盾构反力架安装专项方案及受力计算书
盾构机吊装及安拆方案计算书

盾构机吊装计算书计算:复核:审核:批准:1.1钢丝绳选用(1)钢丝绳选用(本次吊装采用中交天和、锦绣山河两个型号的盾构机,本次吊装索具的选用根据最大件中交天和盾构机前盾为例)盾构机的前盾、中盾、尾盾有四个吊点,刀盘有二个吊点。
中交天和盾构机的前盾、中盾、尾盾钢丝绳的选用按中交天和盾构机前盾考虑,构件最重105t。
最大直径:6440mm,长度:3810mm。
采用四个吊点,可求出吊点最大荷载为26.25t,应选用抗拉强度为177kg/mm2,D=66的6×37钢丝绳4根,查资料可知其破断拉力为254t。
254>105,满足施工要求。
锦绣山河盾构机的刀盘构件重60t,直径6470mm,厚度:1603mm。
采用两个吊点,单边采用两根钢丝绳。
可求出钢丝绳最大荷载为25.5t/cos30°=29.5t,每根钢丝绳载荷为30t,应选用抗拉强度为177kg/mm2,D=66的6×37钢丝绳,查资料可知其破断拉力为254t。
254>60,满足施工要求。
盾构机的台车:盾构机的台车有四个吊点,重量最大的2号车架为29t。
可求出吊点最大荷载为7.25t。
选用抗拉强度为177kg/mm2,D=42的6×37钢丝绳,查资料可知其破断拉力为103t。
103>29,满足施工要求。
(钢丝绳标准选用GB8918-2006,GB20067-2006)1.2卸扣选用中交天和盾构机的前盾、中盾、尾盾卸扣的选用按中交天和盾构机前盾考虑,构件重105t。
采用四个吊点,每吊点为26.25t,选用55t的卸扣,直径为66.5mm,安全负荷为55t,满足施工要求。
盾构机的刀盘重60t。
采用二个吊点,每吊点为30t,选用55t的卸扣,直径为66.5mm,安全负荷为55t,55t>30t,满足施工要求。
盾构机台车:2#台车最重为29t,有四个吊点,每吊点为7.25t,选用17t的卸扣,直径为38.1mm,安全负荷17t,17t>7.25t,满足施工要求。
完整版盾构机吊装计算书

附件6:计算书1.单件最重设备起吊计算(1) 单件设备最大重量: m=120t 。
(2) 几何尺寸: 6240mm x 6240mm x 3365mm 。
(3 )单件最重设备吊装验算图1中盾吊装示意图工况:主臂(L ) =30m ;作业半径(R ) =10m 额定起重量Q=138t (参见性能参数表) 计算:G=m X K1+q =12" 1.1+2.5=134.5t式中:口=单件最大质量; 0=动载系数,取1.1倍;q=吊索具质量,吊钩2t+索 具0.5t ; 额定起重量 Q=138t > G=134.5t (最大)故:能满足安全吊装载荷要求。
为此选择XGC260履带式起重机能满足盾构机部件吊装要求。
2钢丝绳选择与校核J. JLL L I I L土-=二i _---_--i-:i --------■-・:■:-.■- 7 --- < -----• - L- B - ■■- - ■-•二二-—二二 F■二二 M =="UEDE 5F ==--7 - ~二■二二-E - ~ -主吊索具配备:(以质量最大120t为例)主吊钢丝绳规格:6X 37-65.0盾构机最大重量为120t,吊具重量为2.5t.总负载Q =120t+2.5t=122.5t主吊钢丝绳受力P: P=QK/(4X sina) =34.57ta=77° (钢丝绳水平夹角),K-动载系数1.1钢丝绳单根实际破断力S =331t钢丝绳安全系数=331 /34.57=9.575 , 大于吊装规范要求的8倍安全系数,满足吊装安全要求。
(详见《起重机设计规范》(GB/T3811-2008)符合施工要求)。
3.吊扣的选择与校核此次吊装盾构机,选用了6个55T的“?”型美式卸扣连接盾构机前盾、中盾的起吊吊耳与起吊钢丝绳,设每个卸扣所承受的负荷为H',则H' =K X Q 十4式中K1 :动载系数,取K1=1.1,Q:前盾的重量。
盾构始发托架、反力架计算书

目录一、工程概况 (1)二、反力架计算 (1)2.1 反力架及支撑体系介绍 (1)2.2 反力架受力分析 (4)2.3 反力架验算 (4)三、始发托架计算 (7)3.1 始发托架介绍 (7)3.2 始发托架受力验算 (8)盾构始发托架、反力架计算书一、工程概况本标段包括2站2区间,分别是云梦站、大板站、云梦站~长发站区间、长发站~大板站区间,区间采用盾构法施工。
云梦站~长发站区间,盾构从云梦站始发,沿凤凰大道地下敷设,向东沿陕鼓大道到达长发站小里程端接收。
区间左线隧道长1050.213m,右线隧道长1043.206m;线路平面有二处曲线,曲线半径为1200/450m,洞顶覆土5.4~17.2m,线间距13~15.5m,最大纵坡为14.818‰。
长发站~大板站区间,盾构从长发站和站后暗挖隧道空推通过后,在暗挖隧道端头和车站大里程端二次始发,沿陕鼓大道地下向东行进后,转向东南方向沿迎宾大道地下进行,到达大板站小里程端接收吊出。
区间左线隧道长637.377m,右线隧道长858.852m,区间含一处平曲线,曲线半径为450m,洞顶覆土6.3~13.2m,左右线间距为15~15.6m,线路纵坡为V形坡,最大坡度为22‰。
二、反力架计算2.1 反力架及支撑体系介绍盾构机在始发掘进时,必须借助外置反力架来提供盾构在始发过程中及前阶段的顶进推力。
反力架的结构设计按照安全、适用、经济的原则,其材料的选定是根据盾构机各种设定参数计算出来总的推力并充分考虑了盾构施工现场的实际情况。
反力架采用20mm和30mm厚钢板制作,进行盾构反力架形式的设计时,是以盾构的最大推力及盾构工作井轴线与隧道设计轴线的关系为设计依据。
图2-1-1 反力架钢负环设计图图2-1-2 反力架组装立体示意图反力架设计如图2-1-3、2-1-4所示。
图2-1-3 云梦站反力架设计图图2-1-4 长发暗挖隧道反力架设计图支撑系统由钢反力架、斜撑及负环管片临时衬砌组成。
反力架计算方案

(一)工程概况由于盾构机在始发推进过程中,前方地质情况发生了变化,造成了盾构机始发推力过大,从而使反力架发生局部变形过大的情况。
由于本区间反力架设计承受的最大推力为1800T ,目前已无法满足盾构推进需求,因此需要对反力架进行加固处理。
(二)加固计算及方法材质A3钢[σ]=215Mpa 一、反力架所受载荷管片总受力取值2000吨,取1.2的保险系数,即总推力为2400吨,反力架所受载荷简化成三个支撑点,每个支撑点所受外力为F=8000KN ,不考虑自重。
二、计算 1、立柱P=8000KNP=8000KNP=8000KNN 1N 27#杆件5#杆件P 12P 东侧立柱2#杆件1)受力分析东侧立柱各杆件:700=2340mm c=3040mm a mm =,b ,22622800070023403.32103040A PabM KN mm l ⨯⨯===⨯ 22522800070023409.93103040B Pa b M KN mm l⨯⨯===⨯B 点:1B Pl M Pb +=,则51()(800023409.9310)58323040B Pb M P KN l-⨯-⨯===212168P P P KN =-=7#杆件117728cos 41P N KN==︒5#杆件21415070N P tg KN =︒= 2#杆件322168N P KN==P=8000KNP=8000KNP=8000KNN4N56#杆件5#杆件西侧立柱1#杆件西侧立柱各杆件算法同东侧,6#杆件与水平杆件夹角为35︒, 6#杆件与5#杆件的内力分 别为N4、N5,则6#杆件147120cos35P N KN ==︒5#杆件51354084N P tg KN =︒=1#杆件322168N P KN ==2)强度计算东侧立柱7#杆件抗压强度: 314N 772810===235Mpa A 2164.410σ-⨯⨯⨯ 东侧立柱5#杆件抗拉强度: 324N 507010===154Mpa < []A 2164.410σσ-⨯⨯⨯ 西侧立柱6#杆件抗压强度: 344N 712010===217Mpa A 2164.410σ-⨯⨯⨯ 西侧立柱5#杆件抗拉强度: 354N 560210===170Mpa < []A2164.410σσ-⨯⨯⨯1#、2#杆件抗压强度: 334N 216810===66Mpa < []A 2164.410σσ-⨯⨯⨯综上,由于6#、7#杆件强度不能达到设计要求,需要增加杆件,如下图P=8000KNP3N5N67#杆件5#杆件P 45P 东侧立柱4P 加入的三榀20型钢与7#杆件平行2#杆件加入三榀I20型钢,与7#杆件平行,此杆件最大承受的压力为46N=A []=3581021510=3740KN σ-⨯⨯⨯⨯ ,承受水平方向的力为3740cos 412823KN ︒= 取抵消2500KN 的外力,则外力P3=5500KN , 此时,7#杆件抗压强度: 5500=235=162Mpa < []8000σσ⨯P=8000KNP3N5N65#杆件P 45P 4P 加入的三榀20型钢与7#杆件平行西侧立柱6#杆件1#杆件同理,6#杆件抗压强度: 5500=217=150Mpa < []8000σσ⨯ 3)稳定性计算材质A3钢λ1为:λ1=(π2E/σp)1/2=(π2×210×109/200×106)1/2=100 λ2=(a-σs)/b(其中a=304,σs=235,b=1.12)=61.6 λ=μl/i[i=7.03cm (最小),μ=0.7] 7#杆件:λ=0.7×5.349/0.0703=53.36λ<λ2<λ1,属于小柔度杆,查《材料力学》下册表12-4, 稳定系数为Φ=0.838,N/ΦA=194Mpa[σ]。
反力架计算书-附件(修改)

要说明、工程说明盾构机始发时盾构推力一般不大于8000kN。
反力架总受力取最大推力为15000 kN;左、右线两台盾构机推力均按相同考虑。
二、反力架结构验算本区间所采用的反力架立柱和横梁为宽度为600mm长度为1000mm厚度为20mn1的Q235钢板焊接成受力箱梁形式板,反力架支撑采用500*600,厚度20mm的Q235钢板焊接,底部采用焊接形式,焊缝高度20mm 按图纸建模,考虑到反力架中各杆件都是钢板焊接成的箱室单元,可按梁单元进行计算。
反力架支撑结构图1、强度验算把反力架圆环分成三个部分,上钢环,中钢环和下钢环,受到盾构力的反力上钢环15%中钢环40%下钢环45%考虑,不考虑上端与下端的支撑。
采用midas civil 建模如下图。
荷载如果按规范,把压力看成动载,和自重进行组合,压力按照1500T 验算。
强度上:N= 1.2*G+1.4*P 刚度上:F = G+P 计算结果最大应力在176Mpa 左右,满足要求。
.i-76410c+00 5L44377e+€D5—-a.03105s +004 ——4.B27S0# +004——1.52450e +0D 斗 □ ,00000e *0004.732D9e ―-7.385365+004 -1.1 LBS -i-OO 5-1.75953&+O0S CB:霉雙 MAX 1 1 MITJ ! 49壬牟T廊樣壬录1 ~ 单扫khl/m rZ; 口,二 ES2、最大变形验算最大变形在上部4.2mm 左右。
这是不考虑上部支撑与下部支撑, 且力进行了组合,而且强度上是压力的1.4倍计算的结果,如果加上 支撑,按实际力进行计算,变形及应力要小很多,完全满足要求。
MIDAS^ivil POSTPROCESSOR SEAM STRESS3、焊缝强度验算由上面的计算可知,总共有6道支撑支持反力架,其中两道斜撑,4道直撑,按照最不利受力状态,盾构机以最大推力推进,每个钢支撑所受的平均力大小为2500kN,根据作用力与反作用力原理,预埋钢板所受的压力也为2500kN方向为与预埋钢板成45°角斜向下, 因此预埋钢板受到的水平力为:2500kN cos45 二1768kN焊缝的强度验算:N h e1 w 1768 10314 1712二73.8N / mm2N h e1w 1768 10314 1712 二73.8N/mm2岂:f f wt= 1.22 200= 244N/mm2MID AS 心ilPO5T-PROCESSORDISPL ACEMEfJT匚日;邑盂MAX ! 47MIN s 13 3333 3 33_3^-^K二飪益趙生-丈件£諫拥51尢琵1=H F日制CI5: 1^/20 172 2 )(73.8)273.82 =95.4N /mm2乞200N / mm2■- 1.22其中,h f 为20mm l w为500 (投影长度)2 2X 2-10=1712mm式中h e——角焊缝的有效厚度(mm),对直角角焊缝取0.7h f,h f 为较小焊脚尺寸;l w -------------角焊缝的计算长度(mm),每条焊缝取实际长度减去10mmf wt ――角焊缝的强度设计值(N/mm2)[f ――正面角焊缝强度增大系数,静载时取1.0,动载时取 1.2。
反力架计算书..

目录一、设计、计算总说明 (1)二、计算、截面优化原则 (1)三、结构计算 (1)3.1 反力架布置形式 (1)3.2力学模型 (2)3.3 荷载取值 (3)3.4力学计算 (3)四、截面承载能力复核 (6)4.1 截面参数计算 (6)五、截面优化分析 (8)六、水平支撑计算 (9)七、螺栓连接强度设计 (10)7.1计算参数确定 (10)7.2 弯矩设计值Mmax和剪力设计值Vmax (10)一、设计、计算总说明该反力架为广州市地铁21号线11标[水西站~长平站]盾构区间右线盾构机始发用。
反力架外作用荷载即盾构机始发的总推力乘以动荷载效应系数加所有不利因素产生的荷载总和,以1600吨水平推力为设计值。
反力架内力计算采用中国建筑科学研究院开发的PKPM2005版钢结构STS 模块为计算工具。
对于螺栓连接、角焊缝连接处的设计,仅仅计算其最大设计弯矩和剪力值,而不作截面形式设计,可根据提供弯矩、剪力设计值来调整截面是否需要做加固处理。
二、计算、截面优化原则1、以偏向于安全性的原则。
所有计算必须满足实际结构受力的情况,必须满足强度、刚度和稳定性的要求。
2、在满足第1项的前提下以更符合经济性指标为修改结构形式、截面参数等的依据。
3、参照以往施工项目的设计经验为指导,借鉴其成熟的结构设计形式,以修改和复核计算为方向进行反力架结构设计。
4、但凡构件连接处除采用螺栓连接外,需要视情况进行必要的角焊缝加固,特殊情况下,可增设支托抗剪、焊钢板抗弯,以保证连接处强度不低于母体强度。
三、结构计算3.1 反力架布置形式由两根立柱和两根横梁以及水平支撑组成。
立柱与横梁采用高强螺栓连接,为加强整体性一般按照以往施工项目的施工经验另需在连接处焊接,故所有节点都为固定连接。
所有连接在设计时必须要求连接处强度不得低于母体强度。
图3-1 反力架平面布置图3.2力学模型如上图所示,反力架为一门式刚架。
立柱计算高度为6630mm,上下各有两个横梁,计算跨度为5700mm。
反力架计算书

1、反力架概述1)反力架介绍:本项目所用反力架主梁采用I630型钢,高7.26m.中间基准环外径6m,内径5.4m, 钢结构整体安装精确.反力架与中板和底板之间做横撑、斜撑.横撑、斜撑与中板及底板预埋件焊接牢固.基准环2)反力架支撑体系介绍在反力架后两侧分别设水平横撑及斜撑共四道钢支撑,每道钢支撑由两根H25型钢并排焊接而成。
推力由钢支撑传到反力基座上。
示意图如下:反力架支撑示意图2、力学简化本项目所采用海瑞克盾构机共有20个推进油缸,分成四组,每组5个油缸,总推力3640t.平均每组推力为1820KN。
由于AC、AB、CD、BD四边受力相同.故以AC 为计算边,计算最大挠度.AC边承受5个油缸作用,推力极限大小为1820×5= 9100KN.3、q值的确定q=(5×1820)∕6.51=1397.85KN∕ME=2.06×105N∕mm24、最大挠度计算L=(5ql4) ∕(384EI)=(5×1397.85×7.624×12) ∕(384×2.06×108×0.6×1.13)=4.475mm因为在实际受力时还有四个斜撑,所以实际的变形量<4.475mm,结构安全.5、混凝土强度计算反力架受力时是把全部力分散到4个混凝土面垂直的撑以及4个斜撑上,这里为方便计算忽略斜撑的作用,即假设所有千斤顶均同时加载到极限值后作用到4个混凝土支撑面上.混凝土受力最大点为反力架的上部顶托处,该处的接触面积S=400×1400mm2.在千斤顶作用后最大压力为P=1820×5/4=2275KN,混凝土等强后能承受的最大压力为G=30×400×1400=16800000KN>P=2275KN,所以盾构掘进时混凝土板安全.综上所述,在盾构掘进时反力架和混凝土面均处于安全状态。
反力架计算

反力架计算反力架计算书一、盾牌推力根据地铁五号线宋家庄-刘家盾构机总推力的施工经验,设计盾构机总推力为2000t 能满足施工的要求。
二、为简化计算,假设以下内容:通过简化计算,盾构始发时需要反力架提供后座力约2000t,下图为反力架简化受力点,杆件受集中荷载,每点约为500t。
在计算截面弯曲应力时,所以构件均简化为一端固定,一端简支的情况进行验算,然后再考虑超静定的外加力。
三、图纸说明1.图纸中所有尺寸均以mm计;2.图中所有构件所用钢板厚度均为30mm或20mm,无其他厚度的钢板。
杆体材料为20mm厚钢板,杆端钢板厚度为30mm。
3.图中所示各杆件的机械连接均采用m30长度l=150mm强度等级为10.9的高强度螺栓进行连接,所示螺栓孔孔径均为32mm。
经计算,1根m30的高强螺栓(10.9级)的抗剪强度为:n=0.9x2x0.35x355=223.65kn≈22t;4.根据实践经验,对柱和底梁进行了加固,避免使用时变形,再次使用时影响配合效果。
柱和梁采用同一截面。
经计算,截面a的惯性矩为:iz=8.42x10mm,wz=2.8x10mm,ymax=300mm。
5.箱形杆件在满足双面焊接的情况下必需进行双面焊接,在不能满足双面焊时,九4七34123钢板的焊缝应做成30°斜槽进行塞焊。
焊缝高度不小于20mm,有效焊缝高度不小于14mm。
经计算,1m焊缝的抗剪承载力和抗拉承载力为329t,反力框架与预埋件之间的焊缝长度为12.8m,满足施工要求。
(计算如下:有效焊缝长度为1m,he=0.7hf=0.7)×20=14mmn=бfHelp=235n/mm2×14mm×1000mm=3.29×106n=329t,即每米高度20mm的焊缝承载力为329t。
)6.本卷共有5幅图纸,部分细节略去。
请仔细阅读图纸;四、预埋件抗拔力、抗剪力计算1、预埋件自身抗拔力计算:lw=18×(15cm-1cm)×2=5.04m垂直于焊缝长度的力:n=5.04×329t=1658t实际施工中设三块1.4×1.4的预埋板用于抗拔和抗剪,总抗拔力(抗剪力)f=3n=4974t,满足要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录一、工程概况 (2)二、反力架的结构形式 (2)2.1、反力架的结构形式 (2)2.2、各部件结构介绍 (2)2.3、反力架后支撑结构形式 (4)三、反力架安装准备工作 (5)四、反力架安装步骤及方法 (5)五、反力架的受力检算 (6)5.1、支撑受力计算 (6)5.2、斜撑抗剪强度计算 (8)六、反力架受力及支撑条件 (8)6.1、强度校核计算: (10)6.2、始发托架受力验算 (11)一、工程概况东莞市轨道交通R2线2304标土建工程天宝站~东城站盾构区间工程起点位于天宝站,终点位于东城站。
盾构机由天宝站南端盾构始发井组装后始发,利用吊装盾构机的260t履带吊安装反力架。
二、反力架的结构形式2.1、反力架的结构形式如图一所示。
图一反力架结构图2.2、各部件结构介绍(1) 立柱:立柱为箱体结构,主受力板为30mm钢板,筋板为20mm钢板,材质均为Q235-A钢材,箱体结构截面尺寸为700mmX500mm,具体形式及尺寸见图二。
图二立柱结构图(2) 上横梁:结构为箱体结构,主受力板为30mm钢板,筋板为20mm钢板,材质均为Q235-A钢材,箱体结构截面尺寸为700mmX500mm,其结构与立柱相同。
(3) 下横梁:箱体结构,主受力板为30mm,筋板为20mm钢板,材质均为Q235-A,箱体结构截面尺寸为250mmX500mm,其结构如图三所示。
图三下横梁结构图(4 )八字撑:八字撑共有4根,上部八字撑2根,其中心线长度为1979mm,下部八字撑2根,其中心线长度为2184mm,截面尺寸如图四所示。
图四八字撑接头结构图2.3、反力架后支撑结构形式后支撑主要有斜撑和直撑两种形式,按照安装位置分为立柱后支撑、上横梁后支撑、下横梁后支撑。
立柱支撑(以左线盾构反力架为例):线路中心左侧(东侧)可以直接将反力架的支撑固定在标准段与扩大端相接的内衬墙上;线路中心线右侧(西侧)材料均采用直径500mm,壁厚9mm的钢管。
始发井东侧立柱支撑是3根直撑(中心线长度为1700mm),始发井西侧立柱是2根斜撑(中心线长度分别为5247mm和3308mm,与水平夹角均为45度)和一根直撑(底部)。
如下图所示1700东侧立柱直撑型式西侧立柱斜撑型式(2)上横梁支撑:材料均采用250×250H钢,中心线长度分均别为2267mm,其轴线与反力架轴线夹角为41°25′25″。
(3)下横梁支撑:材料均采用250X250H钢,每个支撑由2根H钢组成,共6个直撑。
三、反力架安装准备工作1、反力架是按设计加工成的既有设施,进场后检查其完损程度,螺栓及焊缝是否保持完好。
2、在盾构机主体吊装下井前,利用空间测量出反力架的位置并在其安装位置作出标识。
3、反力架从天宝站南端始发井口吊入,利用260t履带吊安装就位。
四、反力架安装步骤及方法1、根据盾构中线、管环的厚度、反力架立柱的尺寸,在盾构始发井的底板锚固2块钢板,钢板面四角一定要在同一平面内,并在钢板上找准反力架立柱安装的中心位置作好标记。
2、安装立柱,根据现有的场地及空间把立柱1用260T吊机配合送往已锚固好的钢板位置处。
3、利用260T吊机配合提升东侧立柱至安装位,做好立柱中下部的支撑保护,扶正立柱后,在立柱上焊接角撑,使立柱稳固。
再将立柱与钢板进行焊接,同时作好后支撑。
4、利用260T吊机把反力架下横梁移至安装处,然后扶紧螺栓,使横梁与立柱连接成整体。
5、用与东侧立柱安装相同的方法安装西侧立柱,然后采用与下横梁安装相同的方法安装上横梁。
6、安装完成上横梁后,整体检查反力架螺栓是否附扶紧,反力后撑是否稳固,然后用用刨光机打磨管片接触的反力架板面,使其平整。
五、反力架的受力检算5.1、支撑受力计算5.1.1支撑的截面特性(1)250X250H钢截面特性:弹性模量E=196X105,最小惯性矩=10800/cm4,截面积=92.18cm2。
(2)直径500mm,壁厚9mm钢管截面特性:弹性模量E=205X105,最小惯性矩=41860/ cm4,截面积=138.76 cm2。
(3)稳定性计算的最大承压力A、东侧立柱后支撑稳定性计算最大承压力F==(3.14X3.14X205X105X41860)/(2X170)2=7319KN则东侧三根直撑能承受的最大载荷为7319X3=21957KN。
B、西侧立柱后支撑稳定性计算最大水平载荷5247mm斜撑(水平夹角45度)水平载荷计算:F2==(3.14X3.14X205X105X41860)/(2X524.7)2=768.3KN由于水平夹角为45度则其水平承载力F为768.3/cos45°=1086KN4020mm斜撑水(水平夹角17度)平载荷计算:F2==(3.14X3.14X205X105X41860)/(2X330.8)2=1932.9KN由于水平夹角为45度则其水平承载力为:1932.9/COS45°=2733.6KNC、上横梁后支撑稳定性计算上横梁后支撑采用250X250H钢,中心线长度分别为2267mm、其轴线与反力架轴线夹角为41°25′25″。
PE==(3.14X3.14X205X105X10800)/(2X226.7)2=1061.9KN由于水平夹角为41°25′25″,则其水平承载力为:1061.9/cos41°25′25″=1416.2KN3根后支撑能承受的水平载荷为3 X1416.2=4248.6KND、下横梁后支撑稳定性计算下横梁后支撑是由8根H钢组成,均为直撑,其长度均为1700mm,其最大承载力计算如下:PE==(3.14X3.14X205X105X10800)/(2X170)2=1888KN8根总载荷为8X1888=15104KN5.2、斜撑抗剪强度计算从受力分析可知,5247mm直径500钢管斜撑抗剪受力最危险,因此从该斜撑的抗剪应力计算水平承载能力。
应力计算公式为σ=,而钢材最大需用应力为210MPa由此计算斜撑最大承载力F1=2EIX[σ]/L2=2X205X105X41860 X 210/524.72=623.3KN由此力验算水平最大承受推力F=623.3/=881.6KN,从验算45结构可以得出应按轴向抗压强度验算支撑能承受的最大推力。
因此,所有支撑的最大承载力为21957+2733.6+4248.6+15104=44043.2KN始发最大推力我们设置为8000KN,后支撑满足最大推力要求。
六、反力架受力及支撑条件(1)反力架安装位置:反力架安装在负6环后,距离洞门9700mm, 后支撑位置如下图所示:在正式始发掘进时,已经安装好两环负环,采用错缝拼装,因此可以将其看成近似的刚性整体。
当初始掘进时,盾构机所需推力很小,钢管环可视为均匀受力,所产生压应力也呈环状均匀分布。
(3) 掘进过程中推力逐渐加大反力架的受力分析如图所示,设定支撑点为A、B、C、,非支撑点D、E、F。
支撑点A、B、C处随着压力增加,产生一定的弹性变形,所产生位移为后支撑杆件弹性变形和梁弹性变形的组合,设定为△L1,这个位移量很小,在压力不能够使其产生塑性变形前,可视其为刚性。
非支撑点D、E、F处背后没有位移的限制,在压力产生挠曲变形后,设定它因挠曲变形所产生的位移为△L2。
当△L2大于△L1后,载荷重新分布,即支撑点处载荷P1急剧增加,非支撑点处载荷P2缓慢增大,并存在一上限值。
因此,载荷中心分布后,主要受力处为支撑点处。
它随着推力增大而加大,而非支撑点载荷P2缓慢增大,它的上限值由梁体的刚度决定,它仅须大于提供管片与钢管环的摩擦力而需要的压力即可。
由上述可知,反力架应力主要集中在后支撑点处, 而后支撑材料采用Q235的H20型钢。
反力架应力集中处截面积远大于后支撑截面积,因此,校核后支撑强度及焊缝强度即可。
6.1、强度校核计算:(1)、盾构始发时,推力从下往上慢慢变小。
根据始发经验,为防止栽头,最低点油缸推力约为最高点环两倍。
根据这个设定,我们可以分析出支撑点最大载荷:承受载荷点为6点载荷分布为:1:1.5:2最大载荷为:(1000/2)×(2/4.5)=222t(2)、反力架立柱下端与预埋件的焊接强度:采用J422焊条焊接,焊高12mm .焊缝长度:700×2+500×2+100×2=2600mmJ422的焊缝金属的抗拉强度为42kg/mm2焊缝强度:三级焊缝强度为85%,考虑施工条件,这里考虑为75%反力架单根立柱下端可承受拉力:2600×12×42×0.75=982800kg=982T 因为982>>222,因此,焊接强度满足.(3)、后支撑抗压强度:后支撑材料采用Q235的H20型钢222×10000/(0.025×0.2×2+0.025×0.15)=161.45×106Pa=161.45MPa.Q235的屈服强度为235 Mpa161.45<<235,因此,后支撑强度满足.6.2、始发托架受力验算4.2.1始发托架结构说明:始发托架制作所采用材料均为Q235,具体结构如图所示:始发托架总图始发托架详图始发托架纵梁图6.2.2、受力验算托架所承受载荷为盾构机自重。
最大载荷出现在盾构机掘进前而管片安装两环时,计算最大载荷。
盾构机自重为323T,两环管片重量为:21×2=42T最大载荷为323+42=365T6.2.3.1抗压强度校核单根纵梁承受的最大载荷:P=(365/cos25o)/2=201TA=0.02*8.2+0.02*0.2*10=0.204m2σ=201×104/0.204=9852941N/m2≈9.85Mpa[σ]=235 Mpa, σ<[σ], 抗压强度满足.6.2.3.2螺栓抗剪强度校核最大载荷为365T水平分力:p=tg25o×365/2=85T摩擦力:(365/2)×0.005≈1T水平剪切力: 水平分力-摩擦力=85-1=84T螺栓为M20的螺栓.其有效面积为244.8mm2 [钢结构设计手册] 螺栓连接的强度设计值:f b=140 N/m2 [钢结构设计手册]每根螺栓的承载力设计值为:A×f b=244.8×140=34272N =3.4T螺栓数量为:64根则设计可承载为:3.4×64× 0.85≈185T>84T84T<185T抗剪强度满足.。