知足a2+b2+c2+d2=2ab+2cd,则这个四边形是()A .随意四边形B.平行四边形C.对角线相等的四边形 D .对角线垂直的四边形3.以下说法正确的选项是()A.若一个四边形的一条对角线均分另一条对角线,则这个四边形是平行四边形B.对角线相互均分的四边形必定是平行四边形C.一组对边相等的四边形是平行四边形D.有两个角相等的四边形是平行四边形二、填空题4 .在□ ABCD中,点 E, F 分别是线段A D, BC上的两动点,点 E 从点 A 向 D 运动,点F从 C?向 B 运动,点 E 的速度边形.m与点F 的速度n 知足 _______关系时,四边形BFDE为平行四5.如图 1 所示,平行四边形ABCD中, E, F 分别为AD,BC边上的一点,连结EF,若再增添一个条件_______,就能够推出BE=DF.图1图26 .如图 2 所示, AO=OC,BD=16cm,则当 OB=_____cm时,四边形ABCD是平行四边形.三、解答题7.以下图,四边形 ABCD中,对角线 BD=4,一边长 AB=5,其他各边长用含有未知数 x 的代数式表示,且 AD⊥BD于点 D,BD⊥BC 于点 B.问:四边形 ABCD?是平行四边形吗?为什么?四、思虑题8.以下图,在□ABCD中, E,F 是对角线 AC上的两点,且 AF=CE,?则线段 DE?与 BF的长度相等吗?参照答案一、 1. B 点拨:可选择条件(1)(3)或(2)( 4)或( 1)( 2)或( 3)(4).故有 4 种选法.2. B 点拨: a2+b 2+c2+d2=2ab+2cd 即( a-b)2+( c-d )2=0,即( a-b )2=0 且( c-d )2=0.所以 a=b, c=d,即两组对边分别相等,所以四边形为平行四边形.3. B 点拨:娴熟掌握平行四边形的判断定理是解答这种题目的重点.二、 4.相等点拨:利用“一组对边平行且相等的四边形是平行四边形”来确立.5 .AE=CF 点拨:此题答案不唯一,只需增添的条件能使四边形EBFD?是平行四边形即可.6. 8 点拨:依据对角线相互均分的四边形为平行四边形来进行鉴别.三、 7.解:以下图,四边形ABCD是平行四边形.原因以下:在 Rt△BCD中,依据勾股定理,得BC2+BD 2=DC 2,即( x-5 )2+42=( x-3 )2,解得 x=8.所以 AD=11-8=3, BC=x-5=3, DC=x-3=8-3=5 ,所以 AD=BC, AB=DC.所以四边形ABCD是平行四边形.点拨:此题主要告诉的是线段的长度,故只需说明AD=BC, AB=DC即可,此题也可在Rt△ABD中求 x 的值.四、 8.解:线段DE与BF 的长度相等;连结BD交AC于O点,连结DF, BE,以下图.在ABCD中, DO=OB, AO=OC,又因为 AF=EC,所以 AF-AO=CE-OC,即 OF=OE,所以四边形 DEBF是平行四边形,所以DE=BF.点拨:此题若用三角形全等,也能够解答,但过程复杂,学了平行四边形性质后,要学会应用.20.2矩形的判断一、选择题1.矩形拥有而一般平行四边形不拥有的性质是()A.对角相等 B .对边相等 C .对角线相等 D .对角线相互垂直2.以下表达中能判断四边形是矩形的个数是()①对角线相互均分的四边形;②对角线相等的四边形;③对角线相等的平行四边形;④对角线相互均分且相等的四边形.A . 1B. 2C. 3D. 43.以下命题中,正确的选项是()A.有一个角是直角的四边形是矩形B.三个角是直角的多边形是矩形C.两条对角线相互垂直且相等的四边形是矩形 D .有三个角是直角的四边形是矩形二、填空题4.如图 1 所示,矩形 ABCD中的两条对角线订交于点O,∠ AOD=120°, AB=4cm,则矩形的对角线的长为 _____.D E CF OA B图 1图 25.若四边形 ABCD的对角线 AC, BD相等,且相互均分于点 O,则四边形 ABCD?是_____ 形,若∠ AOB=60°,那么AB:AC=______.6.如图 2 所示,已知矩形ABCD周长为 24cm,对角线交于点O,OE⊥DC 于点 E,于点 F, OF-OE=2cm,则 AB=______, BC=______.三、解答题7.以下图,□ABCD的四个内角的均分线分别订交于E, F, G,H 两点,试说明四边形 EFGH是矩形.四、思虑题8.以下图,△ABC中, CE, CF分别均分∠ACB和它的邻补角∠ACD.AE⊥CE于 E,AF⊥CF 于F,直线EF分别交AB, AC于 M, N 两点,则四边形AECF是矩形吗?为何?参照答案一、 1. C点拨:A与B都是平行四边形的性质,而D是一般矩形与平行四边形都不具有的性质.2 .B点拨:③是矩形的判断定理;④中对角线相互均分的四边形是平行四边形,对角线相等的平行四边形是矩形,故④能判断矩形,应选B.3. D 点拨:选项 D 是矩形的判断定理.二、 4. 8cm5.矩; 1: 2 点拨:利用对角线相互均分来判断此四边形是平行四边形,再依据对角线相等来判断此平行四边形是矩形.由矩形的对角线相等且相互均分,?可知△ AOB 是等腰三角形,又因为∠ AOB=60°,所以AB=AO=1AC.26 . 8cm; 4cm三、 7.解:在□ABCD中,因为AD∥BC,所以∠ DAB+∠CBA=180°,又因为∠ HAB= 1∠DAB,∠ HBA=1∠CBA.22所以∠ HAB+∠HBA=90°,所以∠ H=90°.所以四边形EFGH是矩形.点拨:因为“两直线平行,同旁内角的均分线相互垂直”,所以很简单求出四边形EFGH 的四个角都是直角,从而求得四边形EFGH是矩形.四、 8.解:四边形AECF是矩形.原因:因为CE均分∠ ACB, ?CF?均分∠ ACD, ?所以∠ ACE=1∠ACB,∠ ACF=1∠ACD.所以∠ ECF=1(∠ ACB+∠ACD)=90°.222又因为 AE⊥CE,AF⊥CF, ?所以∠ AEC=∠AFC=90°,所以四边形AECF是矩形.点拨: ?此题是经过证四边形中三个角为直角得出结论.还能够经过证其为平行四边形,再证有一个角为直角得出结论.20.3菱形的判断一、选择题1.以下四边形中不必定为菱形的是()A .对角线相等的平行四边形B.每条对角线均分一组对角的四边形C.对角线相互垂直的平行四边形D.用两个全等的等边三角形拼成的四边形2.四个点 A, B, C,D 在同一平面内,从① AB∥CD;② AB=CD;③ AC⊥BD;④ AD=BC;5 个条件中任选三个,能使四边形ABCD是菱形的选法有().A .1种B.2种C.3种D.4种3 .菱形的周长为32cm,一个内角的度数是60°,则两条对角线的长分别是()A.8cm和 4 3 cm B.4cm和83 cm C.8cm和83 cm D.4cm和43 cm二、填空题4.如图 1 所示,已知□ABCD,AC,BD订交于点O,?增添一个条件使平行四边形为菱形,增添的条件为 ________.(只写出切合要求的一个即可)图1图25.如图 2 所示, D, E,F 分别是△ ABC 的边 BC, CA,AB 上的点,且 DE∥AB,DF∥CA,要使四边形 AFDE是菱形,则要增添的条件是 ________.(只写出切合要求的一个即可)6 .菱形 ABCD的周长为48cm,∠ BAD:∠ ABC=1:?2,?则 BD=?_____,?菱形的面积是______.7.在菱形ABCD中, AB=4, AB 边上的高DE垂直均分边AB,则 BD=_____,AC=_____.三、解答题8.以下图,在四边形ABCD中, AB∥CD, AB=CD=BC,四边形 ABCD是菱形吗? ?说明理由.四、思虑题9.如图,矩形 ABCD的对角线订交于点 O,PD∥AC,PC∥BD, PD,PC订交于点 P,四边形 PCOD是菱形吗?试说明原因.参照答案一、 1. A点拨:此题用清除法作答.2. D 点拨:依据菱形的判断方法判断,注意不要漏解.3. C点拨:以下图,若∠ ABC=60°,则△ ABC为等边三角形,?所以 AC=AB=1×32=8( cm), AO=1AC=4cm.42因为 AC⊥BD,在 Rt△AOB中,由勾股定理,得OB=2222AB OA8 4 =43(cm ?),所以 BD=2OB=8 3 cm.二、 4. AB=BC 点拨:还可增添AC⊥BD 或∠ ABD=∠CBD等.5.点 D 在∠ BAC的均分线上(或 AE=AF)26. 12cm; 723 cm点拨:以下图,过 D 作 DE⊥AB 于 E,因为 AD∥BC, ?所以∠ BAD+∠ABC=180°.又因为∠ BAD:∠A BC=1:2,所以∠ BAD=60°,因为 AB=AD,所以△ ABD 是等边三角形,所以BD=AD=12cm.所以 AE=6cm.在 Rt△AED 中,由勾股定理,得 AE 2+ED 2=AD 2, 62+ED 2=12 2,所以 ED 2=108 ,所以 ED=6 3 cm,所以S菱形ABCD=12×63=72 3 (cm2).7. 4;4 3点拨:以下图,因为DE垂直均分 AB,又因为 DA=AB,所以 DA=DB=4.所以△ ABD 是等边三角形,所以∠ BAD=60°,由已知可得AE=2.在 Rt△AED中,2222222?AE +DE=AD,即 2 +DE=4,所以 DE=12,所以 DE=2 3 ,因为1AC·BD=AB·DE,即1AC·4=4×2 3 ,所以AC=4 3 .22三、 8.解:四边形ABCD是菱形,因为四边形ABCD中, AB∥CD,且AB=CD,所以四边形ABCD是平行四边形,又因为AB=BC,所以Y ABCD是菱形.点拨:依据已知条件,不难得出四边形ABCD为平行四边形,又AB=BC,即一组邻边相等,由菱形的定义能够鉴别该四边形为菱形.四、 9.解:四边形PCOD是菱形.原因以下:因为 PD∥OC,PC∥OD, ?所以四边形P COD是平行四边形.又因为四边形ABCD是矩形,所以OC=OD,所以平行四边形PCOD是菱形.20.4正方形的判断一、选择题1.以下命题正确的选项是()A.两条对角线相互均分且相等的四边形是菱形B.两条对角线相互均分且垂直的四边形是矩形C.两条对角线相互垂直,均分且相等的四边形是正方形D.一组邻边相等的平行四边形是正方形2.矩形四条内角均分线能围成一个()A.平行四边形B.矩形C.菱形 D .正方形二、填空题3.已知点 D, E,F 分别是△ ABC 的边 AB, BC, CA的中点,连结 DE, EF, ?要使四边形ADEF是正方形,还需要增添条件_______.4.如图 1 所示,直线L 过正方形ABCD的极点 B,点 A, C 到直线 L?的距离分别是 1 和2,则正方形ABCD的边长是 _______.图1图2图35.如图 2 所示,四边形 ABCD是正方形,点 E 在 BC的延伸线上, BE=BD且 AB=2cm,则∠E的度数是 ______, BE 的长度为 ____.6.如图 3 所示,正方形 ABCD的边长为 4,E 为 BC上一点, BE=1,F?为 AB?上一点, AF=2,P 为 AC上一动点,则当 PF+PE取最小值时, PF+PE=______.三、解答题7.以下图,在 Rt△ABC中, CF为∠ ACB的均分线, FD⊥AC 于 D,FE⊥BC于点 E,试说明四边形 CDFE是正方形.BEF四、思虑题8.已知以下图,在正方形 ABCD中, E,F 分别是(1) AF 与 DE相等吗?为何?(2) AF 与 DE能否垂直?说明你的原因.C D A AB,BC边上的点,且 AE=BF,?请问:参照答案一、 1. C点拨:对角线相互均分的四边形是平行四边形,?对角线相互垂直的平行四边形是菱形,对角线相等的平行四边形是矩形,既是菱形又是矩形的四边形必定是正方形,应选 C.2. D 点拨:由题意画出图形后,利用“一组邻边相等的矩形是正方形”来判断.二、 3.△ ABC是等腰直角三角形且∠ BAC=90°点拨:还可增添△ ABC 是等腰三角形且四边形ADEF是矩形或∠ BAC=90°且四边形ADEF 是菱形等条件.4.5点拨:察看图形易得两直角三角形全等,由全等三角形的性质和勾股定理得正方形的边长为 2212=5.5. 67. 5°; 2 2 cm点拨:因为BD是正方形ABCD的对角线,所以∠ DBC=45°, AD=?AB=2cm.在 Rt△BAD中,由勾股定理得 AD 2+AB 2=BD 2,即 22+22=BD 2,所以 BD=2 2 cm,所以 BE=BD=2 2( cm),又因为BE=BD,所以∠ E=∠EDB= 1(180°- 45°)=67. 5°.26.17点拨:以下图,作 F 对于AC的对称点G.连结EG交AC于P,则 PF+?PE=PG+PE=GE为最短.过 E 作 EH⊥AD.在 Rt△GHE中,HE=4,HG=AG-AH=AF-BE=1,所以 GE= 4212 = 17,?即 PF+PE= 17.三、 7.解:因为∠ FDC=∠FEC=∠BCD=90°,所以四边形CDFE是矩形,因为 CF?均分∠ ACB,FE⊥BC,FD⊥AC,所以FE=FD,所以矩形CDFE是正方形.点拨:此题先说明四边形是矩形,再求出有一组邻边相等,?还能够先说明其为菱形,再求其一个内角为90°.四、 8.解:( 1)相等.原因:在△ ADE 与△ BAF 中, AD=AB,∠ DAE=∠ABF=90°, AE=BF,所以△ ADE≌△ BAF( S. A. S.),所以 DE=AF.( 2) AF 与 DE垂直.原因:如图,设DE与 AF 订交于点O.因为△ ADE≌△ BAF, ?所以∠ AED=∠BFA.又因为∠ BFA+∠EAF=90°,所以∠ AEO+∠EAO=90°,所以∠ EOA=90°,所以DE⊥AF.20.5等腰梯形的判断1 A C 一、选择题.以下结论中,正确的选项是(.等腰梯形的两个底角相等.一组对边平行的四边形是梯形)BD.两个底角相等的梯形是等腰梯形.两条腰相等的梯形是等腰梯形2.以下图,等腰梯形ABCD的对角线 AC,BD订交于点O,则图中全等三角形有()A.2对B.3对C.4对D.5对3.课外活动课上, ?老师让同学们制作了一个对角线相互垂直的等腰梯形形状的风筝,其面积为450cm,则两条对角线所用的竹条长度之和起码为()A. 30 2 cm B.30cm C.60cm D.60 2 cm二、填空题4.等腰梯形上底,下底和腰分别为 4,?10,?5,?则梯形的高为 _____,?对角线为 ______.5.一个等腰梯形的上底长为5cm,下底长为 12cm,一个底角为 60°,则它的腰长为____cm,周长为 ______cm.6.在四边形 ABCD中, AD∥BC,但 AD≠BC,若使它成为等腰梯形,则需要增添的条件是__________ (填一个正确的条件即可).三、解答题7.以下图,AD是∠ BAC的均分线, DE∥AB, DE=AC,AD≠EC.求证: ?四边形 ADCE是等腰梯形.四、思虑题8.以下图,四边形ABCD中,有 AB=DC,∠ B=∠C,且AD<BC,四边形 ABCD是等腰梯形吗?为何?参照答案一、 1. D点拨:梯形的底角分为上底上的角和下底上的角,?所以在等腰梯形的性质和鉴别方法中一定重申同一底上的两个内角(?指上底上的两个内角或下底上的两个内角),不然就会出现错误,所以A, B 选项都不正确,而 C 选项中遗漏了限制条件此外一组对边不平行,若平行该四边形就形成了平行四边形了,所以应选D.2. B点拨:因为△ ABC≌△ DCB,△ BAD≌△ CDA,△ AOB≌△ DOC,所以共有 3 对全等的三角形.3. C点拨:设该等腰梯形对角线长为Lcm,因为两条对角线相互垂直,?所以梯形面积为122L =450,解得 L=30,所以所用竹条长度之和起码为2L=2× 30=60(cm).二、 4. 4:65点拨:以下图,连结BD,过 A,D 分别作 AE⊥BC,DF⊥BC,垂足分别为E, F.易知△ BAE≌△ CDF,在四边形 AEFD为矩形,所以BE=CF=3, AD=EF=4.在 Rt△CDF 中, FC2+DF 2=CD 2,即 32+DF 2=52,所以 DF=4 ,在 Rt △BFD 中, BF2+DF 2=BD 2,即 72+42=BD 2,所以 BD=65 .5. 7;31点拨:以下图,过点D作 DE∥AB 交 BC于 E.因为ABED是平行四边形.所以 BE=AD=5(cm), AB=DE.又因为 AB=CD,所以 DE=?DC,又因为∠ C=60°,所以△ DEC 是等边三角形,所以 DE=DC=EC=7( cm),所以周长为5+?12+7+7=31(cm).6. AB=CD(或∠ A=∠D,或∠ B=∠C,或 AC=BD,或∠ A+∠C=180°,或∠B+∠D=180°)三、 7.证明:因为 AB∥ED,所以∠ BAD=∠ADE.又因为 AD是∠ BAC的均分线,所以∠ BAD=∠CAD,所以∠ CAD=∠ADE,所以 OA=OD.又因为AC=DE,所以 AC-OA=DE-OD即 OC=OE, ?所以∠ OCE=∠OEC,又因为∠ AOD=∠COE,所以∠ CAD=∠OCE.所以AD∥CE,而 AD≠CE,故四边形ADCE是梯形.又因为∠ CAD=∠ADE, AD=DA, AC=DE,所以△ DAC≌△ ADE,所以DC=?AE,所以四边形ADCE是等腰梯形.点拨:证明一个四边形是等腰梯形时,应先证其是梯形尔后再证两腰相等或同一底上的两个角相等.四、 8.解:四边形ABCD是等腰梯形.原因:延伸BA, CD,订交于点 E,以下图,由∠ B=∠C,可得EB=EC.又 AB=DC,所以 EB-AB=EC-DC,即 AE=DE,所以∠ EAD=∠EDA.因为∠ E+∠EAD+∠EDA=180°,∠ E+∠B+∠C=180°,所以∠ EAD=∠B.故 AD∥BC. ?又 AD<BC,所以四边形 ABCD是梯形.又 AB=DC,所以四边形 ABCD是等腰梯形.点拨:由题意可知,只需推出AD∥BC,再由AD<BC便可知四边形ABCD为梯形,再由AB=DC,即可求得此四边形是等腰梯形,由∠ B=∠C联想到延伸 BA,CD,即可获得等腰三角形,从而使 AD∥BC.华东师大版数学八年级(下)第 20 章平行四边形的判断测试(答卷时间: 90 分钟,全卷满分: 100 分)姓名得分 ____________一、认认真真选,沉稳应战!(每题 3 分,共 30 分)1. 正方形拥有菱形不必定拥有的性质是()(A )对角线相互垂直(B)对角线相互均分(C)对角线相等(D)对角线均分一组对角2.如图 (1),EF 过矩形 ABCD 对角线的交点 O,且分别交 AB 、CD 于 E、 F,那么暗影部分的面积是矩形ABCD 的面积的()(A )A 111( D )3A5(B )( C)1043D E FFEB C D HB C(1)(2)(3)3.在梯形ABCD 中, AD ∥ BC ,那么 A : B : C : D 能够等于()( A)4:5:6:3(B)6:5:4:3(C)6:4:5:3(D)3:4:5:64.如图 (2) ,平行四边形ABCD 中,DE ⊥ AB 于 E,DF⊥ BC 于 F,若Y ABCD的周长为48,DE = 5, DF= 10,则Y ABCD的面积等于 ()( A)87.5(B)80(C)75(D)72.55. A 、 B、 C、 D 在同一平面内,从① AB∥CD;② AB=CD;③ BC∥AD;④ BC=AD这四个条件中任选两个,能使四边形ABCD 是平行四边形的选法有()( A)3种(B)4种(C)5种(D)6种6.如图 (3) ,D、E、F分别是VABC各边的中点,AH 是高,假如 ED5cm ,那么 HF的长为()( A ) 5cm(B)6cm(C)4cm(D)不可以确立7.如图( 4):E 是边长为 1 的正方形 ABCD 的对角线 BD 上一点,且 BE = BC, P 为 CE 上随意一点, PQ⊥BC 于点 Q, PR⊥ BE 于点 R,则 PQ+PR 的值是()2132( A )2(B)2(C)2(D)38.如图( 5),在梯形ABCD 中, AD ∥ BC , AB CD , C 60 ,BD均分ABC ,假如这个梯形的周长为30,则AB的长()( A)4( B)5(C)6( D)7A DA DERPB C( 5)B(4)Q C9.右图是一个利用四边形的不稳固性制作的菱形晾衣架.A B C 已知此中每个菱形的边长为20cm,墙上悬挂晾衣架的两个铁钉 A 、 B 之间的距离为20 3 cm,则∠1等于()1)( A)90°(B) 60°(C) 45°(D) 30°10.某校数学课外活动研究小组,在老师的指引下进一步研究了完整平方公式.联合实数的性质发现以下规律:对于随意正数a、 b,都有 a+b ≥ 2ab 建立.某同学在做一个面积为3600cm2,对角线相互垂直的四边形风筝时,运用上述规律,求得用来做对角线用的竹条至少需要准备xcm.则 x 的值是()(A) 1202(B) 602(C) 120(D) 60二、仔认真细填,记录自信!( 每题 2 分,共20 分)11.一个四边形四条边按序是a、b、c、d,且a2 b 2 c 2 d 22ac 2bd,则这个四边形是 _______________ .12.在四边形ABCD中,对角线AC、BD交于点O,从(1)AB CD ;(2) AB∥CD ;(3)OA OC;(4)OB OD ;(5) AC ⊥ BD ;(6) AC 均分 BAD 这六个条件中,选用三个推出四边形ABCD是菱形.如( 1)( 2)( 5)ABCD 是菱形,再写出切合要求的两个:ABCD 是菱形;ABCD 是菱形.13. 如图,已知直线l 把 Y ABCD 分红两部分,要使这两部分的面积相等,直线l 所在地点需知足的条件是____________________. (只需填上一个你以为适合的条件)lA DB C(第 13 题)(第 16 题)14.梯形的上底长为 6cm ,过上底的一极点引一腰的平行线,与下底订交,所构成的三角形周长为 21cm ,那么梯形的周长为_________ cm。
人教版四年级上册 平行四边形和梯形 课后练习(含答案)

人教版四年级上册5.2 平行四边形和梯形一、选择题1.两个一样的梯形可以拼成一个()。
A.平行四边形B.长方形C.正方形2.下面一共有()个平行四边形。
A.1B.2C.33.计算如图平行四边形的面积,正确算式是()。
A.4×8B.12×8C.4×6D.6×84.在两条平行线之间有5条与平行线垂直的线段,这5条线段之间的关系是()A.只平行不相等B.平行且相等C.不平行二、填空题5.下图中一共有( )个平行四边形。
6.一个直角梯形的周长是55分米,两条腰分别长12分米和15分米.这个直角梯形的面积是( )平方分米.7.按要求完成下面各题。
(每个小方格的边长表示1厘米)(1)用数对表示方格中三个点的位置。
A________B________C________(2)如果在方格中再确定一个D点,D点与其它三个点可连成一个平行四边形,D点的位置可能是_____。
8.一个梯形的上底是8cm,下底是4cm,高是上底的一半,它的面积是( )平方厘米。
三、判断题9.平行四边形面积=底×高( )10.两个高相等的平行四边形可以拼成一个大平行四边形。
( )11.在梯形一组平行线之间画高,可以画无数条高且每条高相等。
( )12.四根分别长5cm、5cm、4cm、4cm的小棒,可以搭成很多不同形状的平行四边形。
( )四、作图题13.画出下面平行四边形或梯形给定底边上的一条高.14.在梯形里画一条线段,把它分成一个平行四边形和一个梯形。
15.把下面的图形改成平行四边形。
五、解答题16.把如图的平行四边形补完整,并作出指定底上的高.17.一种手表的零件是长方形,长0.2毫米、宽0.15毫米.现在要绘制一张20:1的图纸,请同学们先计算再画出这个零件的图.(误差不得超过2毫米)参考答案:1.A平行四边形的对边平行且相等,两个完全一样的梯形可以以腰为公共边,其上底和下底分别对另一个梯形的下底和上底,因梯形的上底与下底平行,组成后图形的对边(上底+下底)等于(下底+上底),且平行,组成的图形是平行四边形,据此解答。
平行四边形的性质与判定习题课ppt课件

点评:平行四边形蕴含着很多特性,如:对边相等且平行,邻角互补、对 角线平分、是中心对称图形等.
求证: ⑴AB=AE;
A3
E2
D
⑵ ED+DC=BC;
⑶ AE=3,ED=2时,求
四边形ABCD的周长。
B
C
证明:
(2)∵DC=AB,AB=AE,
(1)∵四边形ABCD平行四边形 ∴AD=ED+AE=ED+AB=ED+DC
∴AD∥BC,DC=AB,BC=AD
∵BC=AD
∴∠2=∠3,
∴ED+DC=BC
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
22.1~22.2习题课 (错解剖学与解题规范)
平行四边形的性质与判定
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
×2=23cm或[4.5+(4.5+3.5)]×2=25cm.
点评:本题涉及分类讨论思想,这是数学中重要思想.
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
人教版八年级数学下册优秀作业课件 第十八章 平行四边形 专题训练(七) 与正方形有关的几个常考模型

模型二 正方形中过对角线交点的直角问题 3.如图,正方形ABCD的对角线AC和BD相交于点O,正方形A1B1C1O的边OA1, OC1分别交正方形ABCD的边AB,BC于点E,F. (1)求证:△AOE≌△BOF; (2)如果这两个正方形的边长都为a,求这两个正方形重叠的部分四边形OEBF的 面积.
解 : (1)AE= DF,AE⊥DF,理 由如下: 设 AE与 DF相交于 点 P,∵四 边形 ABCD是正方形,∴AD=DC,∠ADC=∠C=90°.又∵动点E,F分别从D,C两 点 同 时 出 发 , 以 相 同 的 速 度 在 直 线 DC , CB 上 移 动 , ∴ DE = CF , ∴△ADE≌△DCF,∴AE=DF,∠DAE=∠CDF.又∵∠CDF+∠ADF=90°, ∴∠DAE+∠ADF=90°,∴∠APD=90°,∴AE⊥DF
【应用】(1)C△BEF=BE+BF+EF=BE+BF+AE+CF=AB+BC=2+2=4 (2)EF=CF-AE,理由如下:如图,在CB上取一点G,使CG=AE,连接DG, ∵AE=CG,∠DAE=∠C=90°,AD=DC,∴△DAE≌△DCG,∴DE=DG, ∠ EDA = ∠ GDC. 又 ∵ ∠ ADC = 90° , ∴ ∠ EDG = ∠ ADG + ∠ ADE = ∠ ADG + ∠ GDC = 90°. 又 ∵ ∠ EDF = 45° , ∴ ∠ FDG = 45° = ∠ EDF. 又 ∵ DF = DF , ∴△EDF≌△GDF,∴EF=GF=CF-CG=CF-AE
2.(模型运用)如图,在正方形ABCD中,动点E,F分别从D,C两点同时出发, 以相同的速度在直线DC,CB上移动,连接AE,DF.
(1)如图①,当点E,F分别在边DC,CB上移动时,请写出AE与DF的关系,并 说明理由;
人教版八年级下册数学平行四边形第2课时平行四边形的对角线性质 同步练习

18.1 平行四边形第2课时平行四边形的对角线性质基础训练知识点1 平行四边形的性质——对角线互相平分1.如图,▱ABCD的对角线AC,BD相交于点O,则下列说法一定正确的是( )A.AO=ODB.AO⊥ODC.AO=OCD.AO⊥AB2.如图,在平行四边形ABCD中,AB=3 cm,BC=5 cm,对角线AC,BD相交于点O,则OA的取值范围是( )A.2 cm<OA<5 cmB.2 cm<OA<8 cmC.1 cm<OA<4 cmD.3 cm<OA<8 cm3.(2016·丽水)如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为( )A.13B.17C.20D.264.如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC.若AB=4,AC=6,则BD的长是( )A.8B.9C.10D.115.如图,在▱ABCD中,对角线AC与BD交于点O,AE⊥BD于E,CF⊥BD于F,则图中全等的三角形共有( )A.7对B.6对C.5对D.4对6.如图,▱ABCD的对角线AC与BD相交于O,OE⊥BD于O交BC于E,连接DE,若△CED的周长是21 cm,则▱ABCD的周长是.知识点2 平行四边形的面积7.将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积.则这样的折纸方法共有( )A.1种B.2种C.4种D.无数种8.如图,在平行四边形ABCD中,点A1,A2,A3,A4和C1,C2,C3,C4分别是AB和CD的五等分点,点B1,B2和D1,D2分别是BC和DA的三等分点,已知四边形A4B2C4D2的面积为1,则平行四边形ABCD的面积为( )A.2B.错误!未找到引用源。
C.错误!未找到引用源。
D.159.如图,过▱ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的▱AEMG的面积S1与▱HCFM的面积S2的大小关系是( )A.S1>S2B.S1<S2C.S1=S2D.2S1=S210.如图,在平行四边形ABCD中,AC,BD为对角线,BC=6,BC边上的高为4,则图中阴影部分的面积为( )A.3B.6C.12D.24易错点容易把未知条件当作已知条件使用11.如图,在平行四边形ABCD中,AC和BD相交于点O,OE⊥AD于点E,OF⊥BC于点F.试说明:OE=OF.提升训练考查角度1 利用平行四边形的对角线性质证明线段相等(构造法)12.如图,已知▱ABCD和▱EBFD的顶点A,E,F,C在一条直线上,求证:AE=CF.考察角度2 利用平行四边形对角线性质解坐标问题13.如图,已知点A(-4,2),B(-1,-2),▱ABCD的对角线交于坐标原点O.(1)请直接写出点C,D的坐标;(2)写出从线段AB到线段DC的变换过程;(3)直接写出▱ABCD的面积.探究培优拔尖角度1 利用平行四边形平行性质求面积14.(2016·永州)如图,四边形ABCD为平行四边形,∠BAD的平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求▱ABCD的面积.拔尖角度2 利用平行四边形对角线性质探究面积15.探究:如图①,▱ABCD中,AC,BD交于点O,过点O的直线交AD于E,交BC于F.(1)求证:四边形AEFB与四边形DEFC的周长相等.(2)直线EF是否将▱ABCD的面积分成二等份?试说明理由.应用:张大爷家有一块平行四边形的菜园,园中有一口水井P,如图②所示,张大爷计划把菜园平均分成两块分别种植西红柿和茄子,且使两块地共用这口水井,请你帮助张大爷把地分开.参考答案1.【答案】C2.【答案】C3.【答案】B4.【答案】C解:在▱ABCD中,OA=OC,OB=OD,所以AO=错误!未找到引用源。
数学四年级上册《平行四边形的认识》练习题(含答案)

第五单元《平行四边形和梯形》第2课时《平行四边形的认识》一.选择题1.(2018秋•黄埔区期末)只有一组对边平行的四边形是()A.长方形B.平行四边形C.梯形2.(2016春•宝安区校级月考)两组对边分别平行的四边形是()A.梯形B.平行四边形C.长方形D.正方形3.(2014秋•凤阳县期末)平行四边形有()条高.A.1 B.2 C.无数条4.(2018秋•昆明期末)从平行四边形的一条边上的一点到对边可以引()垂线.A.一条B.两条C.无数条5.(2015•谢家集区模拟)平行四边形四个角的和是()A.180度B.360度C.540度二.填空题6.平行四边形的周长是38厘米,其中一条边长是10厘米,与它相邻的一条边长是厘米.7.(2019秋•孝昌县期末)平行四边形的互相平行;对角.8.(2018•吉水县)平行四边形的对边,对角.9.平行四边形四个内角和为,对角.三.判断题10.(2018秋•玉泉区期末)平行四边形的所有高都相等..(判断对错)11.(2016秋•仙桃期末)平行四边形四条边的长度确定了,它的形状就确定了..(判断对错)12.平行四边形中不可能有直角.(判断对错)13.(2018秋•长阳县期末)长方形和正方形也具有不稳定性..(判断对错)四.操作题14.(2012•永春县校级自主招生)(1)以如图线段AB为底,虚线线段CD为高,画一个平行四边形.(2)如果A、B、C看作三个点,那么A点在C点的方向上;C点在B点的方向上.15.在右边画一个同样的平行四边形.16.在如图中画出一个平行四边形:17.(2011秋•路南区期末)请将下面的图形改成平行四边形.18.量出平行四边形四条边的长度,并填在横线上.AB=,BC=,CD=,DA=.通过测量边长可以知道:.19.画一个一组邻边分别是3厘米和2厘米、两边夹角是60度的平行四边形.20.画一画,利用下面三角形画一个平行四边形21.(2015秋•遵义期末)画一个高为3厘米的平行四边形,并标出高.五.解答题22.(2017•云阳县)做一做.(请你在方格图上画一个平行四边形)23.(2014秋•历城区校级期末)画一个底边是4厘米的平行四边形.24.(2013秋•万安县期末)在下面的平行四边形中,已知∠B=55°,请写出其他三个角的度数.∠A=;∠C=;∠D=.25.(2015秋•仪陇县月考)一个平行四边形的一条边长12厘米,比邻边少2厘米,这个平行四边形的周长是多少厘米?26.小明用一根50厘米长的铁丝围出了一个平行四边形,其中一条边长18厘米,另外三条边长分别是多少厘米?27.平行四边形的周长是56厘米,其中一条边长是10厘米.平行四边形另外三条边分别是多少厘米?28.(2012秋•赣州期末)在右边画出一个同样的平行四边形.29.(2009秋•富宁县期末)在下面的方格纸上画一个平行四边形.你画的平行四边形的边长分别是、、、;周长是.参考答案第五单元《平行四边形和梯形》第2课时《平行四边形的认识》一.选择题1.(2018秋•黄埔区期末)只有一组对边平行的四边形是()A.长方形B.平行四边形C.梯形[解答]解:只有一组对边平行的四边形是梯形;故选:C.2.(2016春•宝安区校级月考)两组对边分别平行的四边形是()A.梯形B.平行四边形C.长方形D.正方形[解答]解:两组对边分别平行的四边形是平行四边形;故选:B.3.(2014秋•凤阳县期末)平行四边形有()条高.A.1 B.2 C.无数条[解答]解:由分析可知,平行四边形有无数条高,故选:C.4.(2018秋•昆明期末)从平行四边形的一条边上的一点到对边可以引()垂线.A.一条B.两条C.无数条[解答]解:由分析得出:从平行四边形的一条边上的一点到对边可以引一条垂线.故选:A.5.(2015•谢家集区模拟)平行四边形四个角的和是()A.180度B.360度C.540度[解答]解:连接平行四边形的一条对角线,把这个平行四边形分成了两个相等的三角形,则平行四边形的四个内角的度数之和,正好等于这两个三角形的内角和之和,因为三角形的内角和是180度,180°×2=360°.所以平行四边形的内角和是360度.故选:B.二.填空题6.平行四边形的周长是38厘米,其中一条边长是10厘米,与它相邻的一条边长是9厘米.[解答]解:38÷2﹣10=19﹣10=9(厘米)答:与它相邻的一条边长是9厘米.故答案为:9.7.(2019秋•孝昌县期末)平行四边形的对边互相平行;对角相等.[解答]解:由分析可知:平行四边形的对边互相平行;对角相等.故答案为:对边、相等.8.(2018•吉水县)平行四边形的对边相等,对角相等.[解答]解:平行四边形的对边相等,对角相等.故答案为:相等,相等.9.平行四边形四个内角和为360°,对角相等.[解答]解:平行四边形四个内角和为360°,对角相等.故答案为:360°,相等.三.判断题10.(2018秋•玉泉区期末)平行四边形的所有高都相等.×.(判断对错)[解答]解:平行四边形的高为两组,所以平行四边形有两组高,每组的高都相等且有无数条,但每个平行四边形的所有高的长度都相等,说法是错误的;故答案为:×.11.(2016秋•仙桃期末)平行四边形四条边的长度确定了,它的形状就确定了.×.(判断对错)[解答]解:因为平行四边形具有不稳定性,所以所以即使平行四边形四条边的长度确定了,它的形状依然不能确定.所以原题的说法错误.故答案为:×.12.平行四边形中不可能有直角.×(判断对错)[解答]解:长方形、正方形是特殊的平行四边形,四个角都是直角.所以平行四边形中不可能有直角说法错误.故答案为:×.13.(2018秋•长阳县期末)长方形和正方形也具有不稳定性.√.(判断对错)[解答]解:长方形和正方形也具有不稳定性;故答案为:√.四.操作题14.(2012•永春县校级自主招生)(1)以如图线段AB为底,虚线线段CD为高,画一个平行四边形.(2)如果A、B、C看作三个点,那么A点在C点的西南方向上;C点在B点的西北方向上.[解答]解:(1)画图如下:(2)那么A点在C点的西南方向上;C点在B点的西北方向上;故答案为:西南,西北.15.在右边画一个同样的平行四边形.[解答]解:如图:16.在如图中画出一个平行四边形:[解答]解:根据平行四边形的定义,可以画出图形如下:17.(2011秋•路南区期末)请将下面的图形改成平行四边形.[解答]解:作图如下:18.量出平行四边形四条边的长度,并填在横线上.AB= 2.1cm,BC= 4.3cm,CD= 2.1cm,DA= 4.3cm.通过测量边长可以知道:平行四边形的对边相等.[解答]解:量出平行四边形四条边的长度如下:AB=2.1cm,BC=4.3cm,CD=2.1cm,DA=4.3cm通过测量边长可以知道:平行四边形的对边相等.故答案为:2.1cm,4.3cm,2.1cm,4.3cm;平行四边形的对边相等.19.画一个一组邻边分别是3厘米和2厘米、两边夹角是60度的平行四边形.[解答]解:20.画一画,利用下面三角形画一个平行四边形[解答]解:21.(2015秋•遵义期末)画一个高为3厘米的平行四边形,并标出高.[解答]解:作平行四边形及高如下,该平行四边形即高为3厘米的平行四边形:五.解答题22.(2017•云阳县)做一做.(请你在方格图上画一个平行四边形)[解答]解:画图如下:23.(2014秋•历城区校级期末)画一个底边是4厘米的平行四边形.[解答]解:作图如下:24.(2013秋•万安县期末)在下面的平行四边形中,已知∠B=55°,请写出其他三个角的度数.∠A=125°;∠C=125°;∠D=55°.[解答]解:因为平行四边形ABCD中,∠B=55°,则∠A=∠C=180°﹣55°=125°,∠B与∠D为平行四边形的对角,所以∠B=∠D,即∠D=55°.故答案为:125°、125°、55°.25.(2015秋•仪陇县月考)一个平行四边形的一条边长12厘米,比邻边少2厘米,这个平行四边形的周长是多少厘米?[解答]解:12+2=14(厘米)(12+14)×2=26×2=52(厘米)答:这个平行四边形的周长是52厘米.26.小明用一根50厘米长的铁丝围出了一个平行四边形,其中一条边长18厘米,另外三条边长分别是多少厘米?[解答]解:AB+AD=50÷2=25厘米假设AB=18厘米,所以AD=25﹣18=7(厘米)由于平行四边形的对边相等则所以CD=AB=18厘米,BC=AD=7厘米.答:平行四边形另外三条边分别是18厘米、7厘米、7厘米.27.平行四边形的周长是56厘米,其中一条边长是10厘米.平行四边形另外三条边分别是多少厘米?[解答]解:AB+AD=56÷2=28厘米,假设AB=10厘米,所以AD=28﹣10=18厘米,由于平行四边形的对边相等则,所以CD=AB=10厘米,BC=AD=18厘米.答:平行四边形另外三条边分别是10厘米、18厘米、18厘米.28.(2012秋•赣州期末)在右边画出一个同样的平行四边形.[解答]解:平行四边形的底是3.3厘米,高是2厘米,则:29.(2009秋•富宁县期末)在下面的方格纸上画一个平行四边形.你画的平行四边形的边长分别是6厘米、5厘米、6厘米、5厘米;周长是22厘米.[解答]解:(1)如图所示:;画的平行四边形的边长分别是6厘米、5厘米、6厘米、5厘米;(2)周长是:6+5+6+5=22(厘米).答:周长是22厘米.故答案为:6厘米、5厘米、6厘米、5厘米;22厘米.。
平行四边形和梯形练习题集

完成p74中的第4和第5题
各组的两条垂线 互相平行
第5题
P75 第8题
√ √
√√ √
P76 第10.11题
p76中的第12题
(1)
4 平行四边形:
梯形:
p76中的第12题
(1)
4 平行四边形: 2 梯形:
(2)
5 平行四边形:
梯形:
(2)
5 平行四边形: 7 梯形:
《平行四边形和梯形 练习课》
2020/3/15
1、填空
(1)有四条线断围成的图形叫(
)。
(2)( )具有稳定性,平行四边形荣毅(
)。
(3)(
)对边平行的四边形叫做梯形。
(4)(
)的梯形叫做等腰梯形。
(5)四边形的内角和为(
)度。
1、判断题。(对的打“√”,错的打“×”)
①只有一组对边平行的图形叫梯形。 ②正方形和长方形都是平行四边形。 ③三角形和平行四边形都具有稳定性。 ④平行四边形可以画出两条不同的高。 ⑤梯形的上底一定比下底短。 ⑥梯形的高一定比腰长。 ⑦平行四边形是特殊的长方形。
() () () () () () ()
2、完成下列各题。
①一个平行四边形相邻两边的和是36厘 米,这个平行四边形的周长是多少厘米?
②小华看一本故事书,平均每天看39页, 4看完。若前两天看25页,后两天平均每天 看多少页?
平行四边形:
两组对边分别平行的四边形
梯形:
只有一组对边平行的四边形
两组对边分别平行的图形叫做平行四边形
和同一条直线垂直的
两条直线互相( 平行 )
在同一平面内
×
√×
√
√
3.用四根硬纸条钉成一个长方形,然后用两手捏住两 个对角向相反方向拉,就变成了一个平行四边形,这
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24、在四边形ABCD中,AB=CD,P、Q 分别 是AD、BC中点,M、N分别是对角线AC、BD 的中点,求证:PQMN。
_
A
_
P D
_
_ _
N
M
_ _5、如图,在菱形ABCD中,E为AD中点, EF⊥AC交CB的延长线于F. 求证:AB与EF互相平分。 A E D
H
G
F
B
C
26、如图,以△ABC三边为边在BC同侧作三个 等边△ABD、△BCE、△ACF (1)求证:四边形ADEF是平行四边形; (2)当△ABC满足什么条件时,四边形ADEF E 是矩形.
7、已知正方形ABCD,△BCE是正三角 形,则∠CDE= 。
8、如图,正方形ABCD的边长为6cm,正方 形EFGH边长为3cm,则图中阴影部分面 积为 。
9、如图,已知正方形纸片ABCD,M,N分别 是AD,BC的中点.把BC边向上翻折,使C点 恰好落在MN的点P处,BQ为折痕,则 ∠PBQ= 度.
22、如图,ABCD是矩形纸片,翻折∠B、 ∠D,使BC、AD恰好落在AC上,设FH分 别是B、D落在AC上的两点,E、G分别是 折痕CE、AG与AB、CD的交点。 (1)求证:四边形AECG是平行四边形。 (2)若AB=4cm,BC=3cm,求线段E F的长。
23、如图,在正方形ABCD中,点E在AC上. (1)求证:BE=DE; (2)你能用文字概括上面这个命题吗? (3)你能用这个命题证明下面这道题吗? 请你写出证明过程. 已知:如图,点P在正方形ABCD的对角线AC上, PE⊥AB, PF⊥BC, E,F为垂足.求证:EF=PD.
D F
A
B
C
平行四边形 习题课
1、已知ABCD中,∠ABC的平分线交 AD于点E,且AE=2,DE=1,则 ABCD的周长等于 。
2、(08无锡)已知平面上四点A(O,O), B(10,0),C(10,6),D(0,6),直线y=mx -3m+2将四边形ABCD分成面积相等的两 部分,则m的值为 。
3、四边形四边长分别是a、b、 c、d,其中a、c为对边,且 满足等式,则顺次连结此四边 形各边的中点所组成的四边形 必是 。
15、如图是4×4正方形网格,请在其中选取 一个白色的单位正方形并涂黑,使图中黑色 部分是一个中心对称图形。
16、如图,将矩形ABCD纸片沿对角线BD折 叠,使点C落在C′处,BC′交AD于E,若∠D BC=22.5°,则在不添加任何辅助线的情况 下,图中45°的角(虚线也视为角的边)有 ( ). (A)6个(B)5个(C)4个(D)3个
4、如图,已知矩形ABCD,P,R分别是BC和 DC上的点,E,F分别是PA, PR的中点.如果 DR=3,AD=4,则EF的长为 。
5、在菱形ABCD中,∠BAD=80°,AB的 垂直平分线交对角线AC于点F,E为垂足,连 接DF,则∠CDF= 。
6、如图,在四边形ABCD中,顺次连接四边 中点E、F、G、H,构成一个新的四边形, 请你对四边形ABCD添加一个条件,使四边 形EFGH成为一个菱形.这个条件 是 .
20、如图,在菱形ABCD中,E,F分别是 CB,CD上的点,且BE=DF, 求证:∠AEF=∠AFE.
21、如图,在正方形ABCD中,E是CD边的中点, AC与BE相交于点F,连接DF. (1)在不增加点和线的前提下,直接写出图中所 有的全等三角形; (2)连接AE,试判断AE与DE的位置关系,并证 明你的结论; (3)延长DF交BC于点M,试判断BM与MC的 数量关系(直接写出结论).
13、如图,边长为3的正方形ABCD绕点C按 顺时针方向旋转30°后,得到正方形EFCG, EF交AD于点H,则DH= 。
14、如图,将一张正方形纸片剪成四个小正 方形,然后将其中的一个正方形再剪成四个 小正方形,再将其中一个正方形剪成四个小 正方形,如此继续剪下去……根据以上操作 方法,请你填表:
10、如图,在矩形ABCD中,AB=3,AD= 4, 点P在AD上,PE⊥AC于点E,PF⊥BD于点 F,则PE十PF= 。
第10题
11、如图E, F, G, H分别是正方形ABCD各边 的中点.若中间阴影部分小正方形的面积为5, 则大正方形的边长为 。
12、如图,正方形ABCD的边长为8,M 在DC上,且DM=2,N是AC上一动点, 则DN十MN的最小值为 。
17、如图,ABCD各角的平分线分别相交于 点E、F、G、H,求证:四边形EFGH是矩 形.
18、如图,已知∠AOB,OA=OB,点E在 OB边上,四边形AEBF是矩形.请你只用无 刻度的直尺在图中画出∠AOB的平分线(请 保留画图痕迹).
19、如图,菱形ABCD的对角线的长分别为2和5, P为对角线AC上的一个动点(点P不与A、C重 合),且PE∥BC,交AB于点E,PF∥CD交AD于 点F,当点P在AC上运动时,问阴影部分的面积是 变大还是变小?并说明理由?