竖井联系测量
竖井联系测量

竖井联系测量人民交通一、竖井联系测量的任务在隧道施工中,常用竖井在隧道中间增加掘进工作面,从多面同时掘进,可以缩短贯通段的长度,提高施工进度。
这时,为了保证相向开挖面能正确贯通,就必须将地面控制网中的坐标、方向及高程,经由竖井传递到地下去,这些传递工作称为竖井联系测量。
其中坐标和方向的传递,称为竖井定向测量。
通过定向测量,使地下平面控制网与地面上有统一的坐标系统。
而通过高程传递则使地下高程系统获得与地面统一的起算数据。
按照地下控制网与地面上联系的形式不同,定向的测量方法可分为下列四种:1.经过一个竖井定向(简称一井定向);2.经过两个竖井定向(简称两井定向);3.经过横洞(平坑)与斜井的定向;4.应用陀螺经纬仪定向。
竖井的联系测量可通过一个井筒、也可同时通过两个井筒进行。
这种联系测量是利用地上、地下控制点之间的几何关系将坐标、方向和高程引入地下,故称几何定向。
平峒的联系测量可通过一个井筒、也可同时通过两个井筒进行。
这种联系测量是利用地上、地下控制点之间的几何关系将坐标、方向和高程引入地下。
由于平峒隧道有进口和出口,导线和水准线路可从隧道两端引进,大大缩短贯通长度。
其作业方法与地面控制测量相同。
斜井的联系测量方法与平峒基本相同。
不同处是隧道坡度较大,导线测量要注意坡度的影响。
另外,斜井大部分为单头掘进,从洞口引进的导线均为支导线,要加强检核,以防止联系测量出现错误。
由于陀螺仪技术的飞速发展,在导航和测量工作中已被广泛应用。
陀螺仪重量轻、体积小、精度高、使用方便,在隧道联系测量工作中,不失为一种经济、快速、影响小的现代化定向仪器。
高程联系测量是将地面高程引入地下,又称导入高程。
显而易见,为使地下隧道(巷道)贯通,地上、地下的控制点必须在同一个坐标系统和高程系统。
地下工程与地面工程的相对位置也必须正确无误;地下建(构)筑物的相对关系,也必须精确。
如此种种,说明联系测量是非常重要的。
几何定向几何定向分一井定向和两井定向。
竖井联系测量方法比较探讨

地下隧道竖井联系测量方法比较探讨姚顺福1 测量原理1.1 陀螺定向法陀螺定向法是综合利用全站仪、光学垂准仪(或重锤球)以及陀螺经纬仪等仪器进行导线联系测量的一种方法。
首先利用光学垂准仪(或重锤球)将地面车站端头井的点位沿同一铅锤线方向投影到端头井的井底,同时利用全站仪测量井上、井下各导线点的角度与距离、利用陀螺经纬仪测量井上、井下的相关导线边的陀螺方位角,从而求算出井上、井下投影点在空间的平面夹角,最终把地面趋近导线的平面坐标和方位传递到地下隧道施工控制导线上。
如下图1所示,K0、K1为地面趋近导线点,其中K0为近井点;T1、T2为地面车站端头井投影点;T1´、T2´分别为T1、T2投影到车站端头井底部的投影点;X1、X2、X3……Xn为地下隧道施工控制导线点;a1、a2、a5、a6、a7和d1、d2、d3、d4、d5、d6分别为全站仪实测的角度和距离。
X2图1:陀螺定向法竖井联系测量导线联测示意图实际测量时,利用陀螺经纬仪测量地面趋近导线边K0K1和地下隧道施工控制导线边X2X3的陀螺方位角,求出陀螺经纬仪的定向常数,结合全站仪实测数据求出a3、a4的角度值,最终按导线平差的原理求出地下隧道施工控制导线点X1、X2、X3的坐标和方位角,作为区间隧道施工控制导线的起算数据。
1.2 钻孔投点法钻孔投点法实际上是根据长边投影时投影点的点位投影误差对投影边的坐标方位角影响将大大削弱的原理进行导线联系测量的一种方法。
其基本思想是在隧道前进(或后退)的方向上已开挖的地方离开车站端头井一定的距离(一般应大于150m ),从地面钻孔直达地下隧道中,然后利用光学垂准仪(或重锤球)分别通过车站端头井和钻孔将地面点位沿同一铅锤线方向投影到地下,最终把地面趋近导线的平面坐标和方位传递到地下隧道施工控制导线上。
如下图2所示,K0、K1为地面趋近导线点;T1、T2分别为地面车站端头井和钻孔井上的投影点;T1´、T2´分别为T1、T2投影到车站端头井和区间隧道底部的投影点,T1´、T2´同时又为地下隧道施工控制导线的起算点;X1、……Xn 为地下隧道施工控制导线点;a1、a2、a3、a4和d1、d2、d3分别为全站仪实测的角度和距离。
隧道施工测量讲义课件(贯通测量竖井联系测量)

根据隧道长度、地形地貌和施工要求,制 定合理的贯通测量和竖井联系测量方案。
实施过程
案例总结
按照测量方案进行实地测量,采集数据, 并进行数据处理和分析。
该案例成功应用贯通测量和竖井联系测量 的方法,保证了隧道施工的精度和质量。
某铁路隧道施工测量案例
案例概述
某铁路隧道施工项目,采用贯通测量和竖井联系测量的方法进行施工测量。
05
隧道施工测量的新技术应用
自动化测量技术
自动化测量技术概述
自动化测量技术是隧道施工测量中的一种重要技术,它通 过自动化设备进行数据采集和处理,提高了测量效率和精 度。
全站仪
全站仪是一种集光、机、电、算等技术于一体的智能型测 量仪器,具有测距、测角、自动记录和计算等功能,广泛 应用于隧道施工测量中。
误差控制方法
选择高精度测量设备
采用高精度、稳定的测量设备,定期 进行设备校准和维护。
制定科学测量方法
根据隧道施工实际情况,制定科学、 合理的测量方法,并严格按照操作规 程进行测量。
考虑环境因素影响
在测量过程中充分考虑环境因素影响, 采取相应措施减小误差。
提高人员技能水平
加强测量人员技能培训,提高操作水 平和责任心。
三维激光扫描技术
三维激光扫描技术能够快速获取物体表面的三维坐标和纹 理信息,为隧道施工提供高精度、高分辨率的测量数据。
遥感技术
遥感技术概述
遥感技术是一种非接触式测量技 术,通过卫星、飞机等平台获取 地表信息,具有覆盖范围广、信 息量大、实时性强等特点。
卫星遥感
卫星遥感能够获取大范围的地表 信息,包括地形、地貌、地质等, 为隧道施工提供宏观的测量数据。
建立地面控制网,并进行坐标 和高程测量。
3、竖井联系测量

竖井联系测量(QB/ZTYJGYGF-SD-0403-2011)第五工程有限公司谯生有1 前言1.1 工艺工法概况在隧道工程施工中,为了加快施工进度,缩短隧道施工工期,除了设置横洞、斜井来增加工作面以外,还可以通过开挖竖井来增加工作面,尤其在长大隧道施工中,通常会设计竖井来增加开挖面。
为保证竖井开挖面与其它开挖面之间正确贯通,就必须将地面控制网中的坐标、坐标方位角及高程,经由竖井传递至井下开挖面,指导竖井井下施工中线的正确放样。
将坐标、坐标方位角及高程由地面控制网传递至井下的工作称为竖井联系测量。
竖井定向联系测量常用方法有联系三角形法、钻孔投点以及铅垂仪、陀螺经纬仪联合定法,高程传递测量有全站仪导高法和悬挂钢尺测量法。
可根据联系测量条件和精度要求进行优化选择。
1.2 工艺原理在井筒内悬挂两条吊垂线,在地面上根据控制点来测定两吊垂线的坐标以及其连线的方位角,在井下根据投影点的坐标及其连线的坐标方位角,确定井下导线的起算坐标及方位角。
1.2.2 铅垂仪、陀螺经纬仪联合定向原理陀螺经纬仪则是由陀螺仪和经纬仪结合而成的定向仪器。
它通过陀螺仪测定出子午线方向;用经纬仪测出定向边与子午线方向的夹角,就可以根据天文方位角和子午线收敛角求得地面或井下任意定向边的大地方位角,控制点坐标由铅垂仪从井上传递至井下。
1.2.3 钻孔投点定向测量原理当两竖井间的距离较长时,为控制隧道掘进的横向误差,对浅埋隧道可在地面钻一钻孔,也可以利用施工投料孔,用吊锤或铅垂仪将坐标直接投影至井下隧道内,在井下形成无定向导线,通过解算无定向导线获得井下导线的坐标方位角。
1.2.4 钢尺(丝)导高原理在井筒中部悬挂一钢丝(尺),在井上、井下同时用水准仪瞄准钢丝(尺)井上井下的位置并做标记,通过实量井上井下两标记之间的长度,将高程从井上传递至井下。
当竖井井深浅,俯仰角不大时,在井上安置全站仪可以直接观测到井下水准点,直接利用三角高程测量将井上高程导入井下水准点上。
竖井联系测量与陀螺经纬仪测量

式中,ΔL为光电测距仪旳总改正数。 然后,分别在地上、地下安顿水准仪。读取立于
E、A及F、B处水准尺旳读数e、a和f、b
30
A、B之间旳高差为: H = H -(a-e)+ b - f
B旳高程HB: HB= HA- h 利用光电测距仪导入标高也要测量两次,其互差 也不应超出H/8000。
第九章 竖井联络测量及陀螺经纬仪测量 §9-1 联络测量旳作用和任务
一、概念
联络测量:将地面平面坐标系统和高程系统传递到地下,使地 上下能采用同一坐标系统所进行旳测量工作。
联络测量涉及平面联络测量和高程联络测量,即定向和导入高程
二、联络测量旳目旳和任务
1、联络测量旳目旳:使地面和地下测量控制网采用同一坐标系统。 2、联络测量旳任务:
总影响为:
m0
(m0
)
2 S
(m0 )2
(m0 )2P
4.62 16.52 82 19
18
§9-5 两井定向
如下图 所示,A、B 为相邻两竖井,当A、B竖井 间隧道开挖贯穿时,可采用两井定向法。两井定向与 一井定向相比较,具有外业工作简朴、精度高旳优点。 定向时利用两竖井周围旳近井控制点测定竖井洞中两 钢丝平面位置,再在隧道中布设连接两钢丝导线,经 过平差计算拟定地下各导线点坐标和各导线边方位角。
4
3、 观察成果检核 对于每一种联络三角形,因为同步观察了各边边长及内
角α,存在多出观察,为及时检核观察数据,利用观察值与 计算值之间旳关系对观察成果进行检核是必要旳。
A1M
5
4、投点误差与投向误差
由地面对定向水平投点时,因为井筒内气流、滴
水等影响,使得垂球线在地面上旳位置投到定向水平
竖井联系测量的平面控制方法

竖井联系测量的平面控制方法
在竖井联系测量中,平面控制方法是确保测量高度准确的重要工作。
平面控制
主要涉及确定竖井的起始和终点位置,并通过对比和调整测量数据来保证测量结果的准确性。
首先,确定竖井的起始和终点位置是平面控制的第一步。
这可以通过现场考察
和测量来完成。
在现场考察过程中,需要注意地标、建筑物、道路等可靠的参考点,以便在后续测量中使用。
此外,还应制定详细且清晰的测量计划,包括测量的起点和终点,并根据实际情况选择合适的测量方法和仪器。
其次,在进行竖井联系测量时,需要将实际测量数据与预期结果进行对比和调整,以确保测量结果的准确性。
对比的方法可以采用三角测量、交会测量等。
在测量数据对比的基础上,可以通过仔细分析和调整数据来消除误差,并确定最终的测量结果。
此外,平面控制还需要考虑到测量误差的来源,如仪器的精度、环境因素等。
在测量过程中,应使用高精度的测量仪器,并按照仪器的使用说明进行正确操作。
在环境因素方面,应尽量避免影响测量准确性的因素,如强风、震动等。
综上所述,竖井联系测量的平面控制方法包括确定竖井的起始和终点位置,对
比和调整测量数据,并考虑测量误差的来源。
通过严格执行这些方法,可以确保竖井联系测量的准确性,并提供可靠的数据作为进一步工作的基础。
隧道竖井联系测量

隧道竖井联系测量1. 简介隧道竖井联系测量是指在隧道和竖井之间进行的一种测量方式,用于测量隧道和竖井的连通性和相对位置关系,对于隧道和竖井的建设、维护和管理具有重要的意义。
隧道竖井联系测量通常使用全站仪进行测量。
2. 测量原理隧道竖井联系测量主要采用全站仪,通过望远镜、水平仪、角度计等测量仪器来进行测量。
测量的基本原理是通过三角测量法来计算隧道和竖井之间的位置和相对距离。
在实际测量中,首先要在隧道和竖井之间设置控制点,控制点要选在隧道和竖井各自的中心线上,并且要在隧道和竖井的共同平面上。
在设立控制点后,再利用全站仪的水平仪进行水平方向的测量,然后用望远镜观测隧道和竖井之间的测站,并使用角度计测定测站与控制点之间的相对角度。
通过这些基本的测量数据,可以计算出隧道和竖井之间的相对距离和位置。
3. 测量方法隧道竖井联系测量的方法有两种:测量隧道竖井与地面的连接点高程和测量隧道竖井在水平方向的连通状态。
3.1 测量连接点高程测量连接点高程可以通过测量竖井与地面的高程以及隧道与地面的高程来进行计算。
在实际测量中,首先需要在竖井的顶部和底部、以及隧道两侧的地面上设置控制点,并进行测量。
然后,通过相应的计算公式就可以计算出连接点的高程。
3.2 测量连通状态测量连通状态主要是针对隧道竖井之间的连接状态进行测量。
在实际测量中,需要在隧道入口、出口和竖井的中央设置控制点,并进行测量。
然后,通过全站仪进行水平仪测量和角度测量,使用三角形计算公式计算出隧道和竖井之间的连通状态。
4. 应用范围隧道竖井联系测量在地下建设、维护和管理中具有重要的应用价值。
在建设过程中,可以使用隧道竖井联系测量来确定相邻隧道和竖井之间的位置和距离关系,以便更好地规划和安排工程。
在维护过程中,隧道竖井联系测量可以用于检测隧道和竖井之间的变形、位移和裂缝等情况,以及确定隧道和竖井之间的联通状态。
在管理过程中,隧道竖井联系测量可以用于维护和更新地下建筑的数据库和地图,以及为其它科学或应用领域提供参考数据。
竖井联系测量

竖井联系测量人民交通出版社一、竖井联系测量的任务在隧道施工中,常用竖井在隧道中间增加掘进工作面,从多面同时掘进,可以缩短贯通段的长度,提高施工进度。
这时,为了保证相向开挖面能正确贯通,就必须将地面控制网中的坐标、方向及高程,经由竖井传递到地下去,这些传递工作称为竖井联系测量。
其中坐标和方向的传递,称为竖井定向测量。
通过定向测量,使地下平面控制网与地面上有统一的坐标系统。
而通过高程传递则使地下高程系统获得与地面统一的起算数据。
按照地下控制网与地面上联系的形式不同,定向的测量方法可分为下列四种:1.经过一个竖井定向(简称一井定向);2.经过两个竖井定向(简称两井定向);3.经过横洞(平坑)与斜井的定向;4.应用陀螺经纬仪定向。
竖井的联系测量可通过一个井筒、也可同时通过两个井筒进行。
这种联系测量是利用地上、地下控制点之间的几何关系将坐标、方向和高程引入地下,故称几何定向。
平峒的联系测量可通过一个井筒、也可同时通过两个井筒进行。
这种联系测量是利用地上、地下控制点之间的几何关系将坐标、方向和高程引入地下。
由于平峒隧道有进口和出口,导线和水准线路可从隧道两端引进,大大缩短贯通长度。
其作业方法与地面控制测量相同。
斜井的联系测量方法与平峒基本相同。
不同处是隧道坡度较大,导线测量要注意坡度的影响。
另外,斜井大部分为单头掘进,从洞口引进的导线均为支导线,要加强检核,以防止联系测量出现错误。
由于陀螺仪技术的飞速发展,在导航和测量工作中已被广泛应用。
陀螺仪重量轻、体积小、精度高、使用方便,在隧道联系测量工作中,不失为一种经济、快速、影响小的现代化定向仪器。
高程联系测量是将地面高程引入地下,又称导入高程。
显而易见,为使地下隧道(巷道)贯通,地上、地下的控制点必须在同一个坐标系统和高程系统。
地下工程与地面工程的相对位置也必须正确无误;地下建(构)筑物的相对关系,也必须精确。
如此种种,说明联系测量是非常重要的。
几何定向几何定向分一井定向和两井定向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
竖井联系测量人民交通出版社一、竖井联系测量的任务在隧道施工中,常用竖井在隧道中间增加掘进工作面,从多面同时掘进,可以缩短贯通段的长度,提高施工进度。
这时,为了保证相向开挖面能正确贯通,就必须将地面控制网中的坐标、方向及高程,经由竖井传递到地下去,这些传递工作称为竖井联系测量。
其中坐标和方向的传递,称为竖井定向测量。
通过定向测量,使地下平面控制网与地面上有统一的坐标系统。
而通过高程传递则使地下高程系统获得与地面统一的起算数据。
按照地下控制网与地面上联系的形式不同,定向的测量方法可分为下列四种:1.经过一个竖井定向(简称一井定向);2.经过两个竖井定向(简称两井定向);3.经过横洞(平坑)与斜井的定向;4.应用陀螺经纬仪定向。
竖井的联系测量可通过一个井筒、也可同时通过两个井筒进行。
这种联系测量是利用地上、地下控制点之间的几何关系将坐标、方向和高程引入地下,故称几何定向。
平峒的联系测量可通过一个井筒、也可同时通过两个井筒进行。
这种联系测量是利用地上、地下控制点之间的几何关系将坐标、方向和高程引入地下。
由于平峒隧道有进口和出口,导线和水准线路可从隧道两端引进,大大缩短贯通长度。
其作业方法与地面控制测量相同。
斜井的联系测量方法与平峒基本相同。
不同处是隧道坡度较大,导线测量要注意坡度的影响。
另外,斜井大部分为单头掘进,从洞口引进的导线均为支导线,要加强检核,以防止联系测量出现错误。
由于陀螺仪技术的飞速发展,在导航和测量工作中已被广泛应用。
陀螺仪重量轻、体积小、精度高、使用方便,在隧道联系测量工作中,不失为一种经济、快速、影响小的现代化定向仪器。
高程联系测量是将地面高程引入地下,又称导入高程。
显而易见,为使地下隧道(巷道)贯通,地上、地下的控制点必须在同一个坐标系统和高程系统。
地下工程与地面工程的相对位置也必须正确无误;地下建(构)筑物的相对关系,也必须精确。
如此种种,说明联系测量是非常重要的。
几何定向几何定向分一井定向和两井定向。
1.一井定向一井定向是在井筒内挂两根钢丝,钢丝的上端在地面,下端投到定向水平。
在地面测算两钢丝的坐标,同时在井下与永久控制点连接,如此达到将一点坐标和一个方向导入地下的目的。
定向工作分投点和连接测量两部分。
⑴投点投点所用垂球的重量与钢丝的直径随井深而异。
井深小于100m时,垂球重30~50kg;大于100m时为50~100kg。
钢丝的直径大小决定于垂球的重量。
例如钢丝Φ=的悬挂垂球重量可达90~100kg;Φ=,球重达360~370kg。
投点时,先用小垂球(2kg)将钢丝下放井下,然后换上大垂球。
并置于油桶或水桶内,使其稳定(如图13-5)由于井筒内受气流、滴水的影响,使垂球线发生偏移和不停的摆动,故投点分稳定投点和摆动投点。
稳定投点是指垂球的摆动振幅不大于时,即认为垂球线是稳定的,可进行井上井下同时观测;垂球摆动振幅大于时,则按照观测摆动的振幅度求出静止位置,并将其固定。
⑵连续测量同时在地面和定向水平上对垂球线进行观测,地面观测是为了求得两垂球线的坐标及其连线的方位角;井下观测是以两垂球的坐标和方位角推算导线起始点的坐标和起始边的方位角。
连接测量的方法很多,但普遍使用的是连接三角形法。
图13-5 竖井定向如图13-6所示,D点与C点分别为地面上近井点和连接点。
A、B为两垂球线,C′、D′和E′为地下永久导线点。
在井上下分别分别安置经纬仪于C和C′点,观测φ、ψ、γ和φ′、ψ′、γ′。
测量边长a、b、c和CD,以及井下的a′、b′、c′和C′D′。
由此,在井上下形成以AB为公共边的△ABC和△ABC′。
由图可看出,已知D点坐标和DE边的方位角,观测三角形的各边长a、b、c及γ角,就可推算井下导线起始边的方位角和D′点的坐标。
选择C和C′时应满足如下要求:①CD和CD长度应大于20m;②C和C′点应尽可能在AB的延长线上,即γ′、α和γ′、β′不应大于2°。
③b/c、b′/c一般应小于,即C和C′应尽量靠近垂球线。
图13-6 用连接三角形法在井下定向水平角的观测要用DJ6以上的经纬仪,对中三次,具体要求见表13-1。
水平角的观测要求(表13-1)量边要使用检验过的钢尺,施加标准拉力和测记温度。
用钢尺从不同起点丈量6次,读至,观测值互差不大于2mm,取其平均值作为最后结果。
井上、井下同时量得两垂球线之间的间距之差不得大于2mm。
(3)内业计算在△CBA和△ABC′两个三角形中,c和c′为直接丈量的边长,同时也可用余弦定理进行计算:c2算=a2+γc2算=a′2+b′2-2a′b′.cosγ′因此,观测值有一差值△c=c测-c算△c′=c′测-c′算规范规定:地面上△c不应超过±2mm;地下△c′不应大于±4mm。
可用正弦定理计算α、β和α′、β′。
(13-5)当α<2°,β<178°时,上式可简化(13-6)式中γ——地面观测值,以秒计。
当α>20°时,β>178°时,可用正弦公式计算α、β。
计算出α、β之后,用导线计算方法计算井下导线点的坐标和起始方位角时,尽量按锐角线路推算,如选择D-C-A-B-C′-D′线路。
(13-7)(4)一井定向的误差定向误差包括:·地面的连续误差m上;·地下的连续误差m下;·投向误差θ。
在式(13-7)中,设φ、α和β′、φ′的中误差分别为mφ、mα、mβ′、m′φ则井下一次独立定向的定向边C′D′方位角的中误差为M2(C′D′)=m2(DC)+m2φ+m2α+m2β′+m2φ′+θ2(13-8)在式中(13-8)中,起始方位角的中误差m(CD)与联测角的观测误差mφ、m′φ,可采取措施保证其精度。
α、β和α′、β′,是间接观测值,影响其精度的因素是多方面的,因此要给予一定的重视。
综合上述的误差公式,可看出:①联系三角形的最有利形状为延伸形三角形,角度为锐角(α、β′和γ、γ′),在2°~3°之间,故C和C′点尽可能地选在两垂球线连线的延长线上(如图13-6)。
②由式(13-5)可知,α、β(α′、β′)角的误差大小,取决于mγ的大小和a/c,b/c的比值。
尽可能保证γ角的观测精度,并使C点尽量靠近垂球线,以减小a、b长度。
③垂球线的投向误差θ。
由于井筒中垂球线受风流、滴水、钢丝的弹性等因素的影响,而发生偏斜,产生投点误差,由此引起两垂球连线方向的偏差θ,称投向误差。
在一井定向中必须重视。
2.两井定向当有两个竖井,井下有巷道相通,并能进行测量时,就可在两井筒各下放一根垂球线,然后在地面和井下分别将其连接,形成一个闭合环(图13-7),从而把地面坐标系的平面坐标和方位角引测到井下,此即两井定向。
由于A、B两垂球线之间的距离c较长,按式ρ″计算,投向误差会大大减小。
设点误差e为1mm,A、B之间为50mm,则投向误差为:ρ″比一井法的投向精度大大提高,这是两井定向的最大优点。
因此,凡是能用两井定向的隧道、矿井,都应采用两井定向。
两井定向的方法与一井定向大致相同。
⑴投点投点的方法和要求与一井定向相同。
由于在井筒中只有一根垂球线,投点占用井筒的时间更短,观测时间也短。
⑵连接测量如图13-7,两竖井之间的距离较小时,可在两井之间建立一个近井点C;若距离较远时,两井可分别建立近井点。
地面测量时,首先根据近井点和已知方位角,测定A、B两垂线的坐标。
事先布好导线,定向时只测各垂线的一个连接角和一条边长。
导线布设时,要求沿两井方向布设延伸形,以减少距离带来的横向误差。
井下连接测量是在早已完成的导线两端与垂线进行联测,只测一个角度和一条边长。
对井上、井下布设的导线事先要做误差预计。
根据使用的仪器、采用的测量方法、导线布设的方案,估算一次定向测量的中误差,若不超过±20″,这个方案才能使用。
BACⅢⅡⅠ2431a)b)2431CⅢⅡⅠA B图13-7 二井定向(3)内业计算根据地面导线计算两垂球线的坐标,反算连线的方位角和αAB 长度c 。
按导线的计算方法,计算x A 、y A 和x B 、y B 反算AB 的方位角。
(13-9)边长假定井下导线为独立坐标系,以A 点位原点,以A1为x ′轴,用导线计算方法计算出B 点的坐标,得x ′B 、y ′B 。
反算AB 的假定方位角。
(13-10)c和c′不相等一方面由于井上、井下不在一个高程面上,一方面由于测量误差的存在,则地下边长c′加上井深改正后与地面相应边长c的较差为:(13-11)式中:H——井深;R——地球曲率半径,为6371km。
f c不应大于两倍连接测量的中误差。
求出AB边井上、井下两方位角之差△a=a AB-a′AB=a A1井下导线各边的假定方位角,加上△a,即可求得井下各导线边的方位角。
从而按以地面A点的坐标x A、y A和a AB为起算数据,已改正后的导线各边长S i,计算井下导线的坐标增量,并求其闭合差。
(13-12)(13-13)其全长相对闭合差Ⅰ级导线,Ⅱ级导线。
在满足精度要求的情况下,将f X、f Y反符号按边长成正比例分配在各坐标增量上,然后计算井下导线上各点的坐标。
三、通过竖井传递高程将地面上的高程传递到地下去时,随着隧道施工布置的不同,而采用不同的方法。
这些方法是:1.经由横洞传递高程2.通过斜井传递高程3.通过竖井传递高程通过洞口或横洞传递高程时,可由地面向隧道中敷设水准线路,用一般水准测量的方法进行。
当地上与地下系用斜井联系时,按照斜井的坡度和长度的大小,可采用水准测量或三角高程测量的方法进行传递高程。
现在讨论通过竖井传递高程的方法。
1.用钢尺导入高程专用钢尺的长度有100m、500m。
导入高程时如图13-8所示,使用长钢尺通过井盖放入井下。
钢尺零点端挂一10kg垂球。
地面和井下分别安装水准仪,在水准点A、B的水准尺上读数a和b′,两台仪器在钢尺上同时分别读数b和a′。
最后再在A、B水准点上读数,以复核原读数是否有误差。
在井上、井下分别测定温度t1、t2。
由于钢尺受客观条件的影响,要加入尺长、温度、拉力和钢尺自重四项改正数。
前两项改正与第4章计算相同。
现将拉力改正和钢尺自重改正计算如下。
拉力改正(13-14)式中:l=b-a′;P——施加垂球的重量;P0——标准拉力;E——钢尺的弹性模量,2×106kg/cm2;F——为钢尺的横断面积,以cm2为单位。
自重拉长改正(13-15)式中:γ——钢尺单位体积的质量,g/cm3。
井下B点高程HB=HA+(a-b)+(a′-b′)+△l d+△l t+△l p+△l c (13-16)当井筒较深时,常用钢丝代替钢尺导入高程。
首先在井口近处建立一比尺台,在台上与钢丝并排固定一检验的钢尺,施以标准拉力P;比尺台的一端设置手摇绞车,钢丝绕在绞车上。