高考专题复习数列模板题
数列高考复习题(含答案)

数列1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .6702.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ).A .33B .72C .84D .1893.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5B .a 1a 8<a 4a 5C .a 1+a 8<a 4+a 5D .a 1a 8=a 4a 54.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为41的等差数列,则 |m -n |等于( ).A .1B .43 C .21 D . 835.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ).A .81B .120C .168D .1926.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ).A .4 005B .4 006C .4 007D .4 008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ).A .-4B .-6C .-8D . -108.设S n 是等差数列{a n }的前n 项和,若35a a =95,则59SS =( ). A .1 B .-1 C .2 D .21 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则212b a a -的值是( ).A .21 B .-21 C .-21或21 D .41 10.在等差数列{a n }中,a n ≠0,a n -1-2na +a n +1=0(n ≥2),若S 2n -1=38,则n =( ).A .38B .20C .10D .9 二、填空题 11.设f (x )=221+x,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)的值为 .12.已知等比数列{a n }中,(1)若a 3·a 4·a 5=8,则a 2·a 3·a 4·a 5·a 6= . (2)若a 1+a 2=324,a 3+a 4=36,则a 5+a 6= . (3)若S 4=2,S 8=6,则a 17+a 18+a 19+a 20= . 13.在38和227之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为 .14.在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则此数列前13项之和为 .15.在等差数列{a n }中,a 5=3,a 6=-2,则a 4+a 5+…+a 10= .16.设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f (n )表示这n 条直线交点的个数,则f (4)= ;当n >4时,f (n )= .三、解答题17.(1)已知数列{a n }的前n 项和S n =3n 2-2n ,求证数列{a n }成等差数列.(2)已知a 1,b 1,c 1成等差数列,求证a c b +,b a c +,cba +也成等差数列.18.设{a n }是公比为 q 的等比数列,且a 1,a 3,a 2成等差数列. (1)求q 的值;(2)设{b n }是以2为首项,q 为公差的等差数列,其前n 项和为S n ,当n ≥2时,比较S n 与b n 的大小,并说明理由.19.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2+S n (n =1,2,3…).求证:数列{nS n}是等比数列.20.已知数列{a n}是首项为a且公比不等于1的等比数列,S n为其前n 项和,a1,2a7,3a4成等差数列,求证:12S3,S6,S12-S6成等比数列.第二章数列参考答案一、选择题1.C解析:由题设,代入通项公式a n=a1+(n-1)d,即2 005=1+3(n-1),∴n=699.2.C解析:本题考查等比数列的相关概念,及其有关计算能力.设等比数列{a n }的公比为q (q >0),由题意得a 1+a 2+a 3=21, 即a 1(1+q +q 2)=21,又a 1=3,∴1+q +q 2=7. 解得q =2或q =-3(不合题意,舍去), ∴a 3+a 4+a 5=a 1q 2(1+q +q 2)=3×22×7=84. 3.B .解析:由a 1+a 8=a 4+a 5,∴排除C . 又a 1·a 8=a 1(a 1+7d )=a 12+7a 1d ,∴a 4·a 5=(a 1+3d )(a 1+4d )=a 12+7a 1d +12d 2>a 1·a 8. 4.C 解析:解法1:设a 1=41,a 2=41+d ,a 3=41+2d ,a 4=41+3d ,而方程x 2-2x +m =0中两根之和为2,x 2-2x +n =0中两根之和也为2,∴a 1+a 2+a 3+a 4=1+6d =4,∴d =21,a 1=41,a 4=47是一个方程的两个根,a 1=43,a 3=45是另一个方程的两个根.∴167,1615分别为m 或n ,∴|m -n |=21,故选C . 解法2:设方程的四个根为x 1,x 2,x 3,x 4,且x 1+x 2=x 3+x 4=2,x 1·x 2=m ,x 3·x 4=n .由等差数列的性质:若γ+s =p +q ,则a γ+a s =a p +a q ,若设x 1为第一项,x 2必为第四项,则x 2=47,于是可得等差数列为41,43,45,47, ∴m =167,n =1615,∴|m -n |=21. 5.B解析:∵a 2=9,a 5=243,25a a =q 3=9243=27,∴q =3,a 1q =9,a 1=3, ∴S 4=3-13-35=2240=120.6.B 解析:解法1:由a 2 003+a 2 004>0,a 2 003·a 2 004<0,知a 2 003和a 2 004两项中有一正数一负数,又a 1>0,则公差为负数,否则各项总为正数,故a 2 003>a 2 004,即a 2 003>0,a 2 004<0.∴S 4 006=2+006400641)(a a =2+006400420032)(a a >0, ∴S 4 007=20074·(a 1+a 4 007)=20074·2a 2 004<0, 故4 006为S n >0的最大自然数. 选B . 解法2:由a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,同解法1的分析得a 2 003>0,a 2 004<0,∴S 2 003为S n 中的最大值. ∵S n 是关于n 的二次函数,如草图所示, ∴2 003到对称轴的距离比2 004到对称轴的距离(第6题)小,∴20074在对称轴的右侧. 根据已知条件及图象的对称性可得4 006在图象中右侧零点B 的左侧,4 007,4 008都在其右侧,S n >0的最大自然数是4 006.7.B解析:∵{a n }是等差数列,∴a 3=a 1+4,a 4=a 1+6, 又由a 1,a 3,a 4成等比数列,∴(a 1+4)2=a 1(a 1+6),解得a 1=-8, ∴a 2=-8+2=-6. 8.A 解析:∵59SS =2)(52)(95191a a a a ++=3559aa ⋅⋅=59·95=1,∴选A . 9.A解析:设d 和q 分别为公差和公比,则-4=-1+3d 且-4=(-1)q 4, ∴d =-1,q 2=2, ∴212b a a -=2q d -=21.10.C解析:∵{a n }为等差数列,∴2na =a n -1+a n +1,∴2na =2a n ,又a n ≠0,∴a n =2,{a n }为常数数列, 而a n =1212--n S n ,即2n -1=238=19,∴n =10. 二、填空题 11.23. 解析:∵f (x )=221+x ,∴f (1-x )=2211+-x =xx2222⋅+=xx22221+,∴f (x )+f (1-x )=x221++xx 22221+⋅=xx 222211+⋅+=xx 22)22(21++=22.设S =f (-5)+f (-4)+…+f (0)+…+f (5)+f (6), 则S =f (6)+f (5)+…+f (0)+…+f (-4)+f (-5),∴2S =[f (6)+f (-5)]+[f (5)+f (-4)]+…+[f (-5)+f (6)]=62,∴S =f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)=32.12.(1)32;(2)4;(3)32. 解析:(1)由a 3·a 5=24a ,得a 4=2,∴a 2·a 3·a 4·a 5·a 6=54a =32.(2)9136)(324222121=⇒⎩⎨⎧=+=+q q a a a a ,∴a 5+a 6=(a 1+a 2)q 4=4.(3)2=+=+++=2=+++=4444821843214q qS S a a a S a a a a S ⇒⎪⎩⎪⎨⎧⋅⋅⋅,∴a 17+a 18+a 19+a 20=S 4q 16=32.13.216.解析:本题考查等比数列的性质及计算,由插入三个数后成等比数列,因而中间数必与38,227同号,由等比中项的中间数为22738⋅=6,∴插入的三个数之积为38×227×6=216.14.26.解析:∵a 3+a 5=2a 4,a 7+a 13=2a 10, ∴6(a 4+a 10)=24,a 4+a 10=4,∴S 13=2+13131)(a a =2+13104)(a a =2413⨯=26. 15.-49.解析:∵d =a 6-a 5=-5, ∴a 4+a 5+…+a 10=2+7104)(a a =25++-755)(d a d a =7(a 5+2d ) =-49.16.5,21(n +1)(n -2). 解析:同一平面内两条直线若不平行则一定相交,故每增加一条直线一定与前面已有的每条直线都相交,∴f (k )=f (k -1)+(k -1).由f (3)=2,f (4)=f (3)+3=2+3=5,f (5)=f (4)+4=2+3+4=9,……f (n )=f (n -1)+(n -1),相加得f (n )=2+3+4+…+(n -1)=21(n +1)(n -2). 三、解答题17.分析:判定给定数列是否为等差数列关键看是否满足从第2项开始每项与其前一项差为常数.证明:(1)n =1时,a 1=S 1=3-2=1,当n ≥2时,a n =S n -S n -1=3n 2-2n -[3(n -1)2-2(n -1)]=6n -5,n =1时,亦满足,∴a n =6n -5(n ∈N*).首项a 1=1,a n -a n -1=6n -5-[6(n -1)-5]=6(常数)(n ∈N*), ∴数列{a n }成等差数列且a 1=1,公差为6.(2)∵a 1,b 1,c 1成等差数列, ∴b 2=a 1+c1化简得2ac =b (a +c ).acb ++cb a +=acaba c bc +++22=acc a c a b 22+++)(=acc a 2+)(=2++2)()(c a b c a =2·bc a +,∴a c b +,b a c +,cba +也成等差数列. 18.解:(1)由题设2a 3=a 1+a 2,即2a 1q 2=a 1+a 1q , ∵a 1≠0,∴2q 2-q -1=0, ∴q =1或-21. (2)若q =1,则S n =2n +21-)(n n =23+2n n .当n ≥2时,S n -b n =S n -1=22+1-))((n n >0,故S n >b n .若q =-21,则S n =2n +21-)(n n (-21)=49+-2nn .当n ≥2时,S n -b n =Sn -1=4-11-)0)((n n ,故对于n ∈N +,当2≤n ≤9时,S n >b n ;当n =10时,S n =b n ;当n ≥11时,S n <b n .19.证明:∵a n +1=S n +1-S n ,a n +1=nn 2+S n ,∴(n +2)S n =n (S n +1-S n ),整理得nS n +1=2(n +1) S n , 所以1+1+n S n =nS n 2.故{nS n}是以2为公比的等比数列.20.证明:由a 1,2a 7,3a 4成等差数列,得4a 7=a 1+3a 4,即4 a 1q 6=a 1+3a 1q 3,变形得(4q 3+1)(q 3-1)=0, ∴q 3=-41或q 3=1(舍).由3612S S =qq a q q a ----1)1(121)1(3161=1213q +=161;6612S S S -=612S S -1=qq a q q a ----1)1(1)1(61121-1=1+q 6-1=161;得3612SS=6612S S S -.∴12S 3,S 6,S 12-S 6成等比数列.。
高考数列专题题型讲解及答案

数列题型一、数列的综合问题【例1】已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列.(1)求数列{a n }的通项公式;(2)设T n =S n -1S n(n ∈N *),求数列{T n }的最大项的值与最小项的值. 解 (1)设等比数列{a n }的公比为q ,因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列,所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3,于是q 2=a 5a 3=14. 又{a n }不是递减数列且a 1=32,所以q =-12.故等比数列{a n }的通项公式为a n =32×⎝ ⎛⎭⎪⎫-12n -1 =(-1)n -1·32n .(2)由(1)得S n =1-⎝ ⎛⎭⎪⎫-12n =⎩⎪⎨⎪⎧1+12n ,n 为奇数,1-12n ,n 为偶数,当n 为奇数时,S n 随n 的增大而减小,所以1<S n ≤S 1=32,故0<S n -1S n ≤S 1-1S 1=32-23=56. 当n 为偶数时,S n 随n 的增大而增大,所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712.综上,对于n ∈N *,总有-712≤S n -1S n≤56. 所以数列{T n }最大项的值为56,最小项的值为-712.【分析】解决等差数列与等比数列的综合问题,既要善于综合运用等差数列与等比数列的相关知识求解,更要善于根据具体问题情境具体分析,寻找解题的突破口.【即时应用】已知数列{a n }是公差不为零的等差数列,其前n 项和为S n ,满足S 5-2a 2=25,且a 1,a 4,a 13恰为等比数列{b n }的前三项.(1)求数列{a n },{b n }的通项公式;(2)设T n 是数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和,是否存在k ∈N *,使得等式1-2T k =1b k 成立?若存在,求出k 的值;若不存在,请说明理由.解 (1)设等差数列{a n }的公差为d (d ≠0),∴⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫5a 1+5×42d -2(a 1+d )=25,(a 1+3d )2=a 1(a 1+12d ),解得a 1=3,d =2,∴a n =2n +1.∵b 1=a 1=3,b 2=a 4=9,∴等比数列{b n }的公比q =3,∴b n =3n .(2)不存在.理由如下:∵1a n a n +1=1(2n +1)(2n +3)=12⎝ ⎛⎭⎪⎫12n +1-12n +3, ∴T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3, ∴1-2T k =23+12k +3(k ∈N *), 易知数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫12k +3为单调递减数列, ∴23<1-2T k ≤1315,又1b k=13k ∈⎝ ⎛⎦⎥⎤0,13,∴不存在k ∈N *,使得等式1-2T k =1b k成立. 题型二、数列的通项、求和求和要善于分析通项的结构特征,选择合适的求和方法.常用求和方法有:错位相减法、裂项相消法、分组求和法等.【例2】设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100.(1)求数列{a n },{b n }的通项公式;(2)当d >1时,记c n =a n b n,求数列{c n }的前n 项和T n . (1)解 由题意有⎩⎨⎧10a 1+45d =100,a 1d =2, 即⎩⎨⎧2a 1+9d =20,a 1d =2,解得⎩⎨⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=9,d =29. 故⎩⎨⎧a n =2n -1,b n =2n -1或⎩⎪⎨⎪⎧a n =19(2n +79),b n =9·⎝ ⎛⎭⎪⎫29n -1. (2)解 由d >1,知a n =2n -1,b n =2n -1,故c n =2n -12n -1, 于是T n =1+32+522+723+924+…+2n -12n -1,① 12T n =12+322+523+724+925+…+2n -12n .②①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n ,故T n =6-2n +32n -1. 【分析】用错位相减法解决数列求和的模板第一步:(判断结构)若数列{a n ·b n }是由等差数列{a n }与等比数列{b n }(公比q )的对应项之积构成的,则可用此法求和.第二步:(乘公比)设{a n ·b n }的前n 项和为T n ,然后两边同乘以q .第三步:(错位相减)乘以公比q 后,向后错开一位,使含有q k (k ∈N *)的项对应,然后两边同时作差. 第四步:(求和)将作差后的结果求和,从而表示出T n .【即时应用】设数列{a n }的前n 项和为S n ,已知a 1=1,a 2=2,且a n +2=3S n -S n +1+3,n ∈N *.(1)证明:a n +2=3a n ;(2)求S 2n .(1)证明 由条件,对任意n ∈N *,有a n +2=3S n -S n +1+3,因而对任意n ∈N *,n ≥2,有a n +1=3S n -1-S n +3.两式相减,得a n +2-a n +1=3a n -a n +1,即a n +2=3a n ,n ≥2.又a 1=1,a 2=2,所以a 3=3S 1-S 2+3=3a 1-(a 1+a 2)+3=3a 1,故对一切n ∈N *,a n +2=3a n .(2)解 由(1)知,a n ≠0,所以a n +2a n=3.于是数列{a 2n -1}是首项a 1=1,公比为3的等比数列;数列{a 2n }是首项a 2=2,公比为3的等比数列.因此a 2n -1=3n -1,a 2n =2×3n -1.于是S 2n =a 1+a 2+…+a 2n=(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=(1+3+…+3n -1)+2(1+3+…+3n -1)=3(1+3+…+3n -1)=32(3n -1).题型三、数列的综合应用3.1 数列与函数的综合问题【例3】 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图象上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎨⎧⎭⎬⎫a n b n 的前n 项和T n . 解 (1)由已知,b 7=2a 7,b 8=2a 8=4b 7,有2a 8=4×2a 7=2a 7+2,解得d =a 8-a 7=2.所以,S n =na 1+n (n -1)2d =-2n +n (n -1)=n 2-3n . (2)函数f (x )=2x 在(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2),它在x 轴上的截距为a 2-1ln 2.由题意知,a 2-1ln 2=2-1ln 2,解得a 2=2.所以,d =a 2-a 1=1.从而a n =n ,b n =2n ,所以T n =12+222+323+…+n -12n -1+n 2n , 2T n =11+22+322+…+n 2n -1 因此,2T n -T n =1+12+122+…+12n -1-n 2n =2-12n -1-n 2n =2n +1-n -22n. 所以,T n =2n +1-n -22n. 热点3.2 数列与不等式的综合问题【例4】 在等差数列{a n }中,a 2=6,a 3+a 6=27.(1)求数列{a n }的通项公式;(2)记数列{a n }的前n 项和为S n ,且T n =S n 3·2n -1,若对于一切正整数n ,总有T n ≤m 成立,求实数m 的取值范围.解 (1)设公差为d ,由题意得:⎩⎨⎧a 1+d =6,2a 1+7d =27,解得⎩⎨⎧a 1=3,d =3,∴a n =3n .(2)∵S n =3(1+2+3+…+n )=32n (n +1),∴T n =n (n +1)2n ,T n +1=(n +1)(n +2)2n +1,∴T n +1-T n =(n +1)(n +2)2n +1-n (n +1)2n=(n +1)(2-n )2n +1,∴当n ≥3时,T n >T n +1,且T 1=1<T 2=T 3=32,∴T n 的最大值是32,故实数m 的取值范围是⎣⎢⎡⎭⎪⎫32,+∞.。
数列高考大题练习 专题训练

数列大题一.证明等差(比)数列【例1】 已知数列{}n a 中,()111,3nn n a a a n N a *+==∈+. (1)求证:112n a ⎧⎫+⎨⎬⎩⎭是等比数列, 并求{}n a 的通项公式n a ; (2)数列{}n b 满足()312n n n n nb a =-,数列{}n b 的前n 项和为n T ,若不等式()112nn n nT λ--<+对一切n N *∈恒成立, 求λ的取值范围.练习1-1 设数列的前项和满足()312n n S a =-(1)求证数列是等比数列并求通项公式n a ;(2)设21n b n =-,,n n n c a b =⋅为{}n c 的前n 项和,求.练习1-2 设数列{}n a 的前n 项和为n S ,已知()*1121,n n n a a S n N n++==∈. (1)证明:数列n S n ⎧⎫⎨⎬⎩⎭是等比数列; (2)求数列{}n S 的前n 项和n T .二.求通项【例2】各项为正数的数列的前n项和为,且满足:(Ⅰ)求;(Ⅱ)设函数(),,2n a n f n n f n ⎧⎪=⎨⎛⎫ ⎪⎪⎝⎭⎩为奇数为偶数,(24)n n C f =+,n N *∈ ,求数列{}n C 的前n 项和n T .练习2-1 设数列{}a的前n项和为n S,n a是n S和1的等差中项.n(1)求数列{}a的通项公式;n(2)求数列{}na的前n项和n T.n练习2-2 已知数列}{n a 各项均为正数,其前n 项和为n S ,且满足2)1(4+=n n a S . (1)求}{n a 的通项公式; (2)设11+=n n n a a b ,求数列}{n b 的前n 项和为n T .练习2-3 已知数列{}n a 与{}n b 满足()()112n n n n a a b b n N *++-=-∈. (1)若11,35n a b n ==+数列{}n a 的通项公式;(2)若()16,2n n a b n N *==∈且22n n a n λλ>++对一切n N *∈恒成立,求实数λ的取值范围.。
高考文科数学数列专题复习(附答案及解析)

高考文科数学数列专题复习数列常用公式数列的通项公式与前n 项的和的关系a n s , n 11s s ,n 2n n 1( 数列{a n} 的前n 项的和为s n a1 a2 a n ).等差数列的通项公式*a a1 (n 1)d dn a1 d(n N ) ;n等差数列其前n 项和公式为n(a a ) n(n 1)1 ns na1 d n2 2 d 12n (a d)n .12 2等比数列的通项公式an 1 1 n *a a1q q (n N )nq;等比数列前n 项的和公式为na (1 q )1s 1 qn , q 1或sna a q1 n1 q,q 1na ,q 1 1 na ,q 1 1一、选择题1.( 广东卷) 已知等比数列{a n} 的公比为正数,且a3 ·a9 =2 2a ,a2 =1,则a1 =5A. 12B.22C. 2D.22.(安徽卷)已知为等差数列,,则等于A. -1B. 1C. 3D.7 3(. 江西卷)公差不为零的等差数列{a n} 的前n项和为S n .若a4 是a3与a7 的等比中项, S8 32, 则S等于10A. 18B. 24C. 60D. 904(湖南卷)设S n 是等差数列a n 的前n 项和,已知a2 3,a6 11,则S7 等于【】第1页/ 共8页A .13 B.35 C.49 D.633.(辽宁卷)已知a为等差数列,且a7 -2 a4 =-1, a3 =0, 则公差d=n(A)-2 (B)-12 (C)12(D)24.(四川卷)等差数列{a n }的公差不为零,首项a1 =1,a2 是a1 和a5 的等比中项,则数列的前10 项之和是A. 90B. 100C. 145D. 1905.(湖北卷)设x R, 记不超过x 的最大整数为[ x ], 令{x }= x -[ x ],则{ 52 1} ,[ 521],521A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列6.(湖北卷)古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1 中的1,3,6,10,⋯,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16⋯这样的数成为正方形数。
高考数学压轴专题专题备战高考《数列》全集汇编含答案解析

【高中数学】数学高考《数列》试题含答案一、选择题1.在正整数数列中,由1开始依次按如下规则,将某些数取出.先取1;再取1后面两个偶数2,4;再取4后面最邻近的3个连续奇数5,7,9;再取9后面的最邻近的4个连续偶数10,12,14,16;再取此后最邻近的5个连续奇数17,19,21,23,25.按此规则一直取下去,得到一个新数列1,2,4,5,7,9,10,12,14,16,17,…,则在这个新数列中,由1开始的第2 019个数是( ) A .3 971 B .3 972C .3 973D .3 974【答案】D 【解析】 【分析】先对数据进行处理能力再归纳推理出第n 组有n 个数且最后一个数为n 2,则前n 组共1+2+3+…+n ()12n n +=个数,运算即可得解.【详解】解:将新数列1,2,4,5,7,9,10,12,14,16,17,…,分组为(1),(2,4),(5,7,9,),(10,12,14,16),(17,19,21,23,25)… 则第n 组有n 个数且最后一个数为n 2, 则前n 组共1+2+3+…+n ()12n n +=个数,设第2019个数在第n 组中,则()()120192120192n n n n ⎧+≥⎪⎪⎨-⎪⎪⎩<,解得n =64,即第2019个数在第64组中,则第63组最后一个数为632=3969,前63组共1+2+3+…+63=2016个数,接着往后找第三个偶数则由1开始的第2019个数是3974, 故选:D . 【点睛】本题考查了对数据的处理能力及归纳推理能力,考查等差数列前n 项和公式,属中档题.2.已知数列22333311313571351,,,,,,,...,,,, (2222222222)nn n ,则该数列第2019项是( ) A .1019892 B .1020192 C .1119892 D .1120192 【答案】C【解析】 【分析】由观察可得()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭项数为21,1,2,4,8,...,2,...k -,注意到101110242201922048=<<=,第2019项是第12个括号里的第995项. 【详解】 由数列()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,可发现其项数为 21,1,2,4,8,...,2,...k -,则前11个括号里共有1024项,前12个括号里共有2048项,故原数列第2019项是第12个括号里的第995项,第12个括号里的数列通项为11212m -, 所以第12个括号里的第995项是1119892. 故选:C. 【点睛】本题考查数列的定义,考查学生观察找出已知数列的特征归纳出其项数、通项,是一道中档题.3.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且满足6a ,43a ,5a -成等差数列,则42S S ( ) A .3 B .9C .10D .13【答案】C 【解析】 【分析】设{}n a 的公比为0q >,由645,3,a a a -成等差数列,可得260,0q q q --=>,解得q ,再利用求和公式即可得结果. 【详解】设各项均为正数的等比数列{}n a 的公比为0q >,Q 满足645,3,a a a -成等差数列,()2465446,6,0a a a a a q q q ∴=-∴=->, 260,0q q q ∴--=>,解得3q =,则()()4124221313131103131a S S a --==+=--,故选C. 【点睛】本题主要考查等比数列的通项公式与求和公式,属于中档题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.4.“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到2019这2019个数中,能被3除余2且被5整除余2的数按从小到大的顺序排成一列,构成数列{}n a ,则此数列所有项中,中间项的值为( ) A .992 B .1022C .1007D .1037【答案】C 【解析】 【分析】首先将题目转化为2n a -即是3的倍数,也是5的倍数,也即是15的倍数.再写出{}n a 的通项公式,算其中间项即可. 【详解】将题目转化为2n a -即是3的倍数,也是5的倍数,也即是15的倍数. 即215(1)n a n -=-,1513n a n =-当135n =,135151351320122019a =⨯-=<, 当136n =,136151361320272019a =⨯-=>, 故1,2,n =……,135数列共有135项.因此数列中间项为第68项,681568131007a =⨯-=. 故答案为:C . 【点睛】本题主要考查数列模型在实际问题中的应用,同时考查了学生的计算能力,属于中档题.5.《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,则小满日影长为( ) A .1.5尺B .2.5尺C .3.5尺D .4.5尺【解析】 【分析】结合题意将其转化为数列问题,并利用等差数列通项公式和前n 项和公式列方程组,求出首项和公差,由此能求出结果. 【详解】解:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列{}n a ,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,∴()()111913631.598985.52a a d a d S a d ⎧++++=⎪⎨⨯=+=⎪⎩, 解得113.5a =,1d =-,∴小满日影长为1113.510(1) 3.5a =+⨯-=(尺). 故选C . 【点睛】本题考查等差数列的前n 项和公式,以及等差数列通项公式的运算等基础知识,掌握各公式并能熟练运用公式求解,考查运算求解能力,考查化归与转化思想,属于基础题.6.数列{a n },满足对任意的n ∈N +,均有a n +a n +1+a n +2为定值.若a 7=2,a 9=3,a 98=4,则数列{a n }的前100项的和S 100=( ) A .132 B .299C .68D .99【答案】B 【解析】 【分析】由12n n n a a a ++++为定值,可得3n n a a +=,则{}n a 是以3为周期的数列,求出123,,a a a ,即求100S . 【详解】对任意的n ∈+N ,均有12n n n a a a ++++为定值,()()123120n n n n n n a a a a a a +++++∴++-++=,故3n n a a +=,{}n a ∴是以3为周期的数列,故17298392,4,3a a a a a a ======,()()()100123979899100123133S a a a a a a a a a a a ∴=+++++++=+++L()332432299=+++=.【点睛】本题考查周期数列求和,属于中档题.7.设函数()mf x x ax =+的导数为()21f x x '=+,则数列()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和是( ) A .1nn + B .21nn + C .21nn - D .()21n n+ 【答案】B 【解析】 【分析】函数()mf x x ax =+的导函数()21f x x '=+,先求原函数的导数,两个导数进行比较即可求出m ,a ,利用裂项相消法求出()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和即可.【详解】Q 1()21m f x mx a x -'=+=+,1a \=,2m =,()(1)f x x x ∴=+,112()()(1)221f n n n n n ==-++, ∴111111122[()()()]2(1)1223111n n S n n n n =-+-++-=-=+++L ,故选:B . 【点睛】本题考查数列的求和运算,导数的运算法则,数列求和时注意裂项相消法的应用.8.已知数列{}n a 的奇数项依次成等差数列,偶数项依次成等比数列,且11a =,22a =,347a a +=,5613a a +=,则78a a +=( )A .4B .19C .20D .23【答案】D 【解析】 【分析】本题首先可以设出奇数项的公差以及偶数项的公比,然后对347a a +=、5613a a +=进行化简,得出公差和公比的数值,然后对78a a +进行化简即可得出结果. 【详解】设奇数项的公差为d ,偶数项的公比为q ,由347a a +=,5613a a +=,得127d q ++=,212213d q ++=,解得2d =,2q =,所以37813271623a a d q +=++=+=,故选D .【点睛】本题主要考查等差数列、等比数列的通项公式及性质等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想等,体现基础性与综合性,提升学生的逻辑推理、数学运算等核心素养,是中档题.9.已知等比数列{}n a 的前n 项和为n S ,若1231112a a a ++=,22a =,则3S =( ) A .10 B .7C .8D .4【答案】C 【解析】 【分析】根据等比数列的性质可将已知等式变为12332224a a a S a ++==,解方程求得结果. 【详解】 由题意得:13123321231322111124a a a a a S a a a a a a a +++++=+=== 38S ∴= 本题正确选项:C 【点睛】本题考查等比数列性质的应用,关键是能够根据下角标的关系凑出关于3S 的方程,属于基础题.10.已知数列{}n a 满足:()()2*112,10n n n a a S S n +=+-=∈N ,其中n S 为数列{}n a 的前n 项和.设()()()12111()1n S S S f n n +++=+L ,若对任意的n 均有(1)()f n kf n +<成立,则k 的最小整数值为( ) A .2 B .3C .4D .5【答案】A 【解析】 【分析】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111n n S S +-=--,得出 11n S ⎧⎫⎨⎬-⎩⎭是首项、公差均为1的等差数列,从而求出n S 【详解】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111111n n n n n S S S S S +-=-=----,又1111121S ==--,11n S ⎧⎫∴⎨⎬-⎩⎭是首项、公差均为1的等差数列,11n n S ∴=-,1n n S n +=,由()()()12111()1n S S S f n n +++=+L , 得()1(1)1(1)23152,2()2223n n S f n n f n n n n +++++⎡⎫===-∈⎪⎢+++⎣⎭, 依题意知(1)()f n k f n +>, min 2k ∴=.故选:A 【点睛】本题考查数列的综合应用.属于中等题.11.执行如图所示的程序框图,若输出的S 为154,则输入的n 为( )A .18B .19C .20D .21【答案】B 【解析】 【分析】找到输出的S 的规律为等差数列求和,即可算出i ,从而求出n . 【详解】由框图可知,()101231154S i =+++++⋯+-= , 即()1231153i +++⋯+-=,所以()11532i i -=,解得18i =,故最后一次对条件进行判断时18119i =+=,所以19n =. 故选:B 【点睛】本题考查程序框图,要理解循环结构的程序框图的运行,考查学生的逻辑推理能力.属于简单题目.12.在递减等差数列{}n a 中,21324a a a =-.若113a =,则数列11{}n n a a +的前n 项和的最大值为 ( ) A .24143B .1143C .2413D .613【答案】D 【解析】设公差为,0d d < ,所以由21324a a a =-,113a =,得213(132)(13)42d d d +=+-⇒=- (正舍),即132(1)152n a n n =--=- , 因为111111()(152)(132)2215213n n a a n n n n +==----- ,所以数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和等于1111116()()213213213261313n --≤--=-⨯- ,选D. 点睛:裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如1(1)(3)n n ++或1(2)n n +.13.等比数列{n a }的前n 项和为n S ,若103010,30,S S ==则20S = A .10 B .20 C .20或-10 D .-20或10【答案】B 【解析】 【分析】由等比数列的性质可得,S 10,S 20﹣S 10,S 30﹣S 20成等比数列即(S 20﹣S 10)2=S 10•(S 30﹣S 20),代入可求. 【详解】由等比数列的性质可得,S 10,S 20﹣S 10,S 30﹣S 20成等比数列,且公比为10q∴(S 20﹣S 10)2=S 10•(S 30﹣S 20)即()()22020101030S S -=- 解20S =20或-10(舍去) 故选B . 【点睛】本题主要考查了等比数列的性质(若S n 为等比数列的前n 项和,且S k ,S 2k ﹣S k ,S 3k ﹣S 2k 不为0,则其成等比数列)的应用,注意隐含条件的运用14.已知数列{}n a 是1为首项,2为公差的等差数列,{}n b 是1为首项,2为公比的等比数列,设n n b c a =,12...,(*)n n T c c c n N =+++∈,则当2019n T <时,n 的最大值是( ) A .9 B .10C .11D .12【答案】A 【解析】 【分析】由题设知21n a n =-,12n nb -=,由1121124222n n n b b bn T a a a a a a a n -+=++⋯+=+++⋯+=--和2019n T <,得1222019n n +--<,由此能求出当2019n T <时n 的最大值.【详解】{}n a Q 是以1为首项,2为公差的等差数列,21n a n ∴=-,{}n b Q 是以1为首项,2为公比的等比数列,12n n b -∴=,()()()()1121121242211221241221n n n n b b bn T c c c a a a a a a a --∴=++⋯+=++⋯+=+++⋯+=⨯-+⨯-+⨯-+⋯+⨯- ()121242n n -=+++⋯+- 12212nn -=⨯-- 122n n +=--,2019n T <Q ,1222019n n +∴--<,解得:10n <.则当2019n T <时,n 的最大值是9. 故选A . 【点睛】本题考查了等差数列、等比数列的通项公式,结合含两个变量的不等式的处理问题,易出错,属于中档题.15.已知数列{}n a 是等比数列,前n 项和为n S ,则“3152a a a >+”是“210n S -<”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】根据等比数列的通项公式与求和公式,即可判断命题间的关系. 【详解】因为数列{}n a 是等比数列,前n 项和为n S 若3152a a a >+,由等比数列的通项公式可得111242a a q a q >+,化简后可得()21210q a -<.因为()2210q -≥所以不等式的解集为10a < 若210n S -<当公比1q ≠±时, 210n S -<则10a <,可得3152a a a >+ 当公比1q =±时, 由210n S -<则10a <,可得3152a a a =+ 综上可知, “3152a a a >+”是“210n S -<”的充分不必要条件 故选:B 【点睛】本题考查了等比数列的通项公式与求和公式的应用,在应用等比数列求和公式时,需记得讨论公比是否为1的情况,属于中档题.16.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( ).(取lg30.4771≈,lg 20.3010≈)A .16B .17C .24D .25【答案】D 【解析】 【分析】由折线长度变化规律可知“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,由此得到410003n⎛⎫≥ ⎪⎝⎭,利用运算法则可知32lg 2lg 3n ≥⨯-,由此计算得到结果.【详解】记初始线段长度为a ,则“一次构造”后的折线长度为43a ,“二次构造”后的折线长度为243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,若得到的折线长度为初始线段长度的1000倍,则410003n a a ⎛⎫≥ ⎪⎝⎭,即410003n⎛⎫≥ ⎪⎝⎭, ()()44lg lg lg 4lg32lg 2lg3lg1000333n n n n ⎛⎫∴==-=-≥= ⎪⎝⎭, 即324.0220.30100.4771n ≥≈⨯-,∴至少需要25次构造. 故选:D .【点睛】 本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.17.已知数列{}n a 的前n 项和()2*23n S n n n N =+∈,则{}na 的通项公式为( ) A .21n a n =+B .21n a n =-C .41n a n =+D .41n a n =-【答案】C【解析】【分析】 首先根据223n S n n =+求出首项1a 的值,然后利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可.【详解】因为223n S n n =+,所以,当2n ≥时,22123[2(1)3(1)]41n n n a S S n n n n n -=-=+--+-=+,当1n =时,11235==+=a S ,上式也成立,所以41n a n =+,故选C.【点睛】该题考查的是有关数列的通项公式的求解问题涉及到的知识点有数列的项与和的关系,即11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,算出之后再判断1n =时对应的式子是否成立,最后求得结果.18.正项等比数列{}n a 中的1a 、4039a 是函数()3214633f x x x x =-+-的极值点,则2020a =( )A .1-B .1 CD .2【答案】B【解析】【分析】根据可导函数在极值点处的导数值为0,得出140396a a =,再由等比数列的性质可得.【详解】解:依题意1a 、4039a 是函数()3214633f x x x x =-+-的极值点,也就是()2860f x x x '=-+=的两个根∴140396a a =又{}n a是正项等比数列,所以2020a =∴20201a ==.故选:B【点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.19.数列{}n a 满足11a =,对任意的*n N ∈都有11n n a a n +=++,则122016111a a a +++=L ( ) A .20152016B .40322017C .40342017D .20162017【答案】B【解析】【分析】 首先根据题设条件,由11n n a a n +=++,可得到递推关系为11n n a a n +-=+; 接下来利用累加法可求得()12n n n a +=,从而()1211211na n n n n ⎛⎫==- ⎪++⎝⎭,由此就可求得122016111a a a +++L 的值. 【详解】因为111n n n a a a n a n +=++=++,所以11n n a a n +-=+,用累加法求数列{}n a 的通项得:()()1211n n n a a a a a a -=+-+⋯+-()1122n n n +=++⋯+=, 所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭,于是1232016111111111212222320162017a a a a ⎛⎫⎛⎫⎛⎫ +++⋯+=-+-+⋯+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121201*********⎛⎫==- ⎪⎝⎭. 故选:B.【点睛】本题是一道考查数列的题目,掌握数列的递推关系以及求解前n 项和的方法是解答本题的关键,属于常考题.20.设数列{}n a 的前n 项和为n S 已知()*123n n a a n n N ++=+∈且1300n S =,若23a <,则n 的最大值为( )A .49B .50C .51D .52【答案】A【解析】【分析】对n 分奇偶性分别讨论,当n 为偶数时,可得2+32n n n S =,发现不存在这样的偶数能满足此式,当n 为奇数时,可得21+342n n n S a -=+,再结合23a <可讨论出n 的最大值. 【详解】当n 为偶数时,12341()()()n n n S a a a a a a -=++++⋅⋅⋅++(213)(233)[2(1)3]n =⨯++⨯++⋅⋅⋅+-+2[13(1)]32n n =⨯++⋅⋅⋅+-+⨯2+32n n =, 因为22485048+348503501224,132522S S ⨯+⨯====, 所以n 不可能为偶数;当n 为奇数时,123451()()()n n n S a a a a a a a -=+++++⋅⋅⋅++1(223)(243)[2(1)3]a n =+⨯++⨯++⋅⋅⋅+-+21342n n a +-=+ 因为2491149349412722S a a +⨯-=+=+, 2511151351413752S a a +⨯-=+=+, 又因为23a <,125a a +=,所以 12a >S 时,n的最大值为49所以当1300n故选:A【点睛】此题考查的是数列求和问题,利用了并项求和的方法,考查了分类讨论思想,属于较难题.。
高考数列总复习题

高考数列总复习题高考数列总复习题数学是高考中最重要的科目之一,而数列作为数学中的重要概念之一,经常在高考中出现。
为了帮助考生更好地复习数列相关知识,下面将列举一些高考数列总复习题,希望对考生有所帮助。
一、选择题1. 已知数列{an}的通项公式为an = 2n + 1,求该数列的前n项和Sn。
A. Sn = n(n + 1)B. Sn = n(n + 1)/2C. Sn = n(n - 1)/2D. Sn = n(n - 1)2. 若数列{an}的前n项和Sn满足Sn = n^2 + 3n,求该数列的通项公式。
A. an = n^2 + 3nB. an = n^2 + 3n + 1C. an = n^2 + 3n + 2D. an = n^2 + 3n + 33. 若数列{an}满足an+1 = an + 3,且a1 = 2,求该数列的前n项和Sn。
A. Sn = 2nB. Sn = 2n + 1C. Sn = 3nD. Sn = 3n + 1二、填空题1. 已知数列{an}的通项公式为an = 2^n,求该数列的前n项和Sn。
答案:Sn = 2^(n+1) - 22. 若数列{an}的前n项和Sn满足Sn = 4n^2 + 2n,求该数列的通项公式。
答案:an = 4n + 23. 若数列{an}满足an+1 = an - 2,且a1 = 5,求该数列的前n项和Sn。
答案:Sn = 3n^2 + 2n三、解答题1. 已知数列{an}的通项公式为an = 3n^2 - 2n,求该数列的前n项和Sn。
解答:首先,我们可以将an写成Sn与Sn-1之间的关系。
由于Sn = a1 + a2 + ... + an,Sn-1 = a1 + a2 + ... + an-1,所以an = Sn - Sn-1。
代入an = 3n^2 - 2n,得到Sn - Sn-1 = 3n^2 - 2n。
整理得到Sn = 3n^2 - 2n + Sn-1。
高考数学专题训练:数列大题50题(含答案和解析)

1 .数列{n a }的前n 项和为n S ,且满足11a =,2(1)n n S n a =+.(1)求{n a }的通项公式; (2)求和T n =1211123(1)na a n a ++++.2 .已知数列}{n a ,a 1=1,点*))(2,(1N n a a P n n ∈+在直线0121=+-y x 上. (1)求数列}{n a 的通项公式; (2)函数)2*,(1111)(321≥∈++++++++=n N n a n a n a n a n n f n且 ,求函数)(n f 最小值. 3 .已知函数xab x f =)( (a ,b 为常数)的图象经过点P (1,81)和Q (4,8)(1) 求函数)(x f 的解析式;(2) 记a n =log 2)(n f ,n 是正整数,n S 是数列{a n }的前n 项和,求n S 的最小值。
4 .已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15.求n S =f (1)+f (2)+…+f (n )的表达式.5 .设数列{}n a 的前n 项和为n S ,且1n n S c ca =+-,其中c 是不等于1-和0的实常数.(1)求证: {}n a 为等比数列;(2)设数列{}n a 的公比()q f c =,数列{}n b 满足()()111,,23n n b b f b n N n -==∈≥,试写出1n b ⎧⎫⎨⎬⎩⎭的通项公式,并求12231n n b b b b b b -+++的结果.6 .在平面直角坐标系中,已知A n (n,a n )、B n (n,b n )、C n (n -1,0)(n ∈N *),满足向量1+n n A A 与向量n n C B 共线,且点B n (n,b n ) (n ∈N *)都在斜率为6的同一条直线上.(1)试用a 1,b 1与n 来表示a n ;(2)设a 1=a ,b 1=-a ,且12<a ≤15,求数列{a n }中的最小项.7 .已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322a a a +++ (1)2n n a -+8n =对任意的∈n N*都成立,数列1{}n n b b +-是等差数列.(1)求数列{}n a 与{}n b 的通项公式;(2)问是否存在k ∈N *,使得(0,1)k k b a -∈?请说明理由.8 .已知数列),3,2(1335,}{11 =-+==-n a a a a nn n n 且中(I )试求a 2,a 3的值; (II )若存在实数}3{,nn a λλ+使得为等差数列,试求λ的值. 9 .已知数列{}n a 的前n 项和为n S ,若()1,211++=⋅=+n n S a n a n n ,(1)求数列{}n a 的通项公式; (2)令n nn S T 2=,①当n 为何正整数值时,1+>n n T T :②若对一切正整数n ,总有m T n ≤,求m 的取值范围。
高三数列专题练习30道带答案(2)

〔2〕若数列满足,求的前项和.
13.已知数列是等比数列,满足,数列满足,且是等差数列.
〔I〕求数列和的通项公式;
〔II〕求数列的前n项和.
14.设数列满足,.
〔1〕求数列的通项公式;
〔2〕设,求数列的前项和.
15.数列的前项和满足,且成等差数列.
〔1〕求数列的通项公式;
〔2〕设,求数列的前项和.
考点:1、等差等比知识;2、裂项相消求和.
11.〔1〕;〔2〕.
【解析】
试题分析:〔1〕根据,令解得,进而得数列的通项公式为;〔2〕由〔1〕,进而得是首项为,公比为的等比数列,再由等比数列前项和公式可得结果.
试题解析:〔1〕,则,又,得,等差数列的公差,所以数列的通项公式为.
〔2〕,所以数列是首项为,公比为的等比数列,.
【方法点睛】裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如 〔其中是各项均不为零的等差数列,c为常数〕的数列. 裂项相消法求和,常见的有相邻两项的裂项求和〔如本例〕,还有一类隔一项的裂项求和,如或.
2.〔Ⅰ〕〔Ⅱ〕
【解析】
试题分析:〔Ⅰ〕将已知条件转化为首项和公差表示,解方程组可得到基本量,从而确定数列的通项公式;〔Ⅱ〕首先化简数列得到的通项公式,结合特点采用裂项相消法求和
试题解析:〔Ⅰ〕依题意得
………2分
解得, …………4分
. ………………………6分
〔Ⅱ〕, …………………7分
……………………9分
∴ ………………………………12分
考点:数列求通项公式及数列求和
3.〔1〕;〔2〕.
【解析】
试题分析:〔1〕设数列的公比为,由,,称等差数列,求解,即可求解数列的通项公式;〔2〕由〔1〕可知,利用乘公比错位相减法,求解数列的和,再根据不等式恒成立,利用关于单调性,即可求解的取值范围.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列专题复习模板题一、填空题1、在等差数列{a n}中,若a3+a4+a5+a6+a7=25,则a2+a8=.2、在等差数列{a n}中,已知S30=20,S90=80,那么S60= .3、设S n是等差数列{a n}的前n项和.若a1+a3+a5=3,则S5=.4、已知{a n}是等差数列,若2a7-a5-3=0,则a9的值为.5、在等差数列{a n}中,a1=1,d=2,S n+2-S n=24,则n= .6、)设等差数列{a n}的前n项和为S n.若S k-1=8,S k=0,S k+1=-10,则正整数k= .7、设等差数列{a n}的前n项和为S n,若a2=-9,a3+a7=-6,则当S n取最小值时,n= .8、在等差数列{a n}中,若a n+a n+2=4n+6(n∈N*),则该数列的通项公式a n= .9、设{a n}是公差不为零的等差数列,a1=2,且a1,a3,a6成等比数列,则a2 017= .10、设等比数列{a n}的公比为q(0<q<1),前n项和为S n,若a1=4a3a4,且a6与a4的等差中项为a5,则S6= .11、已知等比数列{a n}的各项均为正数,且a1,a3,2a2成等差数列,那么= .12、设S n是等比数列{a n}的前n项的和,若a5+2a10=0,则= .13、.在等比数列{a n}中,S n为其前n项和,已知a5=2S4+3,a6=2S5+3,那么此数列的公比q= .14、已知正项等比数列{a n }满足:a 7=a 6+2a 5,若存在两项a m ,a n ,使得=4a 1,则+的最小值为 .15、若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=.16、已知数列{a n }的前n 项和为S n =3n-1,那么该数列的通项公式为a n =.17、若数列{a n }满足a 1=1,a n =n +a n -1(n ≥2,n ∈N *),则数列{a n }的通项公式为 .18、在数列{a n }中,a 1=1,=,那么a n = .19、已知数列{a n }满足a 1=0,a n +1=(n ∈N *),那么a 20= .20、已知数列{a n }满足a n =,那么其前99项和S 99= .21、若数列{a n }满足a 1为大于1的常数,a n +1-1=a n (a n -1)(n ∈N *),且++…+=2,则a 2 017-4a 1的最小值为 .22、在数列{a n }中,a 1=3,(a n +1-2)(a n -2)=2(n ∈N *),则该数列的前2 016项和是 . 23、设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n = . 二、简答题()121210,*12{}{}1n n n n n n n n a na a a n a a S n N a n ++⎧⎫⎨⎬+⎩∙=∈⎭-+设是首项为的正项数列,且(n+1).()求通项公式;()求数列的前和的.24、已知数列{a n}是等差数列,其前n项和为S n,且a3=11,S9=153.(1)求数列{a n}的通项公式;(2)设b n=,证明{b n}是等比数列,并求其前n项和A n;(3)设c n=,求其前n项和B n.25、在数列{a n}中,已知a1=1,a n+1=,求a n.26、已知{a n}是各项均为正数的等比数列,{b n}是等差数列,且a1=b1=1,b2+b3=2a3,a5-3b2=7.(1)求数列{a n}和{b n}的通项公式;(2)设c n=a n b n,n∈N*,求数列{c n}的前n项和.27、已知等差数列{a n}满足a3=5,a5-2a2=3,在等比数列{b n}中,b1=3且公比q=3.(1)求数列{a n},{b n}的通项公式; (2)若c n=a n+b n,求数列{c n}的前n项和S n.28、设等差数列{a n}的前n项和为S n,已知a n>0,+2a n=4S n+3.(1)求数列{a n}的通项公式; (2)设b n=,求数列{b n}的前n项和T n.29、设数列{a n}的前n项和为S n,n∈N*.已知a1=1,a2=,a3=,且当n≥2时,4S n+2+5S n=8S n+1+S n-1.(1)求a4的值; (2)求证:数列为等比数列; (3)求数列{a n}的通项公式.30、已知数列{a n}是首项为正数的等差数列,数列的前n项和为.(1)求数列{a n}的通项公式;(2)设b n=(a n+1)·,求数列{b n}的前n项和T n.31、已知数列{a n}和{b n}满足a1=2,b1=1,a n+1=2a n(n∈N*),b1+b2+b3+…+b n=b n+1-1(n ∈N*).(1)求数列{a n},{b n}的通项公式; (2)记数列{a n b n}的前n项和为T n,求T n.32、在等差数列{a n}中,已知a2=4,a4+a7=15.(1)求数列{a n}的通项公式; (2)设b n=+n,求b1+b2+b3+…+b10的值.33、已知数列{a n}的前n项和S n=,n∈N*.(1)求数列{a n}的通项公式; (2)设b n=+(-1)n a n,求数列{b n}的前2n项和.34、已知数列{a n},{b n}满足a1=,a n+b n=1,b n+1=.(1)求b1,b2,b3,b4; (2)求数列{b n}的通项公式;(3)设S n=a1a2+a2a3+a3a4+…+a n a n+1,求当4aS n<b n恒成立时实数a的取值范围.35、已知数列{a n}共有2k项(k≥2,k∈N*),数列{a n}的前n项和为S n,满足a1=2,a n+1=(p-1)S n+2(n=1,2,…,2k-1),其中常数p>1.(1)求证:数列{a n}是等比数列;(2)若p=,数列{b n}满足b n=log2(a1a2…a n)(n=1,2,…,2k),求数列{b n}的通项公式.36、已知数列{a n}是递增的等比数列,且a1+a4=9,a2a3=8.(1)求数列{a n}的通项公式;(2)设S n为数列{a n}的前n项和,b n=求数列{b n}的前n项和T n.37、已知等差数列{a n}满足:a1=2,且a1,a2,a5成等比数列.(1)求数列{a n}的通项公式.(2)记S n为数列{a n}的前n项和,问:是否存在正整数n,使得S n>60n+800?若存在,求出n的最小值;若不存在,请说明理由.38、已知各项均为正数的数列{a n}的前n项和为S n,且4S n=+2a n+1,n∈N*,求数列{a n}的通项公式.39、已知数列{a n}满足2a1+22a2+23a3+…+2n a n=4n-1,求数列{a n}的通项公式.40、已知数列{a n}满足a1+2a2+…+na n=4-(n∈N)*.(1)求a3的值; (2)求数列{a n}前n项和T n.2+111{}(1)202{}3{}n (21)(21)n n n n n n n a a a a a a a a n n +-+--==+-∙+41.各项均为正数的数列满足:,且(1)求数列的通项公式;(2)求数列的前项和。
22{}()0{}{--2}n 2nn n n n nn a a a a n n a a a --+=42.各项均为正数的数列满足:,(1)求数列的通项公式;(2)求数列的前项和。
参考答案一、填空题1、10【解析】因为数列{a n}是等差数列,所以a3+a7=a4+a6=a2+a8=2a5,a3+a4+a5+a6+a7=5a5=25,即a 5=5,所以a2+a8=2a5=10.2、【解析】设S60=x,则20,x-20,80-x成等差数列,所以20+(80-x)=2(x-20),解得x=.3、5【解析】因为{a n}为等差数列,所以a1+a3+a5=3a3=3,所以a3=1,于是S5==5a3=5.4、3【解析】方法一:设公差为d,则 2(a1+6d)-(a1+4d)-3=0,即a1+8d=3,所以a9=3.方法二:由等差数列的性质得a5+a9=2a7,所以(a5+a9)-a5-3=0,即a9=3.5、5【解析】因为a1=1,d=2,所以S n=n2,S n+2-S n=(n+2)2-n2=24,解得n=5.6、9【解析】由等差数列的性质得为等差数列,所以,(k,0),三点共线,从而有=,解得k=9.7、6【解析】因为a3+a7=2a5=-6,所以a5=-3,所以d=2,a n=-9+2(n-2)=2n-13,所以a6=-1,a7=1,所以S6最小.8、2n+1【解析】方法一:在等差数列中,a n+a n+2=4n+6,所以a n+1=2n+3,从而a n=2n+1.方法二:令n=1,可得a1+a3=10,令n=2,可得a2+a4=14,从而d=2,a1=3,所以a n=2n+1.9、.1 010【解析】设等差数列{a n}的公差为d,d≠0.由题意得=a1a6,即(2+2d)2=2(2+5d),解得d=,所以a2 017=2+2 016×=1 010.10、【解析】因为a1=4a3a4,所以4a1q5=1,所以a6=.又因为a6与a4的等差中项为a5,所以a6+a4=2a5,即1+=,化简得4q2-8q+3=0,解得q=或q=(舍去),所以===·=.S611、3+2【解析】依题意可得2×=a1+2a2,即a3=a1+2a2,则有a1q2=a1+2a1q,可得q2=1+2q,解得q=1+或q=1-(舍去),所以===q2=3+2.12、【解析】设等比数列公比为q,则由a5+2a10=0,得q5=-,所以==1+q10=1+=.13、3【解析】由a5=2S4+3,a6=2S5+3,两式相减得a6-a5=2a5,得a6=3a5,所以公比q=314、【解析】设等比数列{a n}的公比为q,由a7=a6+2a5,得q2-q-2=0,所以q=2(舍去-1).由=4a1,平方得a m a n=16,即a12m-1·a12n-1=16,化简得m+n=6,+=(m+n)=≥,当且仅当n=4,m=2时取等号.15、50【解析】由题意得2a10a11=2e5a10a11=e5,所以ln a1+ln a2+…+lna 20=ln(a1·a2·…·a20)=ln(a10a11)10=10×ln e5=50.16、2×3n-1【解析】当n=1时,a1=S1=31-1=2;当n≥2时,a n=S n-S n-1=(3n-1)-(3n-1-1)=2×3n-1,将n=1代入上式可得a1=2×31-1=2.综上可得a n=2×3n-1.17、a n=【解析】由a n=n+a n-1可变形为a n-a n-1=n(n≥2,n∈N*),由此可写出以下各式:a n-a n-1=n,a n-1-a n-2=n-1,an-2-a n-3=n-2,…,a2-a1=2,将以上等式两边分别相加,得a n-a1=n+(n-1)+(n-2)+…+2,所以an=n+(n-1)+(n-2)+…+2+1=.18、【解析】当n≥2时,a n=a1××××…×=1××××…×=,当n=1时也成立,故a n=.19、-【解析】因为a1=0,a n+1=(n∈N*),所以a2=-,a3=,a4=0,所以{a n}的周期为3,所以a20=a2=-.20、9【解析】因为a n==-,所以S99=(-)+(-)+…+(-)=10-1=9.21、-【解析】因为a1>1,易知对所有的n,a n>1,对a n+1-1=a n(a n-1)两边取倒数得==-,所以=-,所以++…+=-=2,整理得a2 017=.由a2 017>1,得1<a1<,所以a2 017-4a1=2(3-2a1)+-≥2-=-,当且仅当a1=时取等号.故a2 017-4a1的最小值为-.22、.7 056【解析】由(a n+1-2)(a n-2)=2(n∈N*),得(a n-2)(a n-1-2)=2(n∈N*,n≥2),以上两式相除得=1,a n+1-2=a n-1-2(n∈N*,n≥2),所以数列{a n}是一个周期数列,周期为2.由a2-2=,a 1=3,得a2=4,所以S2 016=1 008×(a1+a2)=1 008×(3+4)=7 056.23、-【解析】由已知得a n+1=S n+1-S n=S n+1·S n,两边同时除以S n+1·S n,得-=-1,故数列是以-1为首项、-1为公差的等差数列,则=-1-(n-1)=-n,所以S n=-.二、简答题24、.(1)设等差数列{a n}的公差为d,则有a3=11=a1+2d,S9=153=9a1+36d,联立解得d=3,a1=5,所以a n=3n+2.(2)由(1)知b n=23n+2,==23=8.又b1=32,所以{b n}是以32为首项、8为公比的等比数列,所以A n=(8n-1).(3) 由(1)知c n===,根据累加法可得B n==.25、原式可化为-=n,所以-=n-1,-=n-2,…,-=1,累加得-=(n-1)+(n-2)+ (1)所以=+1,所以a n=.【精要点评】求数列的通项公式,特别是由递推公式给出数列时,除叠加、迭代、累乘外,还应注意配凑变形法.变形的主要目的是凑出容易解决问题的等差或等比数列,然后再结合等差、等比数列的运算特点解决原有问题.求得通项公式时,还可根据递推公式写出前几项,由此来猜测归纳出通项公式,然后再证明.26、(1) 设数列{a n}的公比为q,数列{b n}的公差为d,由题意知q>0.由已知得消去d,整理得q4-2q2-8=0.又因为q>0,解得q=2,所以d=2.所以数列{a n}的通项公式为a n=2n-1,n∈N*;数列{b n}的通项公式为b n=2n-1,n∈N*.(2) 由(1)知c n=(2n-1)·2n-1,设{c n}的前n项和为S n,则S n=1×20+3×21+5×22+…+(2n-3)×2n-2+(2n-1)×2n-1,2S n=1×21+3×22+5×23+…+(2n-3)×2n-1+(2n-1)×2n.上述两式相减,得-S n=1+22+23+…+2n-(2n-1)×2n=2n+1-3-(2n-1)×2n=-(2n-3)×2n-3,所以S n=(2n-3)×2n+3,n∈N*.27、(1)设等差数列{a n}的公差为d,则由题意得解得所以a n=1+2(n-1)=2n-1.因为{b n}是以b1=3为首项、公比为3的等比数列,所以b n=3n.(2)由(1)得c n=(2n-1)+3n,则S n=1+3+5+…+(2n-1)+(3+32+33+…+3n)=+=n2+.28、(1)当n=1时,+2a1=4S1+3=4a1+3,因为a n>0,所以a1=3.当n≥2时,+2a n--2a n-1=4S n+3-4S n-1-3=4a n,即(a n+a n-1)(a n-a n-1)=2(a n+a n-1),因为a n>0,所以a n-a n-1=2,所以数列{a n}是首项为3、公差为2的等差数列,所以a n=2n+1.(2)由(1)知,b==,n所以数列{b n}的前n项和为b1+b2+…+b n=++…+=-.29、.(1) 当n=2时,4S4+5S2=8S3+S1,即4+5=8+1,解得a4=.(2) 因为4S n+2+5S n=8S n+1+S n-1(n≥2),所以4S n+2-4S n+1+S n-S n-1=4S n+1-4S n(n≥2),即4a n+2+a n=4a n+1(n≥2),因为4a3+a1=4×+1=6=4a2,所以4a n+2+a n=4a n+1.因为====,所以数列是以a2-a1=1为首项、为公比的等比数列。