反力架、托架计算
盾构始发托架、反力架计算书

目录一、工程概况 (1)二、反力架计算 (1)2.1 反力架及支撑体系介绍 (1)2.2 反力架受力分析 (4)2.3 反力架验算 (4)三、始发托架计算 (7)3.1 始发托架介绍 (7)3.2 始发托架受力验算 (8)盾构始发托架、反力架计算书一、工程概况本标段包括2站2区间,分别是云梦站、大板站、云梦站~长发站区间、长发站~大板站区间,区间采用盾构法施工。
云梦站~长发站区间,盾构从云梦站始发,沿凤凰大道地下敷设,向东沿陕鼓大道到达长发站小里程端接收。
区间左线隧道长1050.213m,右线隧道长1043.206m;线路平面有二处曲线,曲线半径为1200/450m,洞顶覆土5.4~17.2m,线间距13~15.5m,最大纵坡为14.818‰。
长发站~大板站区间,盾构从长发站和站后暗挖隧道空推通过后,在暗挖隧道端头和车站大里程端二次始发,沿陕鼓大道地下向东行进后,转向东南方向沿迎宾大道地下进行,到达大板站小里程端接收吊出。
区间左线隧道长637.377m,右线隧道长858.852m,区间含一处平曲线,曲线半径为450m,洞顶覆土6.3~13.2m,左右线间距为15~15.6m,线路纵坡为V形坡,最大坡度为22‰。
二、反力架计算2.1 反力架及支撑体系介绍盾构机在始发掘进时,必须借助外置反力架来提供盾构在始发过程中及前阶段的顶进推力。
反力架的结构设计按照安全、适用、经济的原则,其材料的选定是根据盾构机各种设定参数计算出来总的推力并充分考虑了盾构施工现场的实际情况。
反力架采用20mm和30mm厚钢板制作,进行盾构反力架形式的设计时,是以盾构的最大推力及盾构工作井轴线与隧道设计轴线的关系为设计依据。
图2-1-1 反力架钢负环设计图图2-1-2 反力架组装立体示意图反力架设计如图2-1-3、2-1-4所示。
图2-1-3 云梦站反力架设计图图2-1-4 长发暗挖隧道反力架设计图支撑系统由钢反力架、斜撑及负环管片临时衬砌组成。
托架计算

A 托架计算一、 计算原则副井采用单绳提升,钢丝绳防坠器。
由于多种原因引起容器的横向摆动,产生作用于罐道和罐道梁的水平力和垂直力,根据经验确定以水平力为主。
计算井筒装备时,罐道、罐道梁上的计算荷载主要按容器运行过程中与罐道相互作用而产生的水平力计算。
副井提升速度5.42m/s ,绳端最大荷重70KN 。
二、 计算依据按原联邦德国经验公式计算QK n P H 1=式中 P H ——提升容器运行时的水平作用力,N ;Q ——提升终端荷载,N ;K ——托架层间距换算系数,150015005.01-+=H KH ——设计采用的托架层间距,mm ;n ——与提升速度有关的系数。
提升容器对托架所产生的垂直荷载为其水平力的1/4,即H V P P 25.0=计算得:83.11500150040005.01=-+=K N P H 3.583383.170000221=⨯⨯= 计算得: N P V 3.1458=三、 托架的计算1、托架的强度计算由于水平力P H 产生的弯矩为:cm N b a P M H H ⋅=+=+=98.411830)96.61(3.5833)(cm N b a P M V V ⋅=+=+=98.102955)96.61(3.1458)( 式中 a ——罐道与上托架连接处到井壁距离,取61.6cm ; b ——罐道高度的一半,取9cm 。
托架截面的几何尺寸,如图所示托架截面的形心至边缘距离L 1和l 2为:cm bd aH bd aH L 77.22)2.24.306.526.3(22.24.306.526.3)(222221=⨯+⨯⨯+⨯=++=cm L H L 83.2977.226.5212=-=-=托架截面对X 轴的惯性矩和截面系数为:4333332312.79607)2.192.332.364.28.2040(31)(31cm bh aL BL I X =⨯-⨯+⨯=-+=3113.38278.202.79607cm L I W X X ===3121.21992.362.79607cm L I W X X === 托架截面对Y 轴的惯性矩和截面系数为:[][]4333315.85974.2)6.157(406.1121)(121cm a d H dB I Y =-+⨯=-+= 386.4292cm BI W Y Y == 对托架的强度进行校核:2/14.9754.602698.10295586.42998.411830cm N W M W M X V Y H =+=+=δ 2/21500cm N f =<f ——钢板的抗弯强度设计值,对于Q235钢,取2152/mm N 。
托架计算

A 托架计算一、 计算原则副井采用单绳提升,钢丝绳防坠器。
由于多种原因引起容器的横向摆动,产生作用于罐道和罐道梁的水平力和垂直力,根据经验确定以水平力为主。
计算井筒装备时,罐道、罐道梁上的计算荷载主要按容器运行过程中与罐道相互作用而产生的水平力计算。
副井提升速度5.42m/s ,绳端最大荷重70KN 。
二、 计算依据按原联邦德国经验公式计算QK n P H 1=式中 P H ——提升容器运行时的水平作用力,N ;Q ——提升终端荷载,N ;K ——托架层间距换算系数,150015005.01-+=H KH ——设计采用的托架层间距,mm ;n ——与提升速度有关的系数。
提升容器对托架所产生的垂直荷载为其水平力的1/4,即H V P P 25.0=计算得:83.11500150040005.01=-+=K N P H 3.583383.170000221=⨯⨯= 计算得: N P V 3.1458=三、 托架的计算1、托架的强度计算由于水平力P H 产生的弯矩为:cm N b a P M H H ⋅=+=+=98.411830)96.61(3.5833)(cm N b a P M V V ⋅=+=+=98.102955)96.61(3.1458)( 式中 a ——罐道与上托架连接处到井壁距离,取61.6cm ; b ——罐道高度的一半,取9cm 。
托架截面的几何尺寸,如图所示托架截面的形心至边缘距离L 1和l 2为:cm bd aH bd aH L 77.22)2.24.306.526.3(22.24.306.526.3)(222221=⨯+⨯⨯+⨯=++=cm L H L 83.2977.226.5212=-=-=托架截面对X 轴的惯性矩和截面系数为:4333332312.79607)2.192.332.364.28.2040(31)(31cm bh aL BL I X =⨯-⨯+⨯=-+=3113.38278.202.79607cm L I W X X ===3121.21992.362.79607cm L I W X X === 托架截面对Y 轴的惯性矩和截面系数为:[][]4333315.85974.2)6.157(406.1121)(121cm a d H dB I Y =-+⨯=-+= 386.4292cm BI W Y Y == 对托架的强度进行校核:2/14.9754.602698.10295586.42998.411830cm N W M W M X V Y H =+=+=δ 2/21500cm N f =<f ——钢板的抗弯强度设计值,对于Q235钢,取2152/mm N 。
反力架计算方案

(一)工程概况由于盾构机在始发推进过程中,前方地质情况发生了变化,造成了盾构机始发推力过大,从而使反力架发生局部变形过大的情况。
由于本区间反力架设计承受的最大推力为1800T ,目前已无法满足盾构推进需求,因此需要对反力架进行加固处理。
(二)加固计算及方法材质A3钢[σ]=215Mpa 一、反力架所受载荷管片总受力取值2000吨,取1.2的保险系数,即总推力为2400吨,反力架所受载荷简化成三个支撑点,每个支撑点所受外力为F=8000KN ,不考虑自重。
二、计算 1、立柱P=8000KNP=8000KNP=8000KNN 1N 27#杆件5#杆件P 12P 东侧立柱2#杆件1)受力分析东侧立柱各杆件:700=2340mm c=3040mm a mm =,b ,22622800070023403.32103040A PabM KN mm l ⨯⨯===⨯ 22522800070023409.93103040B Pa b M KN mm l⨯⨯===⨯B 点:1B Pl M Pb +=,则51()(800023409.9310)58323040B Pb M P KN l-⨯-⨯===212168P P P KN =-=7#杆件117728cos 41P N KN==︒5#杆件21415070N P tg KN =︒= 2#杆件322168N P KN==P=8000KNP=8000KNP=8000KNN4N56#杆件5#杆件西侧立柱1#杆件西侧立柱各杆件算法同东侧,6#杆件与水平杆件夹角为35︒, 6#杆件与5#杆件的内力分 别为N4、N5,则6#杆件147120cos35P N KN ==︒5#杆件51354084N P tg KN =︒=1#杆件322168N P KN ==2)强度计算东侧立柱7#杆件抗压强度: 314N 772810===235Mpa A 2164.410σ-⨯⨯⨯ 东侧立柱5#杆件抗拉强度: 324N 507010===154Mpa < []A 2164.410σσ-⨯⨯⨯ 西侧立柱6#杆件抗压强度: 344N 712010===217Mpa A 2164.410σ-⨯⨯⨯ 西侧立柱5#杆件抗拉强度: 354N 560210===170Mpa < []A2164.410σσ-⨯⨯⨯1#、2#杆件抗压强度: 334N 216810===66Mpa < []A 2164.410σσ-⨯⨯⨯综上,由于6#、7#杆件强度不能达到设计要求,需要增加杆件,如下图P=8000KNP3N5N67#杆件5#杆件P 45P 东侧立柱4P 加入的三榀20型钢与7#杆件平行2#杆件加入三榀I20型钢,与7#杆件平行,此杆件最大承受的压力为46N=A []=3581021510=3740KN σ-⨯⨯⨯⨯ ,承受水平方向的力为3740cos 412823KN ︒= 取抵消2500KN 的外力,则外力P3=5500KN , 此时,7#杆件抗压强度: 5500=235=162Mpa < []8000σσ⨯P=8000KNP3N5N65#杆件P 45P 4P 加入的三榀20型钢与7#杆件平行西侧立柱6#杆件1#杆件同理,6#杆件抗压强度: 5500=217=150Mpa < []8000σσ⨯ 3)稳定性计算材质A3钢λ1为:λ1=(π2E/σp)1/2=(π2×210×109/200×106)1/2=100 λ2=(a-σs)/b(其中a=304,σs=235,b=1.12)=61.6 λ=μl/i[i=7.03cm (最小),μ=0.7] 7#杆件:λ=0.7×5.349/0.0703=53.36λ<λ2<λ1,属于小柔度杆,查《材料力学》下册表12-4, 稳定系数为Φ=0.838,N/ΦA=194Mpa[σ]。
反力架、托架计算

附件2 反力架验算反力架与结构间用双拼56b工字钢管撑,支撑布置见下图。
反力架支撑受力验算实际始发掘进正常推力一般不超过1000t,且加设钢环对应力起均衡作用,考虑不均匀受力和安全系数,总推力按3000t计算。
四个集中力P按3000t平均分配计算,四个集中受力范围内P按3000t平均分配计算,管片承受总推力为3000t,集中受力点平均分配得750t.反力架本身刚度可达到要求,不会因推力而变形考虑,若图中所示四个受力区域可满足推力要求,则反力架支撑稳定,先计算四个角的钢支撑受力面积.左侧立柱为斜支撑受力最不利,按750t平均分配到4个支撑点,每点受力为188t,其中双拼工字钢截面面积为29327mm 2:斜支撑受力最为不利,若此区域可满足最不利受力条件,则反力架稳定,按最不利受力状态,平均分配计算,每个角支撑所受压力为750t ,双拼工字钢受力为188t;双拼工字钢应力为188t/29327mm 2cos38°=50。
5N/mm 2, 钢材设计强度为235N/mm 2,故支撑可满足盾构始发要求,即反力架稳定。
附件3 始发基座验算(1)计算简图:1234盾构托架使用250x255H 型钢制作,共13道横向支撑,上图为一道横向支撑的半侧,主要受力梁为2号与4号梁。
盾构机按照374t 计算,由受力分析可得发射架每边承受总力:︒=︒27sin 125sin 3741G ,得t 278.207G 1= 发射架共13道横向支撑,共12个区间,每个区间受力:KN 73.172 /1278.2072G ==,最后力传递至横向支撑,由13个支撑承受,得水平力:KN F 39.7263cos 1378.2072=︒⨯=(2)2号梁计算:按照图纸取每个区间支撑钢板0.89m支撑钢板截面积为:24m 102670.03.890 A -⨯=⨯=,2号梁长0.567m L =。
支撑钢板最小惯性矩4433m in1088.212)03.0(89.012m bh I -⨯=⨯==,0087.01212i 23min min====h bh bh A I ,长细比59.320087.0567.05.0min =⨯==i l μλ(两端固定,0.5=μ),经查表:221,62,105λλλλ<==,属小柔度结构,其强度计算公式为:[]MPa MPa A G 23547.6102671073.17243=<=⨯⨯==-σσ,满足受力要求. (3)4号梁计算:4号梁从受力角度也为小柔度结构,其强度计算公式为[]MPa MPa KN A F 23591.6107.041/39.72/4=<=⨯==-σσ 满足受力要求。
反力架计算

11.2、反力架检算书(1)概况反力架作为盾构机始发阶段的平衡力系结构,它必须能够承受盾构机始发阶段所提供的始发推力,反力架整体结构以及各细部构件均要求满足施工生产的强度、刚度、稳定性的要求。
兰州地铁轨道交通1号线奥体中心站-中间风井区间隧道反力架主体结构由2根(500x600mm)的立柱和2根(500x600mm)的横梁组成,为了使结构整体稳定性更好则在腹板两侧添加了肋板。
右线反力架主体结构南侧立柱有斜支撑将力传递到在车站结构墙上(在结构墙上提前安装预埋件),北侧立柱直接用竖梁将力传递至结构墙上(在结构墙上提前安装预埋件)。
(2)检算内容①竖梁的受力检算②横梁的受力检算③支撑的受力检算(3)检算过程盾构机推进油缸分上下左右四个区,共计32个油缸,左右区各个8个,上区6个,下区10个,最大总推力为10000KN,其中上区、下区总推力达5000KN/区,左右区总计5000KN/区,四个区可通过调整区压来调整盾构机的分区推力。
①立柱的受力检算立柱受力计算简图立柱截面图如下所示:立柱截面图立柱剪力图(KN)立柱弯矩图(KN.m)立柱结构为超静定结构,按结构力学计算出支撑1、支撑2及支撑3对立柱的反作用力分别为2713.4KN、1776.1KN、557KN,其中截面的最大剪力为1790.8KN,截面最大弯矩为571.37KN ·m1、强度验算 Ⅰ.抗弯计算σmax max x My I =x I =(500×6003-460×5403)/12=3.55×10-24mσ=571370×0.27/(3.55×10-2)=4.352/N mm <f=2052/N mm Ⅱ.抗剪计算立柱既承受弯矩,同时又承受剪力,剪应力的计算公式如下:v wf t VSI τ=≤式中:V ——梁的剪力设计值;S ——计算剪应力处以上毛截面对中和轴的面积矩 其中S=500×30×285+270× 20×135×2=57330003mm I ——毛截面惯性矩tw ——腹板厚度为20mmv f -抗剪强度,125N/mm2w t VS I τ==1790800×5.73×10-3/(3.55×10-2×0.02)=14.462/N mm 2v <f 125/N mm =,故满足要求III .梁整体稳定验算立柱受压翼缘自由长度与宽度之比002032354.061650yl b f ==<2205/y f N mm =故不需要验算立柱的整体稳定性。
反力架受力计算

反力架受力计算一、反力架的结构形式1、反力架的结构形式如图一所示。
图一反力架结构图2、各部件结构介绍2.1 立柱:立柱为箱体结构,主受力板为30mm钢板,筋板为20mm钢板,材质均为Q235-A钢材,箱体结构截面尺寸为700mmX500mm,具体形式及尺寸见图二。
图二立柱结构图2.2 上横梁:结构为箱体结构,主受力板为30mm钢板,筋板为20mm钢板,材质均为Q235-A钢材,箱体结构截面尺寸为700mmX500mm,其结构与立柱相同。
2.3 下横梁:箱体结构,主受力板为30mm,筋板为20mm钢板,材质均为Q235-A,箱体结构截面尺寸为250mmX500mm,其结构如图三所示。
图三下横梁结构图2.4 八字撑:八字撑共有4根,上部八字撑2根,其中心线长度为1979mm,下部八字撑2根,其中心线长度为2184mm,截面尺寸如图四所示。
图四八字程接头结构图二、反力架后支撑结构形式后支撑主要有斜撑和直撑两种形式,按照安装位置分为立柱后支撑、上横梁后支撑、下横梁后支撑。
1、立柱支撑:材料均采用直径500mm,壁厚9mm的钢管,内部浇灌混凝土提高稳定性。
始发井西侧立柱支撑是2根直撑(中心线长度为3875mm),始发井东侧立柱是2根斜撑(中心线长度分别为8188mm和4020mm,与水平夹角分别是29度和17度)。
如下图所示西侧立柱直撑型式东侧立柱斜撑型式2、上横梁支撑:材料均采用直径500mm,壁厚9mm的钢管,内部浇灌混凝土提高稳定性,中心线长度分别为4080mm、4141mm、4201mm,其轴线与反力架轴线夹角为15度。
3、下横梁支撑:材料均采用250X250H钢,每个支撑由2根H钢组成,共6个直撑。
三、支撑受力计算1、支撑的截面特性(1)250X250H钢截面特性:弹性模量E=196X105,最小惯性矩=10800/cm4,截面积=92.18cm2。
(2)直径500mm,壁厚9mm钢管截面特性:弹性模量E=205X105,最小惯性矩=41860/ cm4,截面积=138.76 cm2。
反力架计算书

1、反力架概述1)反力架介绍:本项目所用反力架主梁采用I630型钢,高7.26m.中间基准环外径6m,内径5.4m, 钢结构整体安装精确.反力架与中板和底板之间做横撑、斜撑.横撑、斜撑与中板及底板预埋件焊接牢固.基准环2)反力架支撑体系介绍在反力架后两侧分别设水平横撑及斜撑共四道钢支撑,每道钢支撑由两根H25型钢并排焊接而成。
推力由钢支撑传到反力基座上。
示意图如下:反力架支撑示意图2、力学简化本项目所采用海瑞克盾构机共有20个推进油缸,分成四组,每组5个油缸,总推力3640t.平均每组推力为1820KN。
由于AC、AB、CD、BD四边受力相同.故以AC 为计算边,计算最大挠度.AC边承受5个油缸作用,推力极限大小为1820×5= 9100KN.3、q值的确定q=(5×1820)∕6.51=1397.85KN∕ME=2.06×105N∕mm24、最大挠度计算L=(5ql4) ∕(384EI)=(5×1397.85×7.624×12) ∕(384×2.06×108×0.6×1.13)=4.475mm因为在实际受力时还有四个斜撑,所以实际的变形量<4.475mm,结构安全.5、混凝土强度计算反力架受力时是把全部力分散到4个混凝土面垂直的撑以及4个斜撑上,这里为方便计算忽略斜撑的作用,即假设所有千斤顶均同时加载到极限值后作用到4个混凝土支撑面上.混凝土受力最大点为反力架的上部顶托处,该处的接触面积S=400×1400mm2.在千斤顶作用后最大压力为P=1820×5/4=2275KN,混凝土等强后能承受的最大压力为G=30×400×1400=16800000KN>P=2275KN,所以盾构掘进时混凝土板安全.综上所述,在盾构掘进时反力架和混凝土面均处于安全状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附件2 反力架验算反力架与结构间用双拼56b工字钢管撑,支撑布置见下图。
反力架支撑受力验算实际始发掘进正常推力一般不超过1000t,且加设钢环对应力起均衡作用,考虑不均匀受力和安全系数,总推力按3000t计算。
四个集中力P按3000t平均分配计算,四个集中受力范围内P按3000t平均分配计算,管片承受总推力为3000t,集中受力点平均分配得750t。
反力架本身刚度可达到要求,不会因推力而变形考虑,若图中所示四个受力区域可满足推力要求,则反力架支撑稳定,先计算四个角的钢支撑受力面积。
左侧立柱为斜支撑受力最不利,按750t平均分配到4个支撑点,每点受力为188t ,其中双拼工字钢截面面积为29327mm 2:斜支撑受力最为不利,若此区域可满足最不利受力条件,则反力架稳定,按最不利受力状态,平均分配计算,每个角支撑所受压力为750t,双拼工字钢受力为188t ;双拼工字钢应力为188t/29327mm 2cos38°=50.5N/mm 2, 钢材设计强度为235N/mm 2,故支撑可满足盾构始发要求,即反力架稳定。
附件3 始发基座验算(1)计算简图:1234盾构托架使用250x255H 型钢制作,共13道横向支撑,上图为一道横向支撑的半侧,主要受力梁为2号与4号梁。
盾构机按照374t 计算,由受力分析可得发射架每边承受总力:︒=︒27sin 125sin 3741G ,得t 278.207G 1= 发射架共13道横向支撑,共12个区间,每个区间受力:KN 73.172 /1278.2072G ==,最后力传递至横向支撑,由13个支撑承受,得水平力:KN F 39.7263cos 1378.2072=︒⨯=(2)2号梁计算:按照图纸取每个区间支撑钢板0.89m支撑钢板截面积为:24m 102670.03.890 A -⨯=⨯=,2号梁长0.567m L =。
支撑钢板最小惯性矩4433m in1088.212)03.0(89.012m bh I -⨯=⨯==,0087.01212i 23min min====h bh bh A I ,长细比59.320087.0567.05.0min =⨯==i l μλ(两端固定,0.5=μ),经查表:221,62,105λλλλ<==,属小柔度结构,其强度计算公式为:[]MPa MPa A G 23547.6102671073.17243=<=⨯⨯==-σσ,满足受力要求。
(3)4号梁计算:4号梁从受力角度也为小柔度结构,其强度计算公式为[]MPa MPa KN A F 23591.6107.041/39.72/4=<=⨯==-σσ 满足受力要求。
螺栓受力:[]Mpa MPa KN A F 80067.26012.0//6/39.72/2=<===τπτ 焊缝受力:tw w f MPa t l G <=⨯⨯⨯=⨯⨯=︒77.5008.022.10454.0207363cos 1τ根据以上计算可知盾构托架满足盾构机始发的受力要求。
附件4 盾构机的推力计算盾构机的推力计算按照始发阶段泥岩地层进行计算。
1、在软土中掘进时盾构机的推力的计算地层参数按⑦1-1泥岩、粉砂质泥岩选取,由于岩土体中水量较小,所以水压力的计算按水土合算考虑。
选取可能出现的最不利受力情况埋深断面进行计算。
根据线路的纵剖面图,⑦1-1层埋深不大,在确定盾构机拱顶处的均布围岩竖向压力P e 时,可直接取全部上覆土体自重作为上覆土地层压力。
盾构机所受压力: P e =γh+ P 0 P 01= P e + G/DL P 1=P e ×λ P 2=(P+γ.D) λh 为上覆土厚度,γ为土容重,γG 为盾构机重,G=340 tD 为盾构机外径,D=6.25 m ; L 为盾构机长度,L=8.39 m ; P 0为地面上置荷载,P 0=2 t/m 2; P 01为盾构机底部的均布压力;P 1为盾构机拱顶处的侧向水土压力;P 2为盾构机底部的侧向水土压力;P e =1.9×12.5+2=25.75 t/m 2P 01=25.75+340/(6.25×8.39)=32.23t/m 2 P 1=25.75×0.42=10.81t/m 2 P 2 =(25.75+2×6.25)×0.42=16.06t/m 2盾构推力计算盾构的推力主要由以下五部分组成:54321F F F F F F ++++=式中:F 1为盾构外壳与土体之间的摩擦力 ;F 2为刀盘上的水平推力引起的推力F 3为切土所需要的推力;F 4为盾尾与管片之间的摩阻力 F5为后方台车的阻力πμ.)(4121011DL P P P P F e +++=3.0=μμ数,计算时取:土与钢之间的摩擦系式中:t F 3.10483.039.825.6)06.1681.1023.3275.25(411=⨯⨯⨯+++⨯=π)(d P D F 224π=为水平土压力式中:d P ,)(2Dh P d +=λγ m Dh 64.15228.65.122=+=+2/48.1264.159.142.0m t P d =⨯⨯=t F 6.386)48.1228.6(4/22=⨯=π)(C D F 234/π=式中:C 为土的粘结力,C=6.3t/m2t F 3.193)3.625.6(423=⨯⨯=πc c W F μ=4式中:W C 、μC 为两环管片的重量(计算时假定有两环管片的重量作用在盾尾内,当管片容重为2.5t/m3,管片宽度按1.5m 计时,每环管片的重量为24.12t ),两环管片的重量为48.24t 考虑。
μC =0.3t F 47.143.024.484=⨯=θμθcos sin 5h g h G G F +⋅=式中:G h 为盾尾台车的重量,G h ≈160t ; θ为坡度,tg θ=0.025 μg 为滚动摩阻,μg =0.05t F 00.12116005.0025.01605=⨯⨯+⨯≈盾构总推力:t F 67.165400.1247.143.1936.3863.1048=++++=盾构的扭矩计算盾构配备的扭矩主要由以下九部分组成。
在进行刀盘扭矩计算时:987654321M M M M M M M M M M ++++++++= 式中:M 1为刀具的切削扭矩;M 2为刀盘自重产生的旋转力矩M 3为刀盘的推力荷载产生的旋转扭矩;M 4为密封装置产生的摩擦力矩 M 5为刀盘前表面上的摩擦力矩 ;M 6为刀盘圆周面上的摩擦力矩 M 7为刀盘背面的摩擦力矩 ;M 8为刀盘开口槽的剪切力矩 M 9为刀盘土腔室内的搅动力矩 a .刀具的切削扭矩M 1⎰=001R Chrdr M )(2120max 1R h C M Γ=式中:C г:土的抗剪应力,C г=C+P d ×tg φ=2.5+13.09×tg22°=7.79t/m 2 h max :刀盘每转的最大切削深度,h max =8cm/转 R 0:最外圈刀具的半径,R 0=3.14mm t M ⋅=⨯⨯⨯=-072.3)14.310879.7(21221 b .刀盘自重产生的旋转力矩M 2 M 2=GR μg式中:G :刀盘自重,计算时取刀盘的自重为G=60t R :轴承的接触半径,计算时取为R=2.6m μg :滚动摩擦系数,计算时取为μg =0.004 M 2=60×2.6×0.004=0.624t ﹒m c .刀盘的推力荷载产生的旋转扭矩M 3 M 3=W p R g μz W p =απR c 2P d式中:W p :推力荷载 ;α:刀盘封闭系数,α=0.70R g :轴承推力滚子接触半径,R g =1.25m ;R c :刀盘半径,R c =3.14μz :滚动摩擦系数,μz =0.004 ;P d :水平土压力,P d =13.09t/m 2W p =0.70π×3.142×13.09=283.82t ; M 3=283.82×1.25×0.004=1.42 t ﹒md .密封装置产生的摩擦力矩M 4 M 4=2πμm F (n 1R m12+n 2R m22)式中:μm :密封与钢之间的摩擦系数,μm =0.2;F :密封的推力,F=0.15t/m n 1 、n 2 :密封数,n 1=3 n 2=3;R m1、R m2:密封的安装半径,R m1=1.84m R m2=2.26m ; M 4= 2π×0.2×0.15×(3×1.842+3×2.262)=4.80 t ·m e .刀盘前表面上的摩擦力矩M 5)(3235d P P R M απμ=式中:α:刀盘开口率,α=0.34;μP :土层与刀盘之间的摩擦系数,μP =0.15 R :刀盘半径,R=3.14mm t M ⋅=⨯⨯⨯=29.43)09.1314.315.034.0(3235π f .刀盘圆周面上的摩擦力矩M 6 M 6=2πR 2BP Z μP式中:R :刀盘半径,R=3.14m ;B :刀盘宽度,B=0.775m P Z :刀盘圆周土压力P Z =(P e +P 01+P 1+P 2)/4=(09.1663.113.3682.29+++)/4=23.46t/m 2 M 6=2π×3.142×0.775×23.46×0.15=168.95t ·m g .刀盘背面的摩擦力矩M 7M 7=2/3[(1-α)πR 3μP ×0.8P d ]M 7=2/3(0.70×π×3.143×0.15×0.8×13.09)=71.3t ·m h .刀盘开口槽的剪切力矩M 8απτ3832R C M ⋅=式中:C τ:土的抗剪应力,因碴土饱和含水,故抗剪强度降低,可近似地 取C=0.01Mpa=1 t/m 2,φ=5°;C τ=C+P d ×tg φ=1+13.09×tg5=2.15 t/m 2m t M ⋅=⨯⨯⨯⨯=4.4734.014.315.23238π i .刀盘土腔室内的搅动力矩M 9 M 9=2π(R 12-R 22)LC τ式中:d 1 :刀盘支撑梁外径,d 1=3.7m ; d 2 :刀盘支撑梁内径,d 2=2 mL :支撑梁长度, L=0.8 m精选文库M9=2π(1.85 2-12)×0.8×2.15=26.18 t·m刀盘扭矩M为M1~M9之和M=3.072+0.624+1.42+4.8+43.29+168.95+71.3+47.4+26.18 =367.036t·m。