常见的插值方法及其原理
插值计算的原理及应用

插值计算的原理及应用1. 概述插值计算是一种通过已知数据点推测出未知数据点的数值的方法。
这种计算方法被广泛应用于各个领域,如数值分析、数据处理、图像处理等。
2. 原理插值计算的原理是基于一个假设:已知数据点之间存在某种规律或趋势,可以通过这种规律或趋势推测出未知数据点的数值。
插值计算的基本思想是在给定的数据点之间构建一个适当的插值函数,根据这个函数来推测出未知数据点的数值。
3. 插值方法插值计算有多种方法,下面列举了一些常用的插值方法:•线性插值:线性插值是最简单的插值方法之一。
它假设数据点之间的关系是线性的,通过这些已知点之间的直线来推测未知点的数值。
•拉格朗日插值:拉格朗日插值是一种基于多项式的插值方法。
它通过在已知数据点上构建一个多项式来推测未知数据点的数值。
•牛顿插值:牛顿插值也是一种基于多项式的插值方法。
它通过使用插值多项式的差商表来推测未知数据点的数值。
•样条插值:样条插值是一种通过在已知数据点之间构建多项式部分来推测未知数据点的数值的方法。
这些多项式部分称为样条函数。
4. 插值应用插值计算在各个领域都有广泛的应用,下面列举了一些常见的插值应用:•数值分析:在数值计算中,插值计算可以在给定数据点之间进行数值逼近,从而得到更加精确的结果。
•数据处理:在数据处理中,插值计算可以填补数据缺失的部分,从而得到完整的数据集。
•图像处理:在图像处理中,插值计算可以用于图像的放大、缩小、旋转等操作,从而得到更高质量的图像。
•地理信息系统:在地理信息系统中,插值计算可以根据已知地理数据点推测未知地理数据点的数值,从而进行地理信息的分析和预测。
5. 总结插值计算是一种通过已知数据点推测出未知数据点的数值的方法。
它基于已知数据点之间存在某种规律或趋势的假设,并通过构建适当的插值函数来推测未知数据点的数值。
插值计算有多种方法,如线性插值、拉格朗日插值、牛顿插值和样条插值等。
插值计算在各个领域都有广泛的应用,如数值分析、数据处理、图像处理和地理信息系统等。
几种常用的插值方法

几种常用的插值方法常用的插值方法包括线性插值、多项式插值、样条插值和径向基函数插值等,下面将依次介绍这些方法。
1.线性插值:线性插值是最简单的插值方法之一,它假设函数在两个已知点之间的变化是线性的。
对于给定的两个点(x0,y0)和(x1,y1),线性插值公式为:y=y0+(x-x0)*(y1-y0)/(x1-x0)其中,y是需要插值的点对应的函数值,x是插值点的横坐标。
2.多项式插值:多项式插值方法通过在给定的一组点上构建一个多项式函数来进行插值。
常用的多项式插值方法包括拉格朗日插值和牛顿插值。
- 拉格朗日插值通过构建一个n次多项式来插值n+1个给定的点。
具体来说,对于给定的n+1个点(x0, y0), (x1, y1), ..., (xn, yn),拉格朗日插值公式为:y = Σ(yk * lk(x))其中,lk(x)是拉格朗日基函数,计算公式为:lk(x) = Π((x - xj) / (xi - xj)),(j ≠ i)- 牛顿插值通过构建一个n次插值多项式来插值n+1个给定的点。
具体来说,对于给定的n+1个点(x0, y0), (x1, y1), ..., (xn, yn),牛顿插值公式为:y = Σ(Π(x - xj) / Π(xi - xj) * finDiff(yj))其中,finDiff(yj)是每个节点的差商,计算公式为:finDiff(yj) = (ΣΠ(xj - xi) * yj) / ΣΠ(xi - xj),(i ≠ j) 3.样条插值:样条插值方法通过使用分段函数来逼近给定的一组点。
常用的样条插值方法有线性样条插值和三次样条插值。
-线性样条插值在每两个相邻点之间使用线性函数进行插值,保证了插值函数的一阶导数是连续的。
-三次样条插值在每两个相邻点之间使用三次多项式进行插值,保证了插值函数的一阶和二阶导数都是连续的。
三次样条插值具有良好的平滑性和精度。
4.径向基函数插值:径向基函数插值是一种基于局部函数的插值方法,它假设函数值仅取决于与插值点的距离。
几种插值法简介

举例来看:可以认为某水文要素T 随时间t 的变化是连续的,某一个测点的水文要素T 可以看作时间的函数T=f(t),这样在实际水文观测中,对测得的(n+1)个有序值进行插值计算来获取任意时间上的要素值。
①平均值法:若求T i 和T i+1之间任一点T ,则直接取T 为T i 和T i+1的平均值。
插值公式为:T=T i +T i+12②拉格朗日(Lagrange )插值法:若求T i 和T i+1之间任一点T ,则可用T i-1、T 1、T i+1三个点来求得,也可用T i 、T i+1、T i+2这三个点来求得。
前三点内插公式为:T=(t-t i )(t-t i+1)(t i-1-t i )(t i-1-t i+1) T i-1+(t-t i-1)(t-t i+1)(t-t i-1)(t-t i+1) T i +(t-t i )(t-t i-1)(t i+1-t i )(t i+1-t i-1) T i+1后三点内插公式为:T=(t-t i+1)(t-t i+2)(t i -t i+1)(t i -t i+2) T i +(t-t i )(t-t i+2)(ti-t i )(t i -t i+2) T i+1+(t-t i )(t-t i+1)(t i+2-t i )(t i+2-t i+1) T i+2为提高插值结果可靠性,可将前后3点内插值再进一步平均。
③阿基玛(Akima )插值法:对函数T=f(t)的n+1个有序型值中任意两点T i 和T i+1满足:f(t i )=T i df dt |t-ti =k i f’(t i+1)=T’i df dt|t-ti+1=k i+1 式中k i ,k i+1为曲线f(t)在这两点的斜率,而每点的斜率和周围4个点有关,插值公式为:T=P 0+P 1(t-t i )+P 2(t-t i )2+P 3(t-t i )3,来对T i 和T i+1之间的一点T 进行内差。
常见几种插值方法

1、距离倒数乘方法距离倒数乘方格网化方法是一个加权平均插值法,可以进行确切的或者圆滑的方式插值。
方次参数控制着权系数如何随着离开一个格网结点距离的增加而下降。
对于一个较大的方次,较近的数据点被给定一个较高的权重份额,对于一个较小的方次,权重比较均匀地分配给各数据点。
计算一个格网结点时给予一个特定数据点的权值与指定方次的从结点到观测点的该结点被赋予距离倒数成比例。
当计算一个格网结点时,配给的权重是一个分数,所有权重的总和等于1.0。
当一个观测点与一个格网结点重合时,该观测点被给予一个实际为 1.0 的权重,所有其它观测点被给予一个几乎为0.0 的权重。
换言之,该结点被赋给与观测点一致的值。
这就是一个准确插值。
距离倒数法的特征之一是要在格网区域内产生围绕观测点位置的"牛眼"。
用距离倒数格网化时可以指定一个圆滑参数。
大于零的圆滑参数保证,对于一个特定的结点,没有哪个观测点被赋予全部的权值,即使观测点与该结点重合也是如此。
圆滑参数通过修匀已被插值的格网来降低"牛眼"影响。
2、克里金法克里金法是一种在许多领域都很有用的地质统计格网化方法。
克里金法试图那样表示隐含在你的数据中的趋势,例如,高点会是沿一个脊连接,而不是被牛眼形等值线所孤立。
克里金法中包含了几个因子:变化图模型,漂移类型和矿块效应。
3、最小曲率法最小曲率法广泛用于地球科学。
用最小曲率法生成的插值面类似于一个通过各个数据值的,具有最小弯曲量的长条形薄弹性片。
最小曲率法,试图在尽可能严格地尊重数据的同时,生成尽可能圆滑的曲面。
使用最小曲率法时要涉及到两个参数:最大残差参数和最大循环次数参数来控制最小曲率的收敛标准。
4、多元回归法多元回归被用来确定你的数据的大规模的趋势和图案。
你可以用几个选项来确定你需要的趋势面类型。
多元回归实际上不是插值器,因为它并不试图预测未知的Z 值。
它实际上是一个趋势面分析作图程序。
使用多元回归法时要涉及到曲面定义和指定XY的最高方次设置,曲面定义是选择采用的数据的多项式类型,这些类型分别是简单平面、双线性鞍、二次曲面、三次曲面和用户定义的多项式。
常见的插值方法及其原理

常见的插值方法及其原理这一节无可避免要接触一些数学知识,为了让本文通俗易懂,我们尽量绕开讨厌的公式等。
为了进一步的简化难度,我们把讨论从二维图像降到一维上。
首先来看看最简单的‘最临近像素插值’。
A,B是原图上已经有的点,现在我们要知道其中间X位置处的像素值。
我们找出X位置和A,B位置之间的距离d1,d2,如图,d2要小于d1,所以我们就认为X处像素值的大小就等于B处像素值的大小。
显然,这种方法是非常苯的,同时会带来明显的失真。
在A,B中点处的像素值会突然出现一个跳跃,这就是为什么会出现马赛克和锯齿等明显走样的原因。
最临近插值法唯一的优点就是速度快。
图10,最临近法插值原理接下来是稍微复杂点的‘线性插值’(Linear)线性插值也很好理解,AB两点的像素值之间,我们认为是直线变化的,要求X点处的值,只需要找到对应位置直线上的一点即可。
换句话说,A,B间任意一点的值只跟A,B有关。
由于插值的结果是连续的,所以视觉上会比最小临近法要好一些。
线性插值速度稍微要慢一点,但是效果要好不少。
如果讲究速度,这是个不错的折衷。
图11,线性插值原理其他插值方法立方插值,样条插值等等,他们的目的是试图让插值的曲线显得更平滑,为了达到这个目的,他们不得不利用到周围若干范围内的点,这里的数学原理就不再详述了。
图12,高级的插值原理如图,要求B,C之间X的值,需要利用B,C周围A,B,C,D四个点的像素值,通过某种计算,得到光滑的曲线,从而算出X的值来。
计算量显然要比前两种大许多。
好了,以上就是基本知识。
所谓两次线性和两次立方实际上就是把刚才的分析拓展到二维空间上,在宽和高方向上作两次插值的意思。
在以上的基础上,有的软件还发展了更复杂的改进的插值方式譬如S-SPline, Turbo Photo等。
他们的目的是使边缘的表现更完美。
插值(Interpolation),有时也称为“重置样本”,是在不生成像素的情况下增加图像像素大小的一种方法,在周围像素色彩的基础上用数学公式计算丢失像素的色彩。
常见插值方法及其介绍

常见插值方法及其介绍常见的插值方法有最邻近插值、双线性插值、双三次插值和基于样条的插值方法。
下面将对这些方法进行介绍。
1.最邻近插值:最邻近插值是最简单也是最直观的插值方法之一、该方法的原理是将待插值点附近最近的一个已知像素的灰度值赋给待插值点。
这种插值方法的优点是计算简单且实时性好,但缺点是结果较为粗糙,会出现明显的锯齿状边缘。
2.双线性插值:双线性插值是一种基于线性插值的方法,它考虑了待插值点附近四个已知像素的灰度值来生成新的像素值。
具体而言,对于一个待插值点,首先在水平方向上计算它上下两个已知像素的插值,然后在竖直方向上计算其左右两个已知像素的插值,最后再在这两次插值的基础上进行一次线性插值。
这种插值方法的优点是计算相对简单,效果较好,但仍然会存在锯齿状边缘。
3.双三次插值:双三次插值是一种更为复杂的插值方法,它通过分析待插值点周围的16个已知像素的灰度值来生成新的像素值。
具体而言,双三次插值首先根据已知像素的位置与待插值点的距离计算出一个权重系数矩阵,然后将这个系数矩阵与对应的已知像素灰度值相乘并相加。
这种插值方法的优点是结果较为平滑,点缺失问题较少,但计算量较大。
4.基于样条的插值方法:基于样条的插值方法主要包括线性样条插值、三次样条插值和B样条插值。
这些方法是基于插值函数的一种改进,通过选取合适的插值函数形式来拟合已知像素点,从而实现待插值点的灰度值推测。
这些方法计算量较大,但插值效果相对较好,具有高度灵活性。
总结:常见的插值方法包括最邻近插值、双线性插值、双三次插值和基于样条的插值方法。
最邻近插值计算简单且实时性好,但结果较为粗糙;双线性插值效果较好,但仍然存在锯齿状边缘;双三次插值平滑度较高,但计算量较大;基于样条的插值方法具有高度灵活性,但计算量较大。
选择适合的插值方法需根据具体需求考虑。
插值法数学计算方法

插值法数学计算方法插值法是一种数学计算方法,用于在已知数据点的基础上,通过构建一条插值曲线来估计未知数据点的值。
插值法可以应用于各种数学问题中,例如逼近函数、插值多项式、差值等。
本文将详细介绍插值法的原理和常见的插值方法。
一、插值法的原理插值法的基本思想是通过已知数据点的函数值来构建一个函数表达式,该函数可以通过插值曲线来估计任意点的函数值。
根据已知数据点的数量和分布,插值法可以采用不同的插值方法来构建插值函数。
插值法的原理可以用以下几个步骤来描述:1.收集已知数据点:首先,需要收集一组已知的数据点。
这些数据点可以是实际测量得到的,也可以是其他方式获得的。
2.选择插值方法:根据问题的特性和数据点的分布,选择适合的插值方法。
常见的插值方法包括拉格朗日插值法、牛顿插值法、埃尔米特插值法等。
3.构建插值函数:通过已知数据点,利用选择的插值方法构建插值函数。
这个函数可以拟合已知数据点,并通过插值曲线来估计未知数据点。
4.估计未知数据点:利用构建的插值函数,可以估计任意点的函数值。
通过插值曲线,可以对未知数据点进行预测,获得相应的数值结果。
二、常见的插值方法1.拉格朗日插值法:拉格朗日插值法基于拉格朗日多项式,通过构建一个具有多项式形式的插值函数来逼近已知数据点。
插值函数可以通过拉格朗日基函数计算得到,式子如下:P(x) = ∑[f(xi) * l(x)], i=0 to n其中,P(x)表示插值函数,f(xi)表示已知数据点的函数值,l(x)表示拉格朗日基函数。
2.牛顿插值法:牛顿插值法基于牛顿差商公式,通过构建一个递归的差商表来逼近已知数据点。
插值函数可以通过牛顿插值多项式计算得到,式子如下:P(x) = f(x0) + ∑[(f[x0, x1, ..., xi] * (x - x0) * (x - x1)* ... * (x - xi-1)] , i=1 to n其中,P(x)表示插值函数,f[x0, x1, ..., xi]表示xi对应的差商。
常见的插值方法及其原理

常见的插值方法及其原理1. 拉格朗日插值法(Lagrange Interpolation)拉格朗日插值法是一种基于多项式的插值方法,通过n+1个已知点的函数值来构造一个n次多项式。
具体的计算公式如下:L(x) = Σ[yk * lk(x)], k=0 to n其中yk为已知点(xi, yi)的函数值,lk(x)为拉格朗日基函数,定义为:lk(x) = Π[(x - xj)/(xi - xj)], j=0 to n, j≠k拉格朗日插值法的原理是通过构造一个通过已知点的n次多项式,来代替未知函数的近似值。
利用拉格朗日基函数的性质,可以保证插值多项式通过已知点。
2. 牛顿插值法(Newton Interpolation)牛顿插值法是一种递推的插值方法,通过已知点的函数值和差商来逐步构造插值多项式。
差商的定义如下:f[x0]=y0f[x1]=(f[x1]-f[x0])/(x1-x0)f[x2]=(f[x2]-f[x1])/(x2-x1)...f[xn] = (f[xn] - f[xn-1]) / (xn - xn-1)利用差商的定义,可以得到牛顿插值多项式的表达式:N(x) = f[x0] + f[x0, x1](x-x0) + f[x0, x1, x2](x-x0)(x-x1) + ... + f[x0, x1, ..., xn](x-x0)(x-x1)...(x-xn)牛顿插值法的原理是通过递推计算差商来得到插值多项式。
通过使用差商来处理已知点的函数值差异,可以得到更高次的插值多项式。
3. 样条插值法(Spline Interpolation)样条插值法是一种基于分段低次插值函数的插值方法,常用的是三次样条插值。
样条插值法通过寻找一组分段函数,使得满足原函数的插值条件,并要求函数在每个插值点处的函数值、一阶导数和二阶导数连续。
这样可以保证插值函数在每个插值点处的平滑性。
三次样条插值法的原理是将整个插值区间划分为多个小区间,在每个小区间内使用三次多项式进行插值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见的插值方法及其原理
这一节无可避免要接触一些数学知识,为了让本文通俗易懂,我们尽量绕开讨厌的公式等。
为了进一步的简化难度,我们把讨论从二维图像降到一维上。
首先来看看最简单的‘最临近像素插值’。
A,B是原图上已经有的点,现在我们要知道其中间X位置处的像素值。
我们找出X位置和A,B位置之间的距离d1,d2,如图,d2要小于d1,所以我们就认为X处像素值的大小就等于B处像素值的大小。
显然,这种方法是非常苯的,同时会带来明显的失真。
在A,B中点处的像素值会突然出现一个跳跃,这就是为什么会出现马赛克和锯齿等明显走样的原因。
最临近插值法唯一的优点就是速度快。
图10,最临近法插值原理
接下来是稍微复杂点的‘线性插值’(Linear)
线性插值也很好理解,AB两点的像素值之间,我们认为是直线变化的,要求X点处的值,只需要找到对应位置直线上的一点即可。
换句话说,A,B间任意一点的值只跟A,B有关。
由于插值的结果是连续的,所以视觉上会比最小临近法要好一些。
线性插值速度稍微要慢一点,但是效果要好不少。
如果讲究速度,这是个不错的折衷。
图11,线性插值原理
其他插值方法
立方插值,样条插值等等,他们的目的是试图让插值的曲线显得更平滑,为了达到这个目的,他们不得不利用到周围若干范围内的点,这里的数学原理就不再详述了。
图12,高级的插值原理
如图,要求B,C之间X的值,需要利用B,C周围A,B,C,D四个点的像素值,通过某种计算,得到光滑的曲线,从而算出X的值来。
计算量显然要比前两种大许多。
好了,以上就是基本知识。
所谓两次线性和两次立方实际上就是把刚才的分析拓展到二维空间上,在宽和高方向上作两次插值的意思。
在以上的基础上,有的软件还发展了更复杂的改进的插值方式譬如S-SPline, Turbo Photo等。
他们的目的是使边缘的表现更完美。
插值(Interpolation),有时也称为“重置样本”,是在不生成像素的情况下增加图像像素大小的一种方法,在周围像素色彩的基础上用数学公式计算丢失像素的色彩。
简单地说,插值是根据中心像素点的颜色参数模拟出周边像素值的方法,是数码相机特有的放大数码照片的软件手段。
一、认识插值的算法
“插值”最初是电脑术语,后来引用到数码图像上来。
图像放大时,像素也相应地增加,但这些增加的像素从何而来?这时插值就派上用场了。
插值就是在不生成像素的情况下增加图像像素大小的一种方法,在周围像素色彩的基础上用数学公式计算丢失像素的色彩(也有些相机使用插值,人为地增加图像的分辨率)。
所以在放大图像时,图像看上去会比较平滑、干净。
但必须注意的是插值并不能增加图像信息。
以图1为原图(见图1),以下是经过不同插值算法处理的图片。
1.最近像素插值算法
最近像素插值算法(Nearest Neighbour Interpolation)是最简单的一种插值算法,当图片放大时,缺少的像素通过直接使用与之最接近的原有像素的颜色生成,也就是说照搬旁边的像素,这样做的结果是产生了明显可见的锯齿(见图2)。
2.双线性插值算法
双线性插值算法(Bilinear Interpolation)输出的图像的每个像素都是原
图中四个像素(2×2)运算的结果,这种算法极大程度上消除了锯齿现象(见图3)。
3.双三次插值算法
双三次插值算法(Bicubic Interpolation)是上一种算法的改进算法,它输出图像的每个像素都是原图16个像素(4×4)运算的结果(见图4)。
这种算法是一种很常见的算法,普遍用在图像编辑软件、打印机驱动和数码相机上。
4.分形算法
分形算法(Fractal Interpolation)是Altamira Group提出的一种算法,这种算法得到的图像跟其他算法相比更清晰、更锐利(见图5)。
现在有许多数码相机厂商将插值算法用在了数码相机上,并将通过算法得到的分辨率值大肆宣传,固然他们的算法比双三次插值算法等算法先进很多,但是事实是图像的细节不是凭空造出来的。
因为插值分辨率是数码相机通过自身的内置软件来增加图像的像素,从而达到增大分辨率的效果。
二、插值的影响
使用数码变焦拍出来的照片不清晰,这是数码变焦最遭人垢病的地方,事实上,这只是一种片面的说法。
数码变焦对照片清晰度的影响有多大,取决于数码相机在变焦时,CCD是否进行了插值运算。
在使用高像素的情况下,如果采用数码变焦进行拍摄,则此时CCD并不会有任何插值运算,数码变焦对最终得到的数码照片的清晰度的影响将会因此而变得极其有限。
举个例子,一台CCD像素为520万、最大分辨率为2560×1920的数码相机,如果采用2×的数码变焦来进行拍摄的话,那么成像过程中只会有一半CCD在工作。
换句话说,数码相机并不会使用类似“在一个像素点周围添加八个像素点”的插值算法进行成像,而是通过降低分辨率的方法,即1280×960这个分辨率指标来进行成像。
对于一般的数码照片来说,1280×960这个分辨率指标已经足够优秀了,它与2560×1920分辨率的差别将会因为没有插值运算的参与而变得可以接受。
不过这种现象只限于某些比较高级的数码相机,对于那些千元以下的定焦数码相机来说,使用数码变焦就意味着必然的插值运算,牺牲分辨率的后果使得照片拍摄者只能有两个选择:要么得到一张模糊不清的“全尺寸”照片、要么得到一张质量可以保证但分辨率只有类似320×240这样的“迷你”照片。
图像插值放大的方法有很多,最主要的有二次线性插值和三次线性插值这两种。
这次我把自己的程序中所用的二次线性插值的算法公布给大家,希望对各位要使用VB写类似程序的朋友有所帮助。
程序中用到的API、数据类型、全局变量的定义请参考上一篇:《VB实现图像在数据库的存储与显示》
全局变量定义:
(为了说明算法本身,我们只计算这个图片的红色分量,因为红绿蓝三种颜色的计算方法完全相同)
假设我们有一个很简单的图片,图片只有4个像素(2*2)
现在我们要把这个图片插值到9个像素:3*3
其中大写的字母代表原来的像素,小写字母代表插值得到的新像素。
想必看到这个图,大家心里已经有了这个算法了。
推导:
很简单,对吧,先从一个方向把只涉及两个原始像素的新像素算出来。
我们这里假定先计算水平方向。
而在算垂直方向的插值的时候,因为ab和cd已经在前面算好了,所以abcd 的计算也和计算ac和bd没有任何区别了。
有可能为有朋友已经想到把原来的图像插值到4*4或5*5的方法了。
推导:
以A和B为例,先求出原始像素的差(A-B)再算出每一步的递增量(A-B) / 3;然后每一个新的点就是在前面那个点的值加上这个递增量就是了。
这里我们假设A=100, B=255 放大倍率为3,水平方向插值;先计算出原始像素的差:(B-A) = 255-100 =155
再计算出水平方向每一步的递增量:(A-B) / 3=155 / 3 = 51.7
这里我们用一个变量DRt来记录这个递增量(这里只用红色来做例子)
好了,其实二次线性算法就是这么一个东西,并不复杂。
或许有写朋友会对于我给出的代码产生疑问。
很简单的一个算法为什么要写这么多代码。
其实答案很简单:为了提高速度。
在VB中“+”和“-”永远是最快的,“*”要比“/”和“\”快。
不论是什么类型的变量都是这样的。
下面再来分析一下我的程序。
在我的程序中把两个方向的插值分解成了两个单独的部分。
先把
变成:
再变成:
这两个方向的插值算法完全相同
而Xratio 和Yratio 这两个变量则用来记录水平方向和垂直方向的放大倍率。
所以这个过程也能够让图像缩放不按照原始的纵横比进行。
好了,将这个模块和全局变量添加到上次建立的工程模块中。
把按钮中的代码改成:
DibGet .hdc ,0 , 0 , .scalewidth , .scaleheight
ZoomImage , .scalewidth * 2 , .scaleheight * 2
End With
picture2.AutoRedraw=True
DibPut picture2.hdc
picture2.refresh
end sub
图像是否已经放大到原来的两倍了呢?速度不算很慢吧?什么?很慢?先编译成EXE再运行吧。
下面是效果图:原图:
二次线性插值放大5倍:
关于二次线性插值就说到这里了,下一次将说一些基本的滤镜效果:锐化、柔化、扩散、雕刻。
请大家继续关注。