ARCGIS插值方法、原理

合集下载

arcgis中七种插值方法的对比分析

arcgis中七种插值方法的对比分析

arcgis中七种插值⽅法的对⽐分析反距离权重法的⼯作原理反距离权重(IDW) 插值使⽤⼀组采样点的线性权重组合来确定像元值。

权重是⼀种反距离函数。

进⾏插值处理的表⾯应当是具有局部因变量的表⾯。

此⽅法假定所映射的变量因受到与其采样位置间的距离的影响⽽减⼩。

例如,为分析零售⽹点⽽对购电消费者的表⾯进⾏插值处理时,在较远位置购电影响较⼩,这是因为⼈们更倾向于在家附近购物。

使⽤幂参数控制影响反距离权重法主要依赖于反距离的幂值。

幂参数可基于距输出点的距离来控制已知点对内插值的影响。

幂参数是⼀个正实数,默认值为2。

通过定义更⾼的幂值,可进⼀步强调最近点。

因此,邻近数据将受到最⼤影响,表⾯会变得更加详细(更不平滑)。

随着幂数的增⼤,内插值将逐渐接近最近采样点的值。

指定较⼩的幂值将对距离较远的周围点产⽣更⼤影响,从⽽导致更加平滑的表⾯。

由于反距离权重公式与任何实际物理过程都不关联,因此⽆法确定特定幂值是否过⼤。

作为常规准则,认为值为30 的幂是超⼤幂,因此不建议使⽤。

此外还需牢记⼀点,如果距离或幂值较⼤,则可能⽣成错误结果。

可将所产⽣的最⼩平均绝对误差最低的幂值视为最佳幂值。

ArcGIS Geostatistical Analyst 扩展模块提供了⼀种研究此问题的⽅法。

1. 3限制⽤于插值的点也可通过限制计算每个输出像元值时所使⽤的输⼊点,控制内插表⾯的特性。

限制经考虑的输⼊点数可加快处理速度。

此外,由于距正在进⾏预测的像元位置较远的输⼊点的空间相关性可能较差或不存在,因此有理由将其从计算中去除。

可直接指定要使⽤的点数,也可指定会将点包括到插值内的固定半径。

2. 4可变搜索半径可以使⽤可变搜索半径来指定在计算内插像元值时所使⽤的点数,这样⼀来,⽤于各内插像元的半径距离将有所不同,⽽具体情况将取决于必须在各内插像元周围搜索多长距离才能达到指定的输⼊点数。

由此将导致⼀些邻域较⼩⽽另⼀些邻域较⼤,这是由位于内插像元附近的测量点的密度所决定的。

ArcGIS中几种空间插值方法

ArcGIS中几种空间插值方法

ArcGIS 中几种空间插值方法1. 反距离加权法(IDW)ArcGIS 中最常用的空间内插方法之一,反距离加权法是以插值点与样本点之间的距离为权重的插值方法,插值点越近的样本点赋予的权重越大,其权重贡献与距离成反比。

可表示为:1111()()n nip p i i i i Z Z D D ===∑∑ 其中Z 是插值点估计值,Z i (i=1Λn)是实测样本值,n 为参与计算的实测样本数,D i 为插值点与第i 个站点间的距离,p 是距离的幂,它显著影响内插的结果,它的选择标准是最小平均绝对误差。

2.多项式法多项式内插法(Polynomial Interpolation)是根据全部或局部已知值,按研究区域预测数据的某种特定趋势来进行内插的方法,属统计方法的范畴。

在GA 模块中,有二种类型的多项式内插方法,即全局多项式内插和局部多项式内插。

前者多用于分析数据的全局趋势;后者则是使用多个平面来拟合整个研究区域,能表现出区域内局部变异的情况。

3.样条函数内插法样条函数是一个分段函数,进行一次拟合只有少数点拟合,同时保证曲线段连接处连续,这就意味着样条函数可以修改少数数据点配准而不必重新计算整条曲线。

样条函数的一些缺点是:样条内插的误差不能直接估算,同时在实践中要解决的问题是样条块的定义以及如何在三维空间中将这些“块”拼成复杂曲面,又不引入原始曲面中所没有的异常现象等问题。

4.克里格插值法克里格法是GIS 软件地理统计插值的重要组成部分。

这种方法充分吸收了地理统计的思想,认为任何在空间连续性变化的属性是非常不规则的,不能用简单的平滑数学函数进行模拟,可以用随机表面给予较恰当的描述。

这种连续性变化的空间属性称为“区域性变量”,可以描述象气压、高程及其它连续性变化的描述指标变量。

地理统计方法为空间插值提供了一种优化策略,即在插值过程中根据某种优化准则函数动态的决定变量的数值。

Kriging 插值方法着重于权重系数的确定,从而使内插函数处于最佳状态,即对给定点上的变量值提供最好的线性无偏估计。

arcgis空间内插值教程

arcgis空间内插值教程

GIS空间插值(局部插值方法)实习记录一、空间插值的概念和原理当我们需要做一幅某个区域的专题地图,或是对该区域进行详细研究的时候,必须具备研究区任一点的属性值,也就是连续的属性值。

但是,由于各种属性数据(如降水量、气温等)很难实施地面无缝观测,所以,我们能获取的往往是离散的属性数据。

例如本例,我们现有一幅山东省等降雨量图,但是最终目标是得到山东省降水量专题图(覆盖全省,统计完成后,各地均具有自己的降雨量属性)。

空间插值是指利用研究区已知数据来估算未知数据的过程,即将离散点的测量数据转换为连续的数据曲面。

利用空间插值,我们就可以通过离散的等降雨量线,来推算出山东省各地的降雨量了。

二、空间插值的几种方法及本次实习采用的原理和方法–整体插值方法»边界内插方法»趋势面分析»变换函数插值–局部分块插值方法»自然邻域法»移动平均插值方法:反距离权重插值»样条函数插值法(薄板样条和张力样条法)»空间自协方差最佳插值方法:克里金插值■局部插值方法的控制点个数与控制点选择问题局部插值方法用一组已知数据点(我们将其称为控制点)样本来估算待插值点(未知点)的值,因此控制点对该方法十分重要。

为此,第一要注意的是控制点的个数。

控制点的个数与估算结果精确程度的关系取决于控制点的分布与待插值点的关系以及控制点的空间自相关程度。

为了获取更精确的插值结果,我们需要着重考虑上述两点因素(横线所示)。

第二需要注意的是怎样选择控制点。

一种方法是用离估算点最近的点作为控制点;另一种方法是通过半径来选择控制点,半径的大小必须根据控制点的分布来调整。

S6、按照不同方法进行空间插值,并比较各自优劣打开ArcToolbox——Spatial Analyst 工具——插值,打开插值方法列表,如下图:A、采用反距离权重法(IDW)对降水量数据进行插值:反距离权重法的特点是按照距离待插值点的远近核定已知数据点的权重,从而对待插值点进行插值的过程。

arcgis克里金插值等值线标注

arcgis克里金插值等值线标注

arcgis克里金插值等值线标注摘要:1.ArcGIS克里金插值介绍2.克里金插值原理与应用3.等值线标注方法与步骤4.插值结果的可视化与分析正文:ArcGIS是一款强大的地理信息系统软件,其中克里金插值(Kriging Interpolation)是一种常用的空间数据插值方法。

本文将详细介绍ArcGIS克里金插值的原理、应用,以及如何进行等值线标注,最后对插值结果进行可视化和分析。

一、ArcGIS克里金插值介绍克里金插值是一种基于统计学的空间插值方法,它通过利用已知的样本点数据,估算未知的空间位置值。

ArcGIS中的克里金插值工具可以根据不同的数据类型和需求,生成不同类型的插值结果,如栅格数据、点数据等。

二、克里金插值原理与应用克里金插值原理主要基于变异函数理论和最小二乘法。

变异函数描述了空间数据在不同距离上的变化规律,而最小二乘法则用于求解最佳拟合参数。

在ArcGIS中,克里金插值应用于各种领域,如土壤侵蚀、矿产资源预测、气象数据重建等。

三、等值线标注方法与步骤1.准备数据:首先,需要准备好克里金插值所需的样本点数据和相应的属性值。

这些数据可以是栅格数据、点数据或线数据等。

2.创建表面:在ArcGIS中,利用克里金插值工具生成插值表面。

可以根据需求选择不同的插值类型,如普通克里金插值、简单克里金插值等。

3.提取等值线:利用ArcGIS的等值线提取工具,根据插值表面的数值范围和间隔,提取等值线。

4.标注等值线:在提取的等值线上添加标注,如数值、图例等。

可以通过ArcGIS的标注工具或Python脚本实现。

四、插值结果的可视化与分析1.插值结果可视化:利用ArcGIS的图层功能,将插值表面、等值线和标注等数据进行可视化展示。

2.插值结果分析:通过ArcGIS的属性查询、统计分析等功能,对插值结果进行进一步分析,如空间分布特征、趋势分析等。

总之,ArcGIS克里金插值是一种实用且广泛应用于地理信息系统领域的空间插值方法。

ArcGIS中几种空间插值方法

ArcGIS中几种空间插值方法

ArcGIS 中几种空间插值方法1. 反距离加权法(IDW)ArcGIS 中最常用的空间内插方法之一,反距离加权法是以插值点与样本点之间的距离为权重的插值方法,插值点越近的样本点赋予的权重越大,其权重贡献与距离成反比。

可表示为:1111()()n nip p i i i i Z Z D D ===∑∑ 其中Z 是插值点估计值,Z i (i=1Λn)是实测样本值,n 为参与计算的实测样本数,D i 为插值点与第i 个站点间的距离,p 是距离的幂,它显著影响内插的结果,它的选择标准是最小平均绝对误差。

2.多项式法多项式内插法(Polynomial Interpolation)是根据全部或局部已知值,按研究区域预测数据的某种特定趋势来进行内插的方法,属统计方法的范畴。

在GA 模块中,有二种类型的多项式内插方法,即全局多项式内插和局部多项式内插。

前者多用于分析数据的全局趋势;后者则是使用多个平面来拟合整个研究区域,能表现出区域内局部变异的情况。

3.样条函数内插法样条函数是一个分段函数,进行一次拟合只有少数点拟合,同时保证曲线段连接处连续,这就意味着样条函数可以修改少数数据点配准而不必重新计算整条曲线。

样条函数的一些缺点是:样条内插的误差不能直接估算,同时在实践中要解决的问题是样条块的定义以及如何在三维空间中将这些“块”拼成复杂曲面,又不引入原始曲面中所没有的异常现象等问题。

4.克里格插值法克里格法是GIS 软件地理统计插值的重要组成部分。

这种方法充分吸收了地理统计的思想,认为任何在空间连续性变化的属性是非常不规则的,不能用简单的平滑数学函数进行模拟,可以用随机表面给予较恰当的描述。

这种连续性变化的空间属性称为“区域性变量”,可以描述象气压、高程及其它连续性变化的描述指标变量。

地理统计方法为空间插值提供了一种优化策略,即在插值过程中根据某种优化准则函数动态的决定变量的数值。

Kriging 插值方法着重于权重系数的确定,从而使内插函数处于最佳状态,即对给定点上的变量值提供最好的线性无偏估计。

arcgis 克里金原理

arcgis 克里金原理

arcgis 克里金原理摘要:一、ArcGIS 简介二、克里金插值法的基本原理三、ArcGIS 中克里金插值法的应用四、克里金插值法的优缺点分析五、总结正文:ArcGIS 是一款由美国环境系统研究所(Esri)公司开发的地理信息系统软件,广泛应用于地图制作、数据分析、空间建模等领域。

在ArcGIS 中,克里金插值法是一种常用的空间数据分析工具,可以用于插值、拟合和预测等任务。

克里金插值法(Kriging Interpolation)是一种基于最小二乘法的插值方法,它的基本原理是寻找一个最佳函数来描述数据点之间的关系。

这个函数被称为克里金多项式,可以通过最小化数据点与克里金多项式之间的误差平方和来求解。

在ArcGIS 中,克里金插值法可以通过“Spatial Analyst T ools”工具箱中的“Interpolate”工具来实现。

在ArcGIS 中,克里金插值法的应用广泛,例如在土地利用、土壤侵蚀、地下水位、气象数据等方面都有涉及。

以土地利用为例,通过克里金插值法可以预测不同土地利用类型在空间上的分布,为土地资源管理和规划提供科学依据。

克里金插值法具有以下优点:1.适用于各种空间数据类型,如点、线、面等;2.可以处理缺失值和噪声数据;3.考虑了空间数据的变异性和相关性;4.生成的插值表面具有较高的精度和稳定性。

然而,克里金插值法也存在一定的局限性:1.计算复杂度较高,对计算资源需求较大;2.对于具有复杂空间特征的数据,克里金插值法的效果可能不佳;3.克里金插值法假设数据点之间的空间关系是线性的,对于非线性关系的数据,可能需要采用其他插值方法。

综上所述,ArcGIS 中的克里金插值法是一种强大的空间数据分析工具,在许多应用场景中都能发挥重要作用。

arcgis 曲线插值拟合算法

arcgis 曲线插值拟合算法

arcgis 曲线插值拟合算法【1】ArCGIS曲线插值拟合算法简介ArCGIS,一款全球领先的地理信息系统软件,为广大用户提供了一整套强大的地理信息处理和分析功能。

在ArCGIS中,曲线插值拟合算法作为一种重要的数据处理手段,可以帮助用户对空间数据进行插值和拟合,为后续的分析和应用提供基础。

【2】曲线插值拟合算法原理曲线插值拟合算法是一种基于数学函数的插值方法,其主要思想是通过在已知数据点之间构建一条连续的曲线,以达到预测未知数据点值的目的。

常见的曲线插值拟合算法有线性插值、二次多项式插值、三次样条插值等。

这些算法在ArCGIS中均有实现,并可通过调整插值参数来优化拟合效果。

【3】ArCGIS中曲线插值拟合算法的应用在ArCGIS中,曲线插值拟合算法可应用于以下方面:1.空间数据插值:将离散的观测数据通过插值算法转化为连续的曲线,以便于分析和展示。

2.空间数据分析:通过拟合曲线,揭示数据之间的内在联系和规律。

3.预测与模拟:利用拟合曲线预测未来趋势,为决策提供依据。

【4】案例演示与结果分析以下以一个简单的案例来说明ArCGIS中曲线插值拟合算法的应用:假设我们有一组观测数据,横坐标为[0, 1, 2, 3, 4],纵坐标为[0, 2, 4, 6, 8]。

我们可以通过ArCGIS中的曲线插值拟合算法生成一条连续的曲线。

首先,在ArCGIS中导入数据,然后选择“拟合”工具,设置插值算法(如线性插值、二次多项式插值等),并调整插值参数以优化效果。

最后,将拟合结果导出并分析。

通过分析拟合曲线,我们可以发现数据之间的分布规律,如线性增长、二次增长等,从而为后续的空间分析和应用提供参考。

【5】总结与展望总之,ArCGIS中的曲线插值拟合算法为空间数据的处理和分析提供了有力支持。

通过灵活选择和调整插值算法和参数,我们可以获得较好的拟合效果,为后续的空间预测、模拟和应用奠定基础。

arcgis插值方法

arcgis插值方法

arcgis插值方法ArcGIS插值方法是一种利用已知的离散点数据来推算未知地点的值的技术。

在地理信息系统中,插值方法被广泛应用于地形分析、环境模拟、资源评估等领域。

本文将介绍几种常用的ArcGIS插值方法,包括反距离加权插值(IDW)、克里金插值(Kriging)、样条插值(Spline)等。

我们来了解一下反距离加权插值(IDW)方法。

IDW方法假设距离越近的点对结果的影响越大,离待插值点越远的点对结果的影响越小。

IDW方法计算待插值点的值时,根据离待插值点的距离和邻域内点的值进行加权平均,得到待插值点的值。

IDW方法的优点是简单易懂,计算速度较快,适用于点密度较大且趋势较明显的情况。

但是IDW方法对异常值敏感,对点密度不均匀的数据拟合效果较差。

克里金插值(Kriging)是一种基于地统计学原理的插值方法。

克里金插值方法假设未知点的值是其周围点值的线性组合,并尽量使残差(即预测值与实际值之差)的方差最小。

根据克里金插值方法的预测模型,可以得到未知点的值。

克里金插值方法考虑了空间相关性,适用于点密度较低、数据不均匀分布的情况。

克里金插值方法的不足之处在于计算复杂度较高,对数据变异性的要求较高,需要根据实际情况选择合适的克里金模型。

除了IDW和克里金插值方法,ArcGIS还提供了样条插值(Spline)方法。

样条插值方法通过拟合一个平滑的曲面来估计未知点的值。

样条插值方法在计算过程中考虑了各个点的权重,能够较好地反映数据的变化趋势。

样条插值方法的优点是对数据分布没有要求,适用于各种数据类型。

但是样条插值方法需要较大的计算量,对数据噪声敏感。

除了上述三种常用的插值方法,ArcGIS还提供了其他一些插值方法,如最近邻插值、自然邻近插值等。

这些方法各有特点,可以根据实际需求选择合适的插值方法。

在使用ArcGIS进行插值分析时,除了选择合适的插值方法,还需要注意数据的质量和分布情况。

数据质量好、点密度均匀的情况下,插值结果会更加准确可靠。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反距离权重法
反距离权重法(反距离权重法)工具所使用的插值方法可通过对各个要处理的像元邻域中的样本数据点取 平均值来估计像元值。点距离要估计的像元的中心越近,则其在平均过程中的影响或权重越大。
克里金法
克里金法是通过一组具有 z 值的分散点生成估计表面的高级地统计过程。与 ArcGIS Spatial Analyst 支持的其他插值方法不同,选择用于生成输出表面的最佳估算方法之前应对由 z 值表示的现象的空间行为 进行彻底研究。
插值应用示例
以下为应用插值工具的一些典型示例。随附的插图显示的是采样点的分布情况和值以及通过它们生成的栅 格。
插值为降雨面
左侧插图中的输入是由已知降雨量值组成的点数据集。右侧的插图显示的是通过这些点插值成的栅格。 对未知值的预测可通过代入已知点附近各值的数学公式实现。
输入降雨量点数据
插值后降雨量面
插值成高程面
相关主题
反距离权重法 插值工具集概述 插值方法对比
版权所有 © 1995-2010 Esri. 保留所有权利。
9/17/2010 /zh-cn/arcgisdesktop/10.0/help/009z/009z00000075000000.htm
/zh-cn/arcgisdesktop/10.0/help/index.html
点插值的典型应用是通过一组采样测量值创建一个高程面。
下图中,点图层中的各个符号表示测量过高程的位置。通过插值可预测出这些输入点之间各个像元的 值。
输入高程点数据
插值后高程面
/zh-cn/arcgisdesktop/10.0/help/index.html
2010-12-24
可变搜索半径
可以使用可变搜索半径来指定在计算内插像元值时所使用的点数,这样一来,用于各内插像元的半径距 离将有所不同,而具体情况将取决于必须在各内插像元周围搜索多长距离才能达到指定的输入点数。由 此将导致一些邻域较小而另一些邻域较大,这是由位于内插像元附近的测量点的密度所决定的。另外,
/zh-cn/arcgisdesktop/10.0/help/index.html
了解插值分析
Page 1 of 2
了解插值分析
Resource Center » 专业库 » 地理处理 » 地理处理工具参考 » Spatial Analyst 工具箱 » 插值工具集 » 插值工具集概念
插值可以根据有限的样本数据点预测栅格中的像元值。它可以预测任何地理点数据(如高程、降雨、化学物质 浓度和噪声等级)的未知值。
使用障碍
一个障碍即是一个用作可限制输入采样点搜索的隔断线的折线 (polyline) 数据集。一条折线 (polyline) 可以表示地表中的悬崖、山脊或某种其他中断。仅将那些位于障碍同一侧的输入采样点视为当前处理的像 元。
参考书目
Philip, G. M., and D. F. Watson. "A Precise Method for Determining Contoured Surfaces."Australian Petroleum Exploration Association Journal 22: 205–212. 1982. Watson, D. F., and G. M. Philip. "A Refinement of Inverse Distance Weighted Interpolation."Geoprocessing 2:315–327. 1985.
使用幂参数控制影响
反距离权重法主要依赖于反距离的幂值。幂参数可基于距输出点的距离来控制已知点对内插值的影响。幂 参数是一个正实数,默认值为 2。 通过定义更高的幂值,可进一步强调最近点。因此,邻近数据将受到最大影响,表面会变得更加详细(更 不平滑)。随着幂数的增大,内插值将逐渐接近最近采样点的值。指定较小的幂值将对距离较远的周围点 产生更大影响,从而导致更加平滑的表面。 由于反距离权重公式与任何实际物理过程都不关联,因此无法确定特定幂值是否过大。作为常规准则,认 为值为 30 的幂是超大幂,因此不建议使用。此外还需牢记一点,如果距离或幂值较大,则可能生成错误 结果。
2010-12-24
反距离权重法
Page 1 of 4
反距离权重法 (空间分析)
Resource Center » 专业库 » 地理处理 » 地理处理工具参考 » Spatial Analyst 工具箱 » 插值工具集
汇总
使用反距离加权法 (IDW) 将点插值成栅格表面。 了解有关反距离权重法工作原理的详细信息
自然邻域法
自然邻域法插值可找到距查询点最近的输入样本子集,并基于区域大小按比例对这些样本应用权重来进行 插值(Sibson,1981)。该插值也称为 Sibson 或“区域占用 (area-stealing)”插值。
样条函数法
样条函数工具所使用的插值方法使用可最小化整体表面曲率的数学函数来估计值,以生成恰好经过输入点 的平滑表面。
/zh-cn/arcgisdesktop/10.0/help/index.html
2010-12-24
反距离权重法的工作原理
Page 1 of 2
反距离权重法的工作原理来自Resource Center » 专业库 » 地理处理 » 地理处理工具参考 » Spatial Analyst 工具箱 » 插值工具集 » 插值工具集概念
趋势面法
趋势面法 是一种可将由数学函数(多项式)定义的平滑表面与输入样本点进行拟合的全局多项式插值法。 趋势表面会逐渐变化,并捕捉数据中的粗尺度模式。
相关主题
了解插值分析 插值工具集概述
版权所有 © 1995-2010 Esri. 保留所有权利。
9/17/2010 /zh-cn/arcgisdesktop/10.0/help/009z/009z000000z4000000.htm
2010-12-24
插值方法对比
Page 1 of 1
插值方法对比
Resource Center » 专业库 » 地理处理 » 地理处理工具参考 » Spatial Analyst 工具箱 » 插值工具集 » 插值工具集概念
插值可以根据有限的样本数据点预测栅格中的像元值。它可以预测任何地理点数据(如高程、降雨、化学物质 浓度和噪声等级等)的未知值。 下面列出了可用的插值方法。
可将所产生的最小平均绝对误差最低的幂值视为最佳幂值。ArcGIS Geostatistical Analyst 提供了一种 研究此问题的方法。
限制用于插值的点
也可通过限制计算每个输出像元值时所使用的输入点,控制内插表面的特性。限制经考虑的输入点数可加 快处理速度。此外,由于距正在进行预测的像元位置较远的输入点的空间相关性可能较差或不存在,因此 有理由将其从计算中去除。 可直接指定要使用的点数,也可指定会在其中将点包括到插值内的固定半径。
l 输入点对内插值的影响是各向同性的。由于输入点对内插值的影响与距离相关,因此反距离权重法 不属于“岭保留”范畴 (Philip and Watson 1982)。
l Some input datasets may have several points with the same x,y coordinates. If the values of the points at the common location are the same, they are considered duplicates and have no affect on the output. If the values are different, they are considered 'coincident' points. The various interpolation tools may handle this data condition differently. For example, in some cases the first coincident point encountered is used for the calculation; in other cases the last point encountered is used. This may cause some locations in the output raster to have different values than what you might expect. The solution is to prepare your data by removing these coincident points. The Collect Events tool in the Spatial Statistics toolbox is useful for identifying any coincident points in your data.
用法
l 使用反距离权重法 (IDW) 获得的像元输出值限定在插值时用到的值范围之内。因为反距离权重法 是加权平均距离,所以该平均值不可能大于最大输入或小于最小输入。因此,如果尚未对这些极值 采样,便无法创建岭或山谷 (Watson and Philip 1985)。
l 如果采样对于正在尝试模拟的本地变量来说足够密集,则基于反距离权重法会获得最佳结果。如果 输入点的采样很稀疏或不均匀,则结果可能会不足以表示出所需的表面 (Watson and Philip 1985)。
版权所有 © 1995-2010 Esri. 保留所有权利。
9/17/2010 /zh-cn/arcgisdesktop/10.0/help/009z/009z0000006w000000.htm
/zh-cn/arcgisdesktop/10.0/help/index.html
了解插值分析
相关文档
最新文档