2018湖南邵阳教师招聘数学类考试热点知识(484)

合集下载

湖南省邵阳市2018-2019学年高一数学上学期期末考试试题

湖南省邵阳市2018-2019学年高一数学上学期期末考试试题

湖南省邵阳市2018-2019学年高一数学上学期期末考试试题一、选择题1.在区间[]-3,4上随机选取一个实数x ,则满足2x ≤的概率为( )A.37B.47 C.57D.672.根据下边框图,当输入x 为2019时,输出的y 为( )A .1B .2C .5D .103.某工厂生产产品,用传送带将产品送到下一道工序,质检人员每隔十分钟在传送带的某一个位置取一件检验,则这种抽样方法是( ) . A .简单随机抽样 B .系统抽样 C .分层抽样 D .非上述答案 4.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是A .球B .三棱锥C .正方体D .圆柱5.将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的僻析式是( )A .B .C .D .6.一个体积为正三棱柱的三视图如图所示,则这个三棱柱的左视图的面积为A .B .8C .D .127.中国明代商人程大位对文学和数学也颇感兴趣,他于60岁时完成杰作《直指算法统宗》,这是一本风行东亚的数学名著,该书第五卷有问题云:“今有白米一百八十石,令三人从上及和减率分之,只云甲多丙米三十六石,问:各该若干?”翻译成现代文就是:“今有百米一百八十石,甲乙丙三个人来分,他们分得的米数构成等差数列,只知道甲比丙多分三十六石,那么三人各分得多少米?”请你计算甲应该分得( ) A .78石B .76石C .75石D .74石8.边长为2的两个等边,ABD CBD ∆∆所在的平面互相垂直,则四面体ABCD 的外接球的表面积为( ) AB .6πC .203πD .16π9.如果数据12,,n x x x ⋯的平均数为x ,方差为2s ,则1243,43,,43n x x x ++⋅⋅⋅+的平均数和方差分别为( ) A.,x sB.243,x s +C.2,16x sD.243,16x s +10.如图,一个空间几何体正视图与左视图为全等的等边三角形,俯视图为一个半径为1的圆,那么这个几何体的表面积为( )A.πB.3πC.2πD.π+11.若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( ) A .sin y x =B .ln y x =C .xy e =D .3y x =12.三位男同学和两位女同学随机排成一列,则女同学甲站在女同学乙的前面的概率是() A.12B.25C.13D.23二、填空题13.某校今年计划招聘女教师a 名,男教师b 名,若a ,b 满足不等式组2527a b a b a -≥⎧⎪-≤⎨⎪<⎩设这所学校今年计划招聘教师最多x 名,则x =________. 14.双曲线的渐近线方程是 (用一般式表示)15.北京市某银行营业点在银行大厅悬挂着不同营业时间段服务窗口个数的提示牌,如图所示. 设某人到达银行的时间是随机的,记其到达银行时服务窗口的个数为X ,则()E X =______________.16.命题:“若21x <,则11x -<<”的否命题是______命题.(填“真”或“假”之一) 三、解答题 17.如图,是等边三角形,点在边的延长线上,且.(1)求的长;(2)求的值.18.[选修4-5:不等式选讲] 设函数,其中.(Ⅰ)当时,求不等式的解集; (Ⅱ)若时,恒有,求的取值范围.19.已知数列的前项和满足,等差数列中,,.(1)求,的通项公式; (2)若,求数列的前项和.20.如图所示,在四棱锥中,底面是矩形,平面,.过的中点作于点,连接,.(Ⅰ)证明:平面;(Ⅱ)若平面与平面所成的锐二面角的余弦值为,求的长.21.设函数在及处取极值.(1)求的值;(2)若对于任意的,都有成立,求的取值范围.22.数列满足.(1)计算,并由此猜想通项公式;(2)用数学归纳法证明(1)中的猜想.【参考答案】***试卷处理标记,请不要删除一、选择题13.1314.15.3.562516.真三、解答题17.(1);(2).【解析】试题分析:(1)根据在中,由余弦定理得,解方程即可得到的长;(2) 在中,,由正弦定理,有,从而可得的值.试题解析:(1)因为是等边三角形,且,所以在中,由余弦定理得,所以,解得.(2) 在中,,由正弦定理,有,所以.18.(1).(2).【解析】试题分析:(1)当时,,化为,可得或,从而可得不等式的解集;(2)化简,因为,∴时,恒成立,又时,当时,,∴只需即可,所以.试题解析:(1)当时,,所以,所以或,解集为.(2),因为,∴时,恒成立,又时,当时,,∴只需即可,所以.19.(1),;(2).【解析】试题分析:⑴由已知条件推出,证明是等比数列,然后求出,从而求得数列的通项公式,设数列的公差为,由,解得,由此求得的通项公式;⑵先求出的表达式,然后用裂项法求得解析:(1)由数列满足,∴当时,,两式相减得,∴,∴是等比数列.当时,,∴,∴数列的通项公式为.∵,,设公差为,则,∴,,数列的通项公式为.(2)由(1)得,∴,①,②①-②得,∴.20.(Ⅰ)见证明;(Ⅱ)1【解析】【分析】(1)先证明,接着证明平面,.然后运用线面垂直的判定定理求出结果(2)分别以,,所在直线为,,轴,建立空间直角坐标系,求出法向量,由公式计算出结果【详解】(Ⅰ)∵平面,平面,∴平面平面.∵四边形是矩形,∴.又∵平面平面,∴平面,∴.∵,为的中点,∴.又∵,∴平面.(Ⅱ)设,如图,以点为坐标原点,分别以,,所在直线为,,轴,建立空间直角坐标系.则,,.由(Ⅰ)知平面,∴.又∵,,∴平面.∴是平面的一个法向量,易知是平面的一个法向量.∴.解得,即的长为1.【点睛】本题主要考查了空间位置关系,线面垂直的证明以及空间向量解决立体几何问题,需要掌握并熟练运用,属于中档题21.(1) ;(2) 或【解析】【分析】⑴由题意在及处取极值代入求出的值⑵由题意成立,求出,得到关于的不等式,求出的取值范围【详解】解:(1)由题意函数在及处取极值,故有和两个根,由根与系数之间的关系得,所以(2)由题意对于任意的,都有恒成立,即,由⑴知,当时,单调递减,当时,单调递增,,,则故即有解得或【点睛】本题考查了由导数极值求参量及解答关于恒成立的不等式问题,在求解恒成立问题时将其转化为最值问题,然后求出不等式的结果即可,需要掌握解题方法22.(1);(2)见解析【解析】分析:(1)根据题设条件,可求a1,a2,a3,a4的值,猜想{a n}的通项公式.(2)利用数学归纳法的证明步骤对这个猜想加以证明.详解:(1)根据数列满足,当时,,即;当时,,即;同理,由此猜想;(2)当时,,结论成立;假设(为大于等于1的正整数)时,结论成立,即,那么当(大于等于1的正整数)时,∴,∴,即时,结论成立,则.点睛:此题主要考查归纳法的证明,归纳法一般三个步骤:(1)验证n=1成立;(2)假设n=k成立;(3)利用已知条件证明n=k+1也成立,从而求证,这是数列的通项一种常用求解的方法。

因式分解分式二次根式含解析-中考各地试题分类汇编

因式分解分式二次根式含解析-中考各地试题分类汇编

专题1.4 因式分解分式二次根式一、单选题1.【湖南省邵阳市2018年中考数学试卷】将多项式x﹣x3因式分解正确的是()A. x(x2﹣1) B. x(1﹣x2) C. x(x+1)(x﹣1) D. x(1+x)(1﹣x)【答案】D【解析】【分析】直接提取公因式x,然后再利用平方差公式分解因式即可得出答案.【详解】x﹣x3=x(1﹣x2)=x(1﹣x)(1+x).故选D.【点睛】本题主要考查了提取公因式法以及公式法分解因式,正确应用公式法是解题关键.2.【台湾省2018年中考数学试卷】已知某文具店贩售的笔记本每本售价均相等且超过10元,小锦和小勤在此文具店分别购买若干本笔记本.若小锦购买笔记本的花费为36元,则小勤购买笔记本的花费可能为下列何者?()A. 16元 B. 27元 C. 30元 D. 48元【答案】D点睛:此题主要考查了质因数分解,正确得出笔记本的单价是解题关键.3.【湖南省郴州市2018年中考数学试卷】下列运算正确的是()A. a3•a2=a6 B. a﹣2=﹣ C. 3﹣2= D.(a+2)(a﹣2)=a2+4【答案】C【解析】【分析】直接利用同底数幂的乘除运算法则、负指数幂的性质、二次根式的加减运算法则、平方差公式分别计算即可得出答案.【详解】A、a3•a2=a5,故A选项错误;B、a﹣2=,故B选项错误;C、3﹣2=,故C选项正确;D、(a+2)(a﹣2)=a2﹣4,故D选项错误,故选C.【点睛】本题考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法则是解题关键.4.【河北省2018年中考数学试卷】若2n+2n+2n+2n=2,则n=()A.﹣1 B.﹣2 C. 0 D.【答案】A【点睛】本题考查了乘法的意义以及同底数幂的乘法,熟知相关的定义以及运算法则是解题的关键.同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n(m,n是正整数).5.【湖北省孝感市2018年中考数学试题】已知,,则式子的值是()A. 48 B. C. 16 D. 12【答案】D【解析】分析:先通分算加法,再算乘法,最后代入求出即可.详解:(x-y+)(x+y-)===(x+y)(x-y),当x+y=4,x-y=时,原式=4×=12,故选:D.点睛:本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.6.【湖南省邵阳市2018年中考数学试卷】据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9m B. 2.8×10﹣8m C.28×109m D. 2.8×108m【答案】B【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.【四川省内江市2018年中考数学试卷】已知:﹣=,则的值是()A. B.﹣ C. 3 D.﹣3【答案】C【解析】分析:已知等式左边两项通分并利用同分母分式的减法法则计算,变形后即可得到结果.详解:∵﹣=,∴=,则=3,故选:C.点睛:此题考查了分式的化简求值,化简求值的方法有直接代入法,整体代入法等常用的方法,解题时可根据题目具体条件选择合适的方法,当未知的值没有明确给出时,所选取的未知数的值必须使原式的各分式都有意义,且除数不能为0.8.【四川省内江市2018年中考数学试卷】小时候我们用肥皂水吹泡泡,其泡沫的厚度是约0.000326毫米,用科学记数法表示为()A.毫米 B.毫米 C.厘米 D.厘米【答案】A点睛:此题考查了科学记数法—表示较小的数,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.9.【河北省2018年中考数学试卷】老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙 B.甲和丁 C.乙和丙 D.乙和丁【答案】D【解析】【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.【详解】∵=====,∴出现错误是在乙和丁,故选D.【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键. 10.【四川省达州市2018年中考数学试】题二次根式中的x的取值范围是()A. x<﹣2 B.x≤﹣2 C. x>﹣2 D.x≥﹣2【答案】D点睛:本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.11.【台湾省2018年中考数学试卷】算式×(﹣1)之值为何?()A. B. C. 2- D. 1【答案】A【解析】分析:根据乘法分配律可以解答本题.详解:×(﹣1)=×﹣1=,故选:A.点睛:本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.12.【山东省聊城市2018年中考数学试卷】下列计算正确的是()A. B.C. D.【答案】B点睛:本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则. 13.【湖南省张家界市2018年初中毕业学业考试数学试题】下列运算正确的是()A. B. C. D.=【答案】D【解析】分析:根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;=a (a≥0);完全平方公式:(a±b)2=a2±2ab+b2;幂的乘方法则:底数不变,指数相乘进行计算即可.详解:A、a2和a不是同类项,不能合并,故原选项错误;B、=|a|,故原选项错误;C、(a+1)2=a2+2a+1,故原选项错误;D、(a3)2=a6,故原选项正确.故选:D.点睛:此题主要考查了二次根式的性质、合并同类项、完全平方公式、幂的乘方,关键是掌握各计算法则和计算公式.二、填空题14.【山东省东营市2018年中考数学试题】分解因式:x3﹣4xy2=_____.【答案】x(x+2y)(x﹣2y)【解析】分析:原式提取x,再利用平方差公式分解即可.详解:原式=x(x2-4y2)=x(x+2y)(x-2y),故答案为:x(x+2y)(x-2y)点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.【湖南省郴州市2018年中考数学试卷】因式分解:a3﹣2a2b+ab2=_____.【答案】a(a﹣b)2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.【湖南省怀化市2018年中考数学试题】因式分解:ab+ac=_____.【答案】a(b+c)【解析】分析:直接找出公因式进而提取得出答案.详解:ab+ac=a(b+c).故答案为:a(b+c).点睛:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.17.【河北省2018年中考数学试卷】若a,b互为相反数,则a2﹣b2=_____.【答案】0【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a,b互为相反数,∴a+b=0,∴a2﹣b2=(a+b)(a﹣b)=0,故答案为:0.【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.18.【山东省威海市2018年中考数学试题】分解因式:﹣a2+2a﹣2=__.【答案】﹣(a﹣2)2【解析】分析:原式提取公因式,再利用完全平方公式分解即可.详解:原式=﹣(a2﹣4a+4)=﹣(a﹣2)2,故答案为:﹣(a﹣2)2点睛:此题考查了因式分解﹣运用公式法,熟练掌握因式分解的方法是解本题的关键.19.【湖南省湘西州2018年中考数学试卷】要使分式有意义,则x的取值范围为_____.【答案】x≠﹣2【解析】【分析】根据分式有意义的条件可得x+2≠0,解这个不等式即可求出答案.【详解】由题意可知:x+2≠0,∴x≠﹣2,故答案为:x≠﹣2.【点睛】本题考查分式有意义的条件,解题的关键是正确理解分式有意义的条件:分母不为0.20.【湖北省襄阳市2018年中考数学试卷】计算的结果是_____.【答案】【点睛】本题考查了同分母分式的加减法,熟练掌握同分母公式加减法的法则是解题的关键,注意结果要化成最简分式.21.【湖北省武汉市2018年中考数学试卷】计算的结果是_____.【答案】【解析】【分析】根据分式的加减法法则进行计算即可得答案.【详解】原式===,故答案为:.【点睛】本题考查分式的加减运算,熟练掌握分式加减的运算法则是解题的关键,本题属于基础题.22.【山东省滨州市2018年中考数学试题】若分式的值为0,则x的值为______.【答案】-3点睛:本题主要考查分式的值为0的条件,注意分母不为0.23.【新疆自治区2018年中考数学试题】如果代数式有意义,那么实数x的取值范围是_____.【答案】x≥1.【解析】分析:直接利用二次根式的定义分析得出答案.详解:∵代数式有意义,∴x-1≥0,解得,x≥1.∴实数x的取值范围是:x≥1.故答案为:x≥1.点睛:此题主要考查了二次根式的定义,正确把握定义是解题关键.24.【山东省烟台市2018年中考数学试卷】与最简二次根式5是同类二次根式,则a=_____.【答案】2【解析】分析:先将化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a的方程,解出即可.详解:∵与最简二次根式5是同类二次根式,且=2,∴a+1=3,解得:a=2.故答案为2.点睛:本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.25.【黑龙江省哈尔滨市2018年中考数学试题】计算6﹣10的结果是_____.【答案】【解析】分析:首先化简,然后再合并同类二次根式即可.详解:原式=6-10×=6-2=4,故答案为:4.点睛:此题主要考查了二次根式的加减,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.三、解答题26.【浙江省杭州市临安市2018年中考数学试卷】阅读下列题目的解题过程:已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4(A)∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)∴c2=a2+b2(C)∴△ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为:;(3)本题正确的结论为:.【答案】(1)C;(2)没有考虑a=b的情况;(3)△ABC是等腰三角形或直角三角形.(2)错误的原因为:没有考虑a=b的情况,故答案为:没有考虑a=b的情况;(3)本题正确的结论为:△ABC是等腰三角形或直角三角形,故答案为:△ABC是等腰三角形或直角三角形.【点睛】本题考查因式分解的应用、勾股定理的逆定理,解答本题的关键是明确题意,写出相应的结论,注意考虑问题要全面.27.【上海市2018年中考数学试卷】先化简,再求值:(﹣)÷,其中a=.【答案】原式=【点睛】本题考查了分式的化简求值,熟练掌握分式化简求值的步骤是解题的关键.28.【吉林省长春市2018年中考数学试卷】先化简,再求值:,其中x=﹣1.【答案】【解析】【分析】根据分式的加法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【详解】====x+1,当x=﹣1时,原式=﹣1+1=.【点睛】本题考查分式的化简求值,熟练掌握分式化简求值的方法是解答本题的关键.29.【云南省昆明市2018年中考数学试题】先化简,再求值:(+1)÷,其中a=tan60°﹣|﹣1|.【答案】原式=【解析】分析:根据分式的运算法则即可求出答案.详解:当a=tan60°-|-1|时,∴a=-1∴原式===.点睛:本题考查分式的运算法则,解题的关键是熟练运用分式运算法则.30.【黑龙江省哈尔滨市2018年中考数学试题】先化简,再求代数式(1﹣)÷的值,其中a=4cos30°+3tan45°.【答案】点睛:本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.31.【广西钦州市2018年中考数学试卷】计算:|﹣4|+3tan60°﹣﹣()﹣1【答案】+2【解析】【分析】按顺序先进行绝对值的化简、特殊角的三角函数值、二次根式的化简、负指数幂的计算,然后再按运算顺序进行计算即可得出答案.【详解】|﹣4|+3tan60°﹣﹣()﹣1=4+3﹣2﹣2=+2.【点睛】本题考查了实数的混合运算,涉及到特殊角的三角函数值、二次根式的化简、负指数幂的运算等,熟练掌握各运算的运算法则以及实数混合运算的运算法则是解题的关键.32.【江苏省徐州巿2018年中考数学试卷】计算:(﹣1)2008+π0﹣()﹣1+.【答案】1【解析】【分析】按顺序分别进行乘方的运算、0次幂的运算、负指数幂的运算、立方根的运算,然后再按去处顺序进行运算即可.【详解】(﹣1)2008+π0﹣()﹣1+=1+1﹣3+2=1.【点睛】本题考查了实数的混合运算,涉及到0次幂、负指数幂,熟练掌握0次幂的运算法则、负指数幂的运算法则以及实数混合运算的运算法则是解题的关键.33.【湖北省荆门市2018年中考数学试卷】先化简,再求值:(x+2+)÷,其中x=2.【答案】,4-2.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算顺序和运算法则是解题的关键.34.【四川省达州市2018年中考数学试题】化简代数式:,再从不等式组的解集中取一个合适的整数值代入,求出代数式的值.【答案】0【解析】分析:直接将所给式子进行去括号,利用分式混合运算法则化简,再解不等式组,进而得出x的值,即可计算得出答案.点睛:此题主要考查了分式的化简求值以及不等式组解法,正确掌握分式的混合运算法则是解题关键.35.【湖南省邵阳市2018年中考数学试卷】计算:(﹣1)2+(π﹣3.14)0﹣|﹣2|【答案】【解析】【分析】按顺序先分别进行乘方的计算,零指数幂的运算、绝对值的化简,然后再按运算顺序进行计算即可.【详解】(﹣1)2+(π﹣3.14)0﹣|﹣2|=1+1-(2-)=1+1-2+=.【点睛】本题考查了实数的运算,熟练掌握运算法则是解本题的关键.36.【湖北省随州市2018年中考数学试卷】先化简,再求值:,其中x为整数且满足不等式组.【答案】,.【解析】【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,由x为整数且满足不等式组可以求得x的值,然后代入化简后的结果进行计算即可得答案.【详解】===,由得,2<x≤3,∵x是整数,∴x=3,∴原式=.【点睛】本题考查分式的化简求值、解一元一次不等式组、一元一次不等式组的整数解,熟练掌握分式的化简求值的方法是解答本题的关键.37.【山东省烟台市2018年中考数学试卷】先化简,再求值:(1+)÷,其中x满足x2﹣2x ﹣5=0.【答案】5点睛:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.38.【江苏省淮安市2018年中考数学试题】先化简,再求值:(1﹣)÷,其中a=﹣3.【答案】原式==﹣2.【解析】分析:原式利用分式混合运算顺序和运算法则化简,再将a的值代入计算可得.详解:原式===,当a=﹣3时,原式==﹣2.点睛:本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.39.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】(1)计算:|﹣2|﹣2cos60°+()﹣1﹣(2018﹣)0(2)先化简(1﹣)•,再在1、2、3中选取一个适当的数代入求值.【答案】(1)6;(2)-2(2)(1﹣)•,===,当x=2时,原式=.点睛:本题考查分式的化简求值、绝对值、特殊角的三角函数值、负整数指数幂、零指数幂,解答本题的关键是明确它们各自的计算方法.40.【湖北省黄石市2018年中考数学试卷】先化简,再求值:.其中x=sin60°.【答案】【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再根据三角函数值代入计算可得.详解:原式==,当x=sin60°=时,原式==.点睛:本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.41.【江苏省盐城市2018年中考数学试题】先化简,再求值:,其中.【答案】原式=x-1=点睛:本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.42.【湖北省恩施州2018年中考数学试题】先化简,再求值:,其中x=2﹣1.【答案】【解析】分析:直接分解因式,再利用分式的混合运算法则计算得出答案.详解:==,把x=2-1代入得,原式==.点睛:此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.43.【新疆自治区2018年中考数学试题】先化简,再求值:(+1)÷,其中x是方程x2+3x=0的根.【答案】-2点睛:本题考查分式的化简求值、一元二次方程的解,解答本题的关键是明确分式的化简求值的计算方法.44.【山东省聊城市2018年中考数学试卷】先化简,再求值:,其中.【答案】-4【解析】分析: 首先计算括号里面的减法,然后再计算除法,最后再计算减法,化简后,再代入a的值可得答案.详解:原式====-当a=-时,原式=-4.点睛:此题主要考查了分式的化简求值,关键是掌握化简求值,一般是先化简为最简分式或整式,再代入求值.45.【四川省眉山市2018年中考数学试题】先化简,再求值:,其中x满足x2-2x-2=0.【答案】点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.46.【湖南省常德市2018年中考数学试卷】先化简,再求值:,其中.【答案】【解析】【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除运算,最后把数值代入化简后的结果进行计算即可得.【详解】原式=[+]×(x﹣3)2=×(x﹣3)2=x﹣3,当x=时,原式=﹣3=﹣.【点睛】本题主要考查了分式的化简求值,熟练掌握分式的混合运算法则是解题关键.47.【湖南省常德市2018年中考数学试卷】计算:.【答案】-2.【解析】【分析】按顺序先分别进行零指数幂运算、绝对值化简、二次根式化简、负指数幂的运算,然后再按运算顺序进行计算即可得.【详解】原式=1﹣(2﹣1)+2﹣4,=1﹣2+1+2﹣4,=﹣2.【点睛】本题主要考查了实数的混合运算,解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等的运算.48.【2018年湖南省湘潭市中考数学试卷】先化简,再求值:(1+)÷.其中x=3.【答案】x+2,5点睛:本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.49.【江苏省泰州市2018年中考数学试题】(1)计算:π0+2cos30°﹣|2﹣|﹣()﹣2;(2)化简:(2﹣)÷.【答案】(1)2﹣5;(2)【解析】分析:(1)先计算零指数幂、代入三角函数值,去绝对值符号、计算负整数指数幂,再计算乘法和加减可得;(2)根据分式的混合运算顺序和运算法则计算可得.详解:(1)原式=1+2×﹣(2﹣)﹣4=1+﹣2+-4=2﹣5;(2)原式=,=,=.点睛:本题主要考查分式和实数的混合运算,解题的关键是掌握零指数幂、三角函数值、绝对值性质、负整数指数幂及分式的混合运算顺序和运算法则.50.【山东省菏泽市2018年中考数学试题】先化简,再求值:,其中,.【答案】7点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.。

2019年湖南教师招聘考试考前备考学科专业知识-数学

2019年湖南教师招聘考试考前备考学科专业知识-数学

2019年湖南教师招聘考试考前备考学科专业知识第一部分高频考点考点·数的有关概念·★★☆1.四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1.2.因数和倍数:如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的因数(或a的约数);倍数和因数是相互依存的;一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的,其中最小的倍数是它本身.3.奇数和偶数:自然数按能否被2整除的特征可分为奇数和偶数;能被2整除的数叫做偶数;0也是偶数;不能被2整除的数叫做奇数.4.质数与合数:一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97;一个数,如果除了1和它本身还有别的约数,这样的数叫做合数;1不是质数也不是合数,非零自然数除了1外,不是质数就是合数.5.倒数:乘积是1的两个数互为倒数;求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置;1的倒数是1,0没有倒数.例题1.在1-100的全部自然数中,既不是3的倍数也不是5的倍数的数有_________个.例题1.【答案】53.解析:1-100的全部自然数有100个,其中是3的倍数的有100[]333=个,是5的倍数的有100[]205=个,既是3的倍数又是5的倍数(是15的倍数)的有100[]615=个,因此在这100个自然数中,是3的倍数或5的倍数的个数共有33+20-6=47个,则既不是3的倍数又不是5的倍数的个数共有100-47=53个.例题2.把89000000写成用“万”作单位的数是_________,把9958200000写成用“亿”作单位的数约是_________.例题2.【答案】8900万;100亿.解析:本题考查万以上整万或整亿数的改写方法与求近似数的方法.万以上数的改写方法:直接把末尾4个0或者8个0去掉,再加上一个“万”字或者“亿”字;万以上非整万或非整亿数的改写方法:在万位的右下角点上小数点,把末尾的0去掉同时在后面写上“万”字,在亿位的右下角点上小数点,把末尾的0去掉同时在后面写上“亿”字;求近似数的方法是:先看精确到哪一位,再看下一位是几,最后利用四舍五入的方法解决.例题3.求100以内除以3余2的所有数的和.例题3.【答案】1650.解析:100以内除以3余2的数为2、5、8、11、 、98,是公差为3的等差数列,首先求出一共有多少项,9823133-÷+=(),再利用公式求和2983321650+⨯÷=().考点·比与比例★★★1.比的意义:两个数相除又叫做两个数的比.同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商.2.比例尺:(1)数值比例尺:图上距离:实际距离=比例尺;(2)线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离.3.比例的意义:表示两个比相等的式子叫做比例.组成比例的四个数,叫做比例的项.两端的两项叫做外项,中间的两项叫做内项.4.正比例和反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系.用字母表示y/x=k(一定);如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系.用字母表示x×y=k(一定).例题1.冰化成水后,体积比原来减少112,水结成冰后,体积比原来增加().A.110B.111C.112D.16例题1.【答案】B.解析:先把冰的体积看做单位“1”,则化成水以后,水的体积是1-112=1112,也就是水的体积相当于冰的1112,当它结成冰时,体积比水增加112÷1112=111.例题2.10:12=x:30,则x的值是().A.24B.25C.26D.27例题2.【答案】B.解析:根据比例的性质,内项之积等于外项之积,所以12x=300,得x=25,故选B.考点·相遇问题·★★★数量关系:相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间解题思路和方法:简单的题目可直接利用公式,复杂的题目变通后再利用公式.例题.已知甲、乙两人在一个200米的环形跑道上练习跑步,现在把跑道分为相等的4段,即两条直跑道和两条弯道的长度相等.甲平均每秒跑4米,乙平均每秒跑6米.若甲、乙两人分别从A、C处同时出发(如右图),则他们第100次相遇时,在跑道_________上.(填“AB”或“BC”或“DA”或“CD”).例题.【答案】DA.解析:根据路程=速度×时间的等量关系,列出方程:依题意得到方程4x+6x=100,10x=100,x=10,10秒后两人首次相遇.设y秒后两人再次相遇,依题意得到方程4y+6y=200,10y=200,y=20,即20秒后两人再次相遇.第3次相遇,总用时10+20×2,即50秒,第100次相遇,总用时10+20×99,即1990秒,则此时甲跑的圈数为1990×4÷200=39.8,200×0.8=160米,此时甲在DA弯道上.考点·追及问题·★★★数量关系:追及时间=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及时间例题.A、B两地间有条公路,甲从A地出发,步行到B地,乙骑摩托车从B地出发,不停地往返于A、B两地之间,他们同时出发,80分钟后两人第一次相遇,100分钟后乙第一次追上甲,问:当甲到达B地时,乙追上甲几次?例题.【答案】4次.解析:-=(分钟)内所走的路由上图容易看出:在第一次相遇与第一次追上之间,乙在1008020+)分钟内所走的路程,程恰等于线段FA的长度再加上线段AE的长度,即等于甲在(80100因此,乙的速度是甲的9倍(即180/20=9),则BF的长为AF的9倍,所以,甲从A到B,共⨯+=(分钟)乙第一次追上甲时,所用的时间为100分钟,且与甲的路程差为需走80(19)800一个AB全程.从第一次追上甲时开始,乙每次追上甲的路程差就是两个AB全程,因此,追及时间也变为200分钟(即100*2=200(分钟)),所以,在甲从A到B的800分钟内,乙共有4次追上甲,即在第100分钟,300分钟,500分钟和700分钟.考点·列车问题·★★☆(1)列车过桥(隧道)列车车长+桥(隧道)长度(总路程)=列车速度×通过的时间(2)列车+树(电线杆)列车车长(总路程)=列车速度×通过时间(3)列车+列车错车问题:相当于相遇问题快车车长+慢车车长(总路程)=(快车速度+慢车速度)×错车时间超车问题:相当于追及问题快车车长+慢车车长(总路程)=(快车速度—慢车速度)×错车时间例题.小李、老王两名护路工人分别沿铁轨路基旁的小道,反向步行进行安全检查,已知他俩步行速度都是3.6km/h,一列火车匀速地向小李迎面驶来,从小李身旁开过,用了29s,然后从老王身旁开过,用了31s,这列火车长多少米?例题.【答案】899米.解析:3.6km/h=1m/s,设火车的速度v,车长为l.分析火车与小李相向而行时,有29×1+29v=l;火车与老王同向而行时,有31×1+l=31v.解得:30l=米长.v=,所以车长899考点·时钟问题·★☆数量关系:分针的速度是时针的12倍,通常按追及问题来对待,也可以按差倍问题来计算.解题思路和方法:变通为“追及问题”后可以直接利用公式.例题.有一座时钟现在显示8:30.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?例题.【答案】71311分钟,56511分钟.解析:第一次相遇所需时间有两种解法:解法一:分针追上时针的刻度为:30(8)53012.560+⨯-=格,所需时间:3017[(8)530](1)13601211+⨯-÷-=(分钟)解法二:从8:00开始分针追上时针所需时间-30分钟=8:30分开始分针追上时针的时间:17785(1)304330=13121111⨯÷--=-(分钟)第二次重合所需时间:1560(1)651211÷-=(分钟)答:经过71311分钟分针与时针第一次重合,经过56511分钟分针与时针第二次相遇.考点·工程问题·★★★工作量=工作效率×工作时间工作时间=工作量÷工作效率工作时间=总工作量÷(甲工作效率+乙工作效率)解题思路和方法:变通后可以利用上述数量关系的公式.例题.两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,_________队的施工速度快.例题.【答案】乙.解析:设总工程为3个单位,则甲队1个月完成1313⨯=个单位,剩余2个单位用0.5个月完成,则每月完成240.5=个单位,则乙每月完成4-1=3个单位,因此乙队施工速度更快.考点·鸡兔同笼问题·★☆数量关系:第一鸡兔同笼问题假设全都是鸡,则有:兔数=(实际脚数-2×鸡兔总数)÷(4-2)假设全都是兔,则有:鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题假设全都是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)假设全都是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)解题思路和方法:解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔.如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔.这类问题也叫置换问题.通过先假设,再置换,使问题得到解决.例题.鸡兔同笼有30个头,88只脚,鸡有_________只,兔有_________只.例题.【答案】16;14.解析:假设全部是鸡,则有60只脚,比原有脚数少了88-60=28(只),所以兔子只数为28÷2=14(只),所以鸡的只数为30-14=16(只).考点·存款利率问题·★★☆数量关系:年(月)利率=利息÷本金÷存款年(月)数×100%利息=本金×存款年(月)数×年(月)利率本利和=本金+利息=本金×[1+年(月)利率×存款年(月)数]例题.李大强存入银行1200元,月利率0.8%,到期后连本带利共取出1488元,求存款期多长.例题.【答案】两年半.解析:因为存款期内的总利息是(1488-1200)元,所以总利率为(1488-1200)÷1200又因为已知月利率,所以存款月数为(1488-1200)÷1200÷0.8%=30(月)答:李大强的存款期是30月,即两年半.考点·整式的运算·★☆1.幂的运算性质:m n m n a a a += ;()m n mn a a =;m n m n a a a -÷=;()n n n ab a b =.2.乘法公式(1)2()()()x p x q x p q x pq ++=+++.(2)22()()a b a b a b +-=-.(3)222()2a b a ab b +=++.(4)222()2a b a ab b -=-+.3.整式的除法(1)单项式除以单项式的法则:把系数、同底数幂分别相除,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.(2)多项式除以单项式的法则:先把这个多项式的每一项分别除以单项式,再把所得的商相加.例题1.下列计算正确的是().A .2x 2-4x 2=-2B .3x +x=3x 2C .3x∙x=3x 2D .4x 6÷2x 2=2x 3例题1.【答案】C .解析:A .2x 2-4x 2=-2x 2,错误.B .3x +x=4x ,错误.C .3x∙x=3x 2,正确.D .4x 6÷2x 2=2x 4,错误.例题2.下列运算正确的是().A .222222(2)2()3a b a b a b+--+=+B .212111a aa a a +--=--C .32()(1)m m m m a a a -÷=-D .2651(21)(31)x x x x --=--例题2.【答案】C .解析:A 项应等于23a ;B 项应等于21a -;D 项应等于(6x+1)(x-1).考点·因式分解·★☆1.因式分解的方法:(1)提取公因式法;(2)公式法;(3)十字相乘法;(4)分组分解法.2.提公因式法:ma +mb +mc =m (a +b +c ).3.公式法(1)a 2-b 2=(a +b )(a -b ).(2)a 2+2ab +b 2=(a +b )2.(3)a 2-2ab +b 2=(a -b )2.4.十字相乘法:x 2+(p +q )x +pq =(x +p )(x +q ).例题.下列等式从左到右的变形,属于因式分解的是().A .2221(1)x x x +-=-B .22()()a b a b a b +-=-C .2244(2)x x x ++=+D .22(1)ax a a x -=-例题.【答案】C .解析:根据因式分解的定义:将一个多项式化为几个整式积的形式,判断即可.详解:A .2221(1)x x x +-=-,故A 不是因式分解;B .是整式的乘法,故B 不是因式分解;C .是因式分解;D .222(1)(1)(1)x ax a a x a x x +-=-=-+,故D 分解不完全.故选C .考点·一元二次方程·★★1.一般形式:20(0)ax bx c a ++=≠.2.解法:直接开平方法;配方法;公式法)240x b ac -≥;因式分解法.3.根的判别式:通常用“∆”来表示,即24b ac ∆=-.4.根与系数的关系:如果方程20(0)ax bx c a ++=≠的两个实数根是1x ,2x ,那么12b x x a+=-,12c x x a=.例题.已知关于x 的方程x 2-2(k -1)x +k 2=0有两个实数根x 1,x 2.(1)求k 的取值范围;(2)若│x 1-x 2│=x 1x 2-1,求k 的值.例题.【答案】(1)12k ≤.(2)1k =--考点·不等式·★★1.不等式的基本性质(1)若a b <,则a c b c +<+.(2)若a b >,0c >,则ac bc >(或a bc c >).(3)若a b >,0c <,则ac bc <(或a b cc<).2.一元一次不等式组解集的确定方法(已知a b <)x a x b <⎧⎨<⎩的解集是x a <,即“小小取小”;x aa b >⎧⎨>⎩的解集是x b >,即“大大取大”.x a x b >⎧⎨<⎩的解集是a x b <<,即“大小小大中间找”;x ax b<⎧⎨>⎩的解集是空集,即“大大小小取不了”.例题.已知关于x ,y 的方程组5331x y mx y +=⎧⎨+=⎩的解为非负数,求整数m 的值.例题.【答案】7,8,9,10.解析:解方程组可得31323152m x m y -⎧=⎪⎪⎨-+⎪=⎪⎩,313130520,0,31531023mm x y m m -⎧⎧≥≥⎪⎪⎪⎪≥≥∴⇒⎨⎨-+⎪⎪≥≤⎪⎪⎩⎩,所以313153m ≤≤.因为m 为整数,故m =7,8,9,10.考点·分式·★★☆1.分式的基本性质:分式的分子与分母同乘(或除以)一个不等于零的整式,分式的值不变.用式子表示是,A A M A A MB B M B B M⨯÷==⨯÷(其中M 是不等于0的整式).2.分式的加减法:同分母的分式相加减,分母不变,把分子相加减,即a b a bcc c±±=.异分母的分式相加减,先通分,变为同分母的分式,然后相加减,即ac ad bcbd bd±±=.3.分式的乘除法:分式乘以分式,用分子的积做积的分子,分母的积做积的分母,即a c acb d bd =.分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,即a c a d adb d bc bc÷== .4.分式的混合运算:在分式的加减乘除混合运算中,应先算乘除,进行约分化简后,再进行加减运算,遇到有括号的,先算括号里面的.运算结果必须是最简分式或整式.例题1.关于x 的方程:11x c x c +=+的解是121,x c x c ==,11x c x c -=-解是121,x c x c==-,则1111x c x c +=+--的解是().A .121,1x c x c ==-B .121,1cx c x c =-=-C .12,1c x c x c ==-D .12,1c x c x c -==-例题1.【答案】C .解析:由题意得:1111x c x c +=+--变形为111111x c x c -+=-+--,∴11x c -=-或111x c -=-,解得12,1cx c x c ==-.故选C .例题2.先化简再求值:2643211x x x x x +⎛⎫+÷---⎝⎭,其中x =2.例题2.【答案】2643211x x x x x +⎛⎫+÷⎪---⎝⎭2x ==1.考点·函数·★★★1.一次函数y kx b =+的图象与性质2.反比例函数ky x=的图象与性质3.二次函数y =ax 2+bx +c (a ,b ,c 为常数,a ≠0)的图象与性质a 的符号a >0a <0图象开口方向开口向上开口向下对称轴直线2bx a=-直线2b x a=-顶点坐标24,24b ac b aa ⎛⎫-- ⎪⎝⎭24,24b ac b aa ⎛⎫-- ⎪⎝⎭增减性当2bx a <-时,y 随x 的增大而减小;当2bx a>-时,y 随x 的增大而增大当2bx a <-时,y 随x 的增大而增大;当2bx a>-时,y 随x 的增大而减小最值当2b x a =-时,y 有最小值244ac ba-当2b x a =-时,y 有最大值244ac ba-例题.直线y 与x y 、轴分别交于点A 、B ,与反比例函数(0)k y k x=>图象交于点C 、D ,过点A 作x 轴的垂线交该反比例函数图象于点E ,(1)求点A 的坐标;(2)若AE=AC ;①求k 的值;②试判断点E 与点D 是否关于原点O 成中心对称并说明理k 、b 的符号k >0,b >0k >0,b <0k <0,b >0k <0,b <0图象的大致位置经过象限第一、二、三象限第一、三、四象限第一、二、四象限第二、三、四象限性质y 随x 的增大而增大y 随x 的增大而减小k 的符号k >0k <0图象的大致位置经过象限第一、第三象限第二、第四象限性质在每一象限内y 随x 的增大而减小在每一象限内y 随x 的增大而增大由.例题.【答案】(1)A (3,0);(2)k =D 和E 关于坐标原点中心对称.解析:(1)当0y =时,3x =,因此A 的坐标为(3,0).(2)①如图所示:E 的坐标为(3,)3k ,因此3k AE AC ==,作CF 垂直于x轴,由y =,可知30o CAF ∠=,26AC k CF ==,AF =,因此C的坐标为3,6k +.又因为C 在反比例函数曲线上,则C的坐标满足6k =k =.②令3-,解得6x =或3-,则D的坐标为(3,--,而E的坐标为,因此D 和E 关于坐标原点中心对称.考点·三角形全等的判定·★★☆1.边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”).2.角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”).3.角角边定理:有两角和其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS”).4.边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”).5.斜边、直角边定理:有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”).例题.如图,AB ∥EF ,AB =EF ,添加下面哪个条件不能使△ABC ≌△EFD .()A .BD =FCB .∠A =∠EC .AC ∥DED .AC =ED例题.【答案】D .解析:∵AB ∥EF ,∴∠B=∠F ,且AB=EF ,当BD=CF 时,可得BC=DF ,在△ABC 和△EFD 中,满足SAS ,故A 可以判定;当∠A=∠E 时,在△ABC 和△EFD 中,满足ASA ,故B 可以判定;当AC ∥DE 时,可得∠ACB=∠EDF ,在△ABC 和△EFD 中,满足AAS ,故C 可以判定;当AC=DE 时,在△ABC 和△EFD 中,满足SSA ,故D 不可以判定,故选D .考点·圆·★★☆1.在同圆或等圆中,圆心角、圆心角对的弧、弦、弦心距有一组相等则其他几组对应相等.2.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.3.一条弧所对的圆周角等于它所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.4.切线的性质:圆的切线垂直于过切点的半径.切线的判定:经过半径的外端,并且垂直于这条半径的直线是圆的切线.例题.如图, AD 是以等边三角形ABC 一边AB 为半径的四分之一圆周,P 为 AD 上任意一点,若AC=5,则四边形ACBP 周长的最大值是().考点·数据的分析·★★☆1.描述数据集中趋势和平均水平特征的数(1)平均数:12nx x x x n+++=.(2)加权平均数:112212n nnf x f x f x x f f f +++=+++ .(3)中位数:将一组数据按大小(或小大)顺序排列后,处在最中间的一个数(奇数个)(偶数个求最中间的两个数的平均数)是中位数.(4)众数:一组数据中出现次数最多的数叫做这组数据的众数.(5)众数、中位数和平均数,从不同角度描述一组数据的“一般水平”.平均数的大小与一组数据中的每个数据都有关系,容易受极端值的影响.众数仅仅关注一组数据中出现次数最多的数据.中位数是一个位置数,不受极端值影响.一组数据的平均数、中位数是唯一的,而众数可以有多个.2.描述数据波动大小(离散程度)特征的数(1)方差的计算公式:2222121()()(n s x x x x x x n ⎡⎤=-+-++-⎣⎦ .(2)标准差的计算公式:s =.(3)极差:一组数据的最大值减去最小值所得的差.它是反映数据变化范围的.(4)极差、方差和标准差都是用来衡量一组数据的波动大小的量,方差(或标准差)越大,数据的波动越大,方差(或标准差)越小,数据的波动越小.由于表格污损,15和16岁人数不清,则下列关于年龄的统计量可以确定的是().A .平均数、中位数B .众数、中位数C .平均数、方差D .中位数、方差例题.【答案】B .解析:由表可知,年龄为15岁与年龄为16岁的人数和为30-(5+15)=10,故该组数据的众数为14岁,中位数为:14+142=14岁,故关于年龄的统计量可以确定的是众数和中位数,故选B .考点·正余弦定理★★★1.正弦定理:a sinA =b sinB =csinC=2R ,其中R 是三角形外接圆的半径.2.余弦定理:a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C .3.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、r .4.在△ABC 中,已知a 、b 和A 时,解的情况如下A 为锐角A 为钝角或直角图形关系式sin a b A =sin b A a b <<a b ≥a b>解的个数一解两解一解一解例题.△ABC 中,若cos cos a bB A=,则该三角形一定是().A .等腰三角形但不是直角三角形B .直角三角形但不是等腰三角形C .等腰直角三角形D .等腰三角形或直角三角形例题.【答案】D .解析:由cos cos a b B A =,得cos sin cos sin a B Ab A B==,得sin cos sin cos sin 2sin 2A A B B A B A B ⋅=⋅∴=∴=或=2A B π+,选D .考点·数列★★★1.等差数列(1)基本公式:1(1)n a a n d -=+;11()(1)22n n n a a n n S na d +-==+.(2)等差数列的常用性质①通项公式的推广:()(),n m a a n m d n m +=+-∈N .②若{}n a 为等差数列,且k l m n +=+(,,,k l m n +∈N ),则k l m n a a a a +=+.③若{}n a 是等差数列,公差为d ,则{}2n a 也是等差数列,公差为2d .④若{}n a ,{}n b 是等差数列,则{}n n pa qb +也是等差数列.⑤若{}n a 是等差数列,公差为d ,则2,,,k k m k m a a a ++ (,k m +∈N )是公差为md 的等差数列.(3)等差数列各项和的性质①若{}n a 是等差数列,则n S n ⎧⎫⎨⎬⎩⎭也是等差数列,其首项与{}n a 的首项相同,公差是{}n a 的公差的12.②23,,m m m S S S 分别为{}n a 的前m 项,前2m 项,前3m 项的和,则232,,m m m m m S S S S S --成等差数列.③关于非零等差数列奇数项与偶数项和的性质a .若项数为2n ,则+1,n n S aS S nd S a -==奇奇偶偶.b .若项数为21n -,则()1,,,1n n n S n S n a S na S S a S n =-=-==-奇奇奇偶偶偶.④若两个等差数列{}n a ,{}n b 的前n 项和分别为,n n S T ,则2121n n n n a S b T --=.2.等比数列(1)基本公式:11n n a a q-=(0q ≠);11(1)11n n n a q a a qS q q--==--(1q ≠); 1 n S n a =(1q =).(2)等比数列的常用性质①通项公式的推广:n m n m a a q -=(),n m +∈N .②若{}n a 为等比数列,且k l m n +=+(,,,k l m n +∈N ),则k l m n a a a a ⋅=⋅.③若{}n a ,{}n b 是等比数列,则{}()0n a λλ≠,1n a ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭,{}2n a ,{}n n a b ⋅仍是等比数列.(3)等比数列前n 项和的性质①有公比不为1-的等比数列{}n a (或公比为1-且m 为奇数),则232,,m m m m m S S S S S --仍成等比数列,其公比为m q .②当项数是偶数时,S S q =⋅奇偶;当项数是奇数时,1S a S q =+⋅奇偶.3.数列求和方法:(1)分组转化法;(2)错位相减法;(3)倒序相加法;(4)裂项相消法.例题.在等差数列{}n a 中,122311a a +=,32624a a a =+-,其前n 项和为n S .(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n b 满足1n n b S n=+,求数列{}n b 的前n 项和n T .例题.【答案】(Ⅰ)21n a n =-;(Ⅱ)1n n +.解析:(Ⅰ)()1211123235311a a a a d a d +=++=+=,由32624a a a =+-,即1112(2)54a d a d a d +=+++-,得1d 2,1a ==,所以()()1111221n a a n d n n =+-=+-⨯=-,即数列{}n a 的通项公式为21n a n =-.(Ⅱ)()()2111111222n S na n n d n n n n =+-=⨯+-⨯=,()21111111n n b S n n n n n n n ====-++++,1111111111122334111n n T n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-=-= ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭.考点·导数·★★★1.导数的几何意义函数()f x 在点0x 处的导数()'0f x 的几何意义是在曲线()y f x =上点()()00,x f x 处的切线的斜率.相应地,切线方程为()()()'000y f x f x x x -=-.2.基本初等函数的导数公式原函数导函数f (x )=c (c 为常数)f ′(x )=0f (x )=x α(α为实数)f ′(x )=αx α-1f (x )=sin x f ′(x )=cos x f (x )=cos xf ′(x )=-sin xf (x )=a x (a >0,a ≠1)f ′(x )=a x ln a f (x )=e xf ′(x )=e x f (x )=log a x (a >0,a ≠1)f ′(x )=1ln x af (x )=ln x f ′(x )=1xf (x )=tan x f ′(x )=21cos x f (x )=cot xf ′(x )=-21s in x3.导数的运算法则(1)()()()()'''f xg x f x g x ⎡±⎤=±⎣⎦.(2)()()()()()()'''f xg x f x g x f x g x ⎡⋅⎤=+⎣⎦.(3)()()()()()()()()()'''20f x f x g x f x g x g x g x g x ⎡⎤-=≠⎢⎥⎢⎥⎣⎦.4.复合函数的导数复合函数()()yf g x =的导数和函数()(),y f u u g x ==的导数间的关系为'''x u x y y u =⋅,即y 对x的导数等于y 对u 的导数与u 对x 的导数的乘积.5.导数与函数的单调性在某个区间(),a b 内,如果()'0f x >,那么函数()y f x =在这个区间内是增加的;如果()'0f x <,那么函数()y f x =在这个区间内是减少的.6.导数与函数的极值与最值(1)判断()0f x 是极值的方法一般地,当函数()f x 在点0x 处连续时,①如果在0x 附近的左侧()'0f x >,右侧()'0f x <,那么()0f x 是极大值;②如果在0x 附近的左侧()'0f x <,右侧()'0f x >,那么()0f x 是极小值.(2)求可导函数极值的步骤①求()'f x ;②求方程()'0f x =的根;③检查()'f x 在方程()'0f x =的根的左右两侧导数值的符号.如果左正右负,那么()f x 在这个根处取得极大值;如果左负右正,那么()f x 在这个根处取得极小值.(3)函数的最值①在闭区间[],a b 上连续的函数()f x 在[],a b 上必有最大值与最小值.②若函数()f x 在[],a b 上是增加的,则()f a 为函数的最小值,()f b 为函数的最大值;若函数()f x 在[],a b 上是减少的,则()f a 为函数的最大值,()f b 为函数的最小值.③设函数()f x 在[],a b 上连续,在(),a b 内可导,求()f x 在[],a b 上的最大值和最小值的步骤如下:a .求()f x 在(),a b 内的极值;b .将()f x 的各极值与()f a ,()f b 进行比较,其中最大的一个是最大值,最小的一个是最小值.例题.已知函数f (x )=x 3+ax 2+bx 在x =-23与x =1处都取得极值.(1)求函数f (x )的解析式;(2)求函数f (x )在区间[-2,2]的最大值与最小值.例题.【答案】(1)f (x )=x 3-12x 2-2x .(2)f (x )max =f (2)=2,f (x )min =f (-2)=-6.解析:(1)f′(x )=3x 2+2ax +b 0,=0,-4a3+b =0,2a +b =0,解得=-12,=-2,经检验符合题意,∴f (x )=x 3-12x 2-2x .(2)由(1)知f′(x )=x -1),令f′(x )=0,得x 1=-23,x 2=1,当x 变化时,f′(x ),f (x )的变化情况如下表:x -222,3⎛⎫-- ⎪⎝⎭-232,13⎛⎫- ⎪⎝⎭1(1,2)2f′(x )+0-0+f (x )-6极大值2227极小值-322由上表知f (x )max =f (2)=2,f (x )min =f (-2)=-6.考点·圆锥曲线·★★★1.椭圆标准方程22221x y a b +=(0a b >>)22221y x a b +=(0a b >>)范围a x a ≤≤-,b y b≤≤-b x b ≤≤-,a y a≤≤-对称性对称轴:坐标轴对称中心:原点焦点(±c ,0)(0,±c )离心率ce a=∈(0,1)a ,b ,c 的关系c 2=a 2-b 22.双曲线标准方程22221x y a b -=(0a >,0b >)22221y x a b -=(0a >,0b >)范围x a ≥或x a ≤-,y ∈Rx ∈R ,y a ≤-或y a ≥对称性对称轴:坐标轴对称中心:原点焦点(±c ,0)(0,±c )渐近线y =±b axy =±a bx离心率c e a=∈(1,+∞)a ,b ,c 的关系c 2=a 2+b 2例题.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为(F ,且过点(2,0)D .(1)求该椭圆的标准方程;(2)设点112A (,),若P 是椭圆上的动点,求线段PA 的中点M 的轨迹方程.例题.【答案】(1)2214x y +=;(2)22114124x y -+-=()().解析:(1)由已知得椭圆的半长轴2a =,半焦距c ,则半短轴1b =.又椭圆的焦点在x轴上,∴椭圆的标准方程为2214x y +=.(2)设线段PA 的中点为(,)M x y ,点P 的坐标是00,x y (),由0012122x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,得0021122x x y y =-⎧⎪⎨=-⎪⎩,由点P 在椭圆上,得222112142x y -+-=()(),∴线段PA 中点M 的轨迹方程是22114124x y -+-=()().考点·极限★★★1.洛必达法则(1)概念:在分子与分母导数都存在的情况下,分别对分子分母进行求导运算,直到该极限的类型为可以直接代入求解即可.(2)适用类型:通常情况下适用于00型或者是∞∞型极限.2.求00或∞∞型极限的方法(1)通过恒等变形约去分子、分母中极限为零或无穷的因子,然后利用四则运算法则.(2)利用洛必达法则.(3)变量替换与重要极限.(4)等价无穷小因子替换.3.求0∞ 型极限的方法求0∞ 型的方法和上述方法基本相同,必须注意的是:为使用洛必达法则需根据函数的特点先将0∞ 型化为00或∞∞型.注意,一般将较复杂的因子取作分子,特别地含有对数因子时,将该因子取作分子.4.求∞-∞型极限的方法求∞-∞型,一般通过适当的方法将其化为00或∞∞型.若是两个分式函数之差,则通分转化,若是与根式函数之和、差有关的,则需用分子有理化方法转化.5.利用两个重要极限0sin lim1x x x →=,1lim 1e xx x →∞⎛⎫+= ⎪⎝⎭(或()10lim 1e x x x →+=).例题1.若f (x )是定义在R 上的连续函数,()2lim22x f x x →=-,则f (2)等于().A .2B .1C .0D .-1例题1.【答案】C .解析:因为()2lim22x f x x →=-,所以()()222(2)lim lim 2lim(2)02x x x f x x f x x x →→→-==-=-,因为f (x )是定义在R 上的连续函数,所以()20f =.例题2.设函数()sin ,0cos 2,0xe x xf x a x x ⎧+<⎪=⎨+≥⎪⎩,在0x =处连续,那么实数a 等于().A .0B .1C .-1D .2例题2.【答案】C .解析:由于()0lim sin 1xx e x -→+=,所以()0lim cos 21x a x +→+=,即1a =-.故选择C 选项.考点·定积分的性质★★☆1.()0aaf x dx =⎰.2.ba dxb a =-⎰.3.()()baab f x dx f x dx =-⎰⎰.4.()()bba akf x dx k f x dx =⎰⎰.5.()()()bc ba acf x dx f x dx f x dx =+⎰⎰⎰.6.[]()()()()bb baaaf xg x dx f x dx g x dx ±=±⎰⎰⎰.7.(),[,]m f x M x a b ≤≤∈,则()()()bam b a f x dx M b a -≤≤-⎰.8.定积分中值定理:()f x 在[,]a b 连续,至少存在一个[,]a b ξ∈,使.9.()f x 为奇函数,则()0aaf x dx -=⎰;()f x 为偶函数,则0()2()a aaf x dx f x dx -=⎰⎰.例题.(1cos )x dx ππ-+=⎰().A .1B .2πC .πD .0例题.【答案】B .解析:(1cos )(sin )/(sin )(sin())2x dx x x πππππππππ--+=+=+--+-=⎰,故B 正确.考点·行列式的基本性质★★☆1.行列式的值等于其转置行列式的值,即T D D =.2.行列式中任意两行(列)位置互换,行列式的值反号.3.若行列式中两行(列)对应元素相同,行列式值为零.4.若行列式中某一行(列)有公因子k ,则公因子k 可提取到行列式符号外,即nn n n sn s s n a a a ka ka ka a a a 212111211nnn n sn s s na a a a a a a a a k212111211=.5.行列式中若一行(列)均为零元素,则此行列式值为零.6.行列式中若两行(列)元素对应成比例,则行列式值为零.例题.若()21112x f x x x x x -=--,则3x 的系数为().A .3B .2C .-2D .-3例题.【答案】C .解析:设行列式()f x 因子可写成(),1,2,3,4ij a i j =,则行列式()f x 可展开为()1231231tj j j aa a -∑,t 为123,,j j j 排列的逆序数,所以()f x 的展开式中3x 项的123,,j j j 排列只有1,2,3,所以()f x 中3x 项为()()03122x x x x -⋅-⋅=-,系数为-2,故选C .考点·矩阵★★☆1.矩阵的概念由数域F 中mn 个数ij a (1,2,,;1,2,i m j n == )排成的m 行n 列的矩形数表111211212n s s sn n n nn a a a a a a a a a ⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭称为数域F 上的一个m ×n 矩阵,可以写作()ij m n A a ⨯=在不需要表示出矩阵的元素时,也可以写作n m A ⨯.2.矩阵的线性运算(1)矩阵的加法定义:设=)ij s n A a ⨯(与()ij s n B b ⨯=是两个同型矩阵,称s ×n 矩阵()ij ij s n C a b ⨯=+为矩阵A 与矩阵B 的和,记为A+B .运算规律:设A ,B ,C ,0都是s ×n 矩阵,则矩阵的加法满足下面的运算规律①A+B=B+A .②(A+B)+C=A+(B+C).③A+0=0+A=A .④A+(-A)=0.(2)矩阵的数乘定义:设=)ij s n A a ⨯(是数域F 上的矩阵,k 是数域F 上的一个数,称s ×n 矩阵)ij s n a ⨯(k 为数k 与矩阵A 的数量乘积,简称数乘,记为kA .运算规律:设=)ij s n A a ⨯(,()ij s n B b ⨯=为数域F 上的矩阵,k 和l 皆为数域F 上的任意数.由定义可知,矩阵的加法与数乘满足下列运算规律①()k l A kA lA +=+.②()k A B ka kB +=+.③()()()k l kl l k ==A A A .④1A A =.(3)矩阵的乘法定义:设=)ij s n A a ⨯(,()ij s n B b ⨯=都是数域F 上的矩阵.记s ×n 矩阵()ij s n C c ⨯=,其中11221...mij i j i j im mj ik kjk c a b a b a b ab ==+++=∑,称矩阵C 为矩阵A 与矩阵B 的乘积,记作C=AB .运算规律:若A ,B ,C 满足可乘条件,则①结合律:()()AB C A BC =.②分配律:(),()A B C AC BC C A B CA CB +=++=+.③()()()k AB kA B A kB ==.④()()kA kE A A kE ==.例题.矩阵1002A ⎛⎫= ⎪⎝⎭,向量12⎛⎫= ⎪⎝⎭a ,则10A a =_________.例题.【答案】1112⎛⎫ ⎪⎝⎭.解析:10101002A ⎛⎫= ⎪⎝⎭,10101110110222A ⎛⎫⎛⎫⎛⎫= ⎪⎪⎪⎝⎭⎝⎭⎝⎭a =.第二部分备考规划工欲善其事,必先利其器。

2018湖南邵阳教师招聘考试教学知识点(134)

2018湖南邵阳教师招聘考试教学知识点(134)

1、“启发”在做多选题和不定项时,我们经常能看到题目里面问你这个案例启发我们什么,甚至会说结合案例分析,她的事例启发我们什么。

大家在做题时,常常被材料限制,总感觉原文中没有的就不能选,这就导致了我们漏选。

下面给结合几道例题我们来分析以下:【多选题】古代有个叫方仲永的,少年时聪明伶俐,五岁能作诗。

他成名后,其父经常带他游走于当地名门大户之家,以赚取钱财,不让他继续学习,到20岁左右“泯然众人矣”。

方仲永的悲剧启发我们( )。

A.遗传是成功的决定性因素B.接受教育是成功的重要因素C.环境对成功有重要影响D.个人主观能动性的发挥决定是否成功本题考查的是影响人身心发展的因素。

影响人身心发展的因素主要有遗传、环境、个人主观能动性和学校教育。

其中遗传是人身心发展的前提、物质基础,为人的身心发展提供了多种可能性;环境是能把多种可能性转化成为现实;学校教育在人的身心发展中起主导作用;而个人主观能动性是人身心发展的动力、源泉和决定因素。

答案解析:从本题来说,本题考查的是启发类的习题,意思是言之有理即可选。

A选项观点错误,成功的决定因素为个人主观能动性而不是遗传。

本题案例方仲永之所以泯然众人正是由于父亲不让其上学接受教育,所以BC正确。

而D选项,若是方仲永能不听父亲的意愿,执意接受教育,则悲剧就可能不会发生。

故其他选项均有理,答案为BCD。

在本题中,大家可能漏选D。

要注意“启发”性的习题言之有理即可。

2、“可能是”【不定项选择题】张老师在期中考试后的试卷讲解上,看见考试成绩较差的黄灿同学在摆弄试卷并发出哗哗哗的响声,张老师大喊一声:“黄灿你在干什么?”只见黄灿脖子一梗,脸涨得通红说“我不想听”,张老师气不打一处来,气愤地吼道:“既然不想听,你就滚出去!”此时课堂陷入十分尴尬的境地。

根据学生的情况,分析黄灿出现课堂问题行为的原因可能是( )A.成绩不理想,情绪出现波动B.现逆反心理,希望摆脱教师的管理C.自尊心过强,面对张老师的“大喊”感觉自尊心受损D.长期积累的师生矛盾爆发答案解析:本题考查的是“说明”类的习题,意思是言之有理即可选。

2018年湖南省邵阳市中考数学试卷-答案

2018年湖南省邵阳市中考数学试卷-答案

湖南省邵阳市2018年初中学业水平考试数学答案解析1.【答案】C【解析】解:,最接近的是1.7,1.732≈∴故选:C .【考点】计算器﹣基础知识.2.【答案】D【解析】解:,160AOD ∠=︒ ,160BOC AOD ∴∠=∠=︒故选:D .【考点】此题考查对顶角、邻补角,关键是根据对顶角相等解析.3.【答案】D【解析】解: ()321x x x x -=-.()()11x x x =-+故选:D .【考点】提取公因式法以及公式法分解因式.4.【答案】B【解析】解:A.不是轴对称图形,故此选项错误;B.是轴对称图形,故此选项正确;C.不是轴对称图形,故此选项错误;D.不是轴对称图形,故此选项错误;故选:B .【考点】轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.【答案】B【解析】解:.9828 nm 2810m 2.810m =⨯=⨯﹣﹣故选:B .【考点】本科学记数法表示较小的数.6.【答案】B【解析】解:四边形为的内接四边形,ABCD O ,18060A BCD ∴∠=︒-∠=︒由圆周角定理得,,2120BOD A ∠=∠=︒故选:B .【考点】圆内接四边形的性质、圆周角定理.7.【答案】A【解析】解:设依题意得y kx b =+,15.6215.4k b k b +=⎧⎨+=⎩解析, 0.215.8k b =-⎧⎨=⎩.0.215.8y x ∴=-+当时,5x =0.2515.8y =-⨯+.14.8=故选:A .【考点】一次函数的应用、待定系数法等知识.8.【答案】A【解析】解:点,过点作轴于点.将以坐标原点为位似中 ()2,4A A AB x ⊥B AOB △O 心缩小为原图形的,得到, 12COD △,则的长度是2.()1,2C ∴CD 故选:A .【考点】位似变换以及坐标与图形的性质.9.【答案】C【解析】解:李飞的成绩为5、8、9、7、8、9、10、8、9、7,则李飞成绩的平均数为, 572839310810+⨯+⨯+⨯+=所以李飞成绩的方差为:; ()()()()()22222158278388398108 1.810⎡⎤⨯-+⨯-+⨯-+⨯-+-=⎣⎦刘亮的成绩为7、8、8、9、7、8、8、9、7、9,则刘亮成绩的平均数为, 738493810⨯+⨯+⨯=刘亮成绩的方差为, ∴22213784883980.610[]⨯⨯-+⨯-+⨯-=()()(),0.6 1.8 <应推荐刘亮,∴故选:C .【考点】折线统计图与方差.10.【答案】A【解析】解:设大和尚有人,则小和尚有人,x ()100x -根据题意得:, 10031003x x -+=解得25x =则(人)1001002575x -=-=所以,大和尚25人,小和尚75人.故选:A .【考点】一元一次方程的应用.11.【答案】2-【解析】解:点在数轴上表示的数是2, A 点表示的数的相反数是.∴A 2-故答案为:.2-【考点】数轴上表示数的方法、相反数的含义和求法.12.【答案】ADF ECF △∽△【解析】解:四边形为平行四边形,ABCD ,AD CE ∴∥.ADF ECF ∴△∽△故答案为.ADF ECF △∽△【考点】相似三角形的判定,平行四边形的性质.13.【答案】0 【解析】解:设方程的另一个解是,n 根据题意得:,33n -+=-解得:.0n =故答案为:0.【考点】根与系数的关系以及一元二次方程的解.14.【答案】40︒【解析】解:,60ADE ∠=︒ ,,120ADC ∴∠=︒AD AB ⊥ ,90DAB ∴∠=︒,36040B C ADC A ∴∠=︒-∠-∠-∠=︒故答案为:.40︒【考点】多边形的内角和外角.15.【答案】16 000【解析】解:该市80 000名九年级学生中“综合素质”评价结果为“A ”的学生约为, 280 000100%16 00023311⨯⨯=++++故答案为:16 000【考点】条形统计图的综合运用.16.【答案】2x =【解析】解:一次函数的图象与轴相交于点,y ax b =+x ()2,0关于的方程的解是.∴x 0ax b +=2x =故答案为.2x =【考点】一次函数与一元一次方程的关系.17.【解析】解:,,AB AC = 36A ∠=︒, 18036722B ACB ︒-︒∴∠=∠==︒将中的沿向下翻折,使点落在点处,ABC △A ∠DE A C ,,AE CE ∴=36A ECA ∠=∠=︒,72CEB ∴∠=︒,BC CE AE ∴===.【考点】等腰三角形的判断和性质、折叠的性质以及三角形内角和定理的运用.18.【答案】4【解析】解:点是反比例函数图象上一点,作轴,垂足为点, A k y x=AB x ⊥B ; 122AOB S k ∴==△又函数图象位于一、三象限,,4k ∴=故答案为4.【考点】反比例函数系数的几何意义.19.【答案】解:原式.112=+-+=【考点】实数的运算.20.【答案】解:原式,2222244484a b a ab b b ab --=+-+=当,时,原式. 2a =-12b =4=-【考点】整式的混合运算﹣化简求值.21.【答案】证明:平分,BC ABD ∠,,OBC DBC ∴∠=∠OB OC = ,,OBC OCB ∴∠=∠OCB DBC ∴∠=∠,,OC BD ∴∥BD CD ⊥ ,为的切线.OC CD ∴⊥CD ∴O【考点】切线的判定定理.22.【答案】解:(1)服装项目的权数是:,120%30%40%10%---=普通话项目对应扇形的圆心角是:;36020%72︒⨯=︒(2)明在选拔赛中四个项目所得分数的众数是85,中位数是:; 8085282.5+÷=()(3)李明得分为:,8510%7020%8030%8540%80.5⨯+⨯+⨯+⨯=张华得分为:,, 9010%7520%7530%8040%78.5⨯+⨯+⨯+⨯=80.578.5 >李明的演讲成绩好,∴故选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛.【考点】扇形统计图、中位数、众数、加权平均数.23.【答案】解:(1)设B 型机器人每小时搬运千克材料,则A 型机器人每小时搬运x 千克材料,30x +()根据题意,得, 1 00080030x x=+解得.120x =经检验,是所列方程的解.120x =当时,.120x =30150x +=答:A 型机器人每小时搬运150千克材料,B 型机器人每小时搬运120千克材料;(2)设购进A 型机器人a 台,则购进B 型机器人台,()20a -根据题意,得, 15012020 2 800a a +-≥()解得. 403a ≥是整数,a .14a ∴≥答:至少购进A 型机器人14台.【考点】分式方程的运用,一元一次不等式的运用.24.【答案】解:在中,,,Rt ABD △30ABD ∠=︒10 m AB =,sin 10sin305AD AB ABD ∴=∠=⨯︒=在中,,, Rt ACD △15ACD ∠=︒sin AD ACD AC∠=, 5519.2 m sin sin150.26AD AC ACD ∴==≈≈∠︒即:改造后的斜坡式自动扶梯的长度约为19.2米.AC 【考点】了解直角三角形的应用,锐角三角函数的应用. 25.【答案】解:(1)如图1,连接,AC。

湖南省特岗教师公开招聘考试小学数学专业知识考试考点必背

湖南省特岗教师公开招聘考试小学数学专业知识考试考点必背

湖南省特岗教师公开招聘考试(小学数学学科专业知识)所有基础公式系统复习背诵1.集合一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元。

元素与集合的关系:元素与集合的关系有“属于”与“不属于”两种。

并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}。

交集:以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}。

集合的运算:集合交换律:A∩B=B∩A,A∪B=B∪A。

集合结合律:(A∩B)∩C=A∩(B∩C),(A∪B)∪C=A∪(B∪C)。

集合分配律:A∩(B∪C)=(A∩B)∪(A∩C),A∪(B∩C)=(A∪B)∩(A∪C)。

集合德.摩根律:Cu(A∩B)=CuA∪CuB,Cu(A∪B)=CuA∩CuB。

背诵2.方程组1.方程组的有关概念方程组的定义:由几个方程组成的一组方程,叫做方程组。

方程组的解:方程组里各个方程的公共解叫做方程组的解。

解方程组:求方程组解的过程叫做解方程组。

2.二元一次方程组及其解法二元一次方程:含有两个未知数,并且含有的未知数项的次数都是一,这样的方程叫做二元一次方程。

二元一次方程组:把具有相同未知数的两个二元一次方程合在一起,组成的方程组叫做二元一次方程组。

二元一次方程组的解法:代入消元法,加减消元法。

3.三元一次方程组及其解法三元一次方程:含有三个未知数,并且含有未知数的项的次数都是一,这样的方程叫做三元en 一次方程。

三元一次方程组:含有三个相同的未知数,每个方程中含未知数的项的次数都是一,并且一共有三个方程,这样的方程组叫做三元一次方程组。

三元一次方程组的解法: 代入消元法,加减消元法。

即通过代入消元法或加减消元法消去同一个未知数得到二元一次方程组,解这个二元一次方程组求出两个未知数的值,然后再求第三个未知数的值。

专题6.4 湖南省邵阳市-2018中考数学真题之名师立体解读高端精品(只含真题解析)

专题6.4 湖南省邵阳市-2018中考数学真题之名师立体解读高端精品(只含真题解析)

1.C【解析】∵≈1.732,∴与最接近的是1.7,故选:C.2.D【解析】∵∠AOD=160°,∴∠BOC=∠AOD=160°,故选:D.3.D【解析】x﹣x3=x(1﹣x2)=x(1﹣x)(1+x).故选:D.5.B【解析】28nm=28×10﹣9m=2.8×10﹣8m.故选:B.6.B【解析】∵四边形ABCD为⊙O的内接四边形,∴∠A=180°﹣∠BCD=60°,由圆周角定理得,∠BOD=2∠A=120°,故选:B.7.A【解析】(1)设y=kx+b依题意得(1分),解答,∴y=﹣0.2x+15.8.当x=5时,y=﹣0.2×5+15.8=14.8.故选:A.8.A【解析】∵点A(2,4),过点A作AB⊥x轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的,得到△COD,∴C(1,2),则CD的长度是:2.故选:A9.C【解析】李飞的成绩为5、8、9、7、8、9、10、8、9、7,则李飞成绩的平均数为=8,所以李飞成绩的方差为×[(5﹣8)2+2×(7﹣8)2+3×(8﹣8)2+3×(9﹣8)2+(10﹣8)2]=1.8;刘亮的成绩为7、8、8、9、7、8、8、9、7、9,则刘亮成绩的平均数为=8,∴刘亮成绩的方差为×[3×(7﹣8)2+4×(8﹣8)2+3×(9﹣8)2]=0.6,∵0.6<1.8,∴应推荐刘亮,故选:C.11.-2【解析】∵点A在数轴上表示的数是2,∴点A表示的数的相反数是﹣2.故答案为:﹣2.12.△ADF∽△ECF(答案不唯一)【解析】∵四边形ABCD为平行四边形,∴AD∥CE,∴△ADF∽△ECF.13.0【解析】设方程的另一个解是n,根据题意得:﹣3+n=﹣3,解得:n=0.故答案为:014.40°【解析】∵∠ADE=60°,∴∠ADC=120°,∵AD⊥AB,∴∠DAB=90°,∴∠B=360°﹣∠C﹣∠ADC﹣∠A=40°15.16000【解析】该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为,故答案为:1600016.x=2【解析】∵一次函数y=ax+b的图象与x轴相交于点(2,0),∴关于x的方程ax+b=0的解是x=2.故答案为x=2.18.4【解析】∵点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,∴S△AOB=|k|=2;又∵函数图象位于一、三象限,∴k=4,故答案为4.19.解:原式=1+1﹣2+=.20.解:原式=a2﹣4b2﹣a2+4ab﹣4b2+8b2=4ab,当a=﹣2,b=时,原式=﹣421.证明:∵BC平分∠ABD,∴∠OBC=∠DBC,∵OB=OC,∴∠OBC=∠OCB,∴∠OCB=∠DBC,∴OC∥BD,∵BD⊥CD,∴OC⊥CD,∴CD为⊙O的切线.22.解:(1)服装项目的权数是:1﹣20%﹣30%﹣40%=10%,普通话项目对应扇形的圆心角是:360°×20%=72°;(2)明在选拔赛中四个项目所得分数的众数是85,中位数是:(80+85)÷2=82.5;(3)李明得分为:85×10%+70×20%+80×30%+85×40%=80.5,张华得分为:90×10%+75×20%+75×30%+80×40%=78.5,∵80.5>78.5,∴李明的演讲成绩好,故选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛.(2)设购进A型机器人a台,则购进B型机器人(20﹣a)台,根据题意,得150a+120(20﹣a)≥2800,解得a≥.∵a是整数,∴a≥14.答:至少购进A型机器人14台.24.解:在Rt△ABD中,∠ABD=30°,AB=10m,∴AD=ABsin∠ABD=10×sin30°=5,在Rt△ACD中,∠ACD=15°,sin∠ACD=,∴AC==≈≈19.2m,即:改造后的斜坡式自动扶梯AC的长度约为19.2米.(2)①∵△OGE绕点O顺时针旋转得到△OMN,∴OG=OM、OE=ON,∠GOM=∠EON,∴=,∴△OGM∽△OEN,∴==.②添加AC=BD,如图2,连接AC、BD,∵点O、E、F、G分别是AB、BC、CD、AD的中点,∴OG=EF=BD、OE=GF=BD,∵AC=BD,∴OG=OE,∵△OGE绕点O顺时针旋转得到△OMN,∴OG=OM、OE=ON,∠GOM=∠EON,∴OG=OE、OM=ON,在△OGM和△OEN中,∵,∴△OGM≌△OEN(SAS),∴GM=EN.∴构造的三角形是等腰三角形的概率=;(3)存在.易得BC的解析是为y=﹣2x+4,S△ABC=AC•OB=×3×4=6,M点的坐标为(m,﹣2m+4)(0≤m≤2),①当N点在AC上,如图1,∴△AMN的面积为△ABC面积的,∴(m+1)(﹣2m+4)=2,解得m1=0,m2=1,当m=0时,M点的坐标为(0,4),N(0,0),则AN=1,MN=4,∴tan∠MAC===4;当m=1时,M点的坐标为(1,2),N(1,0),则AN=2,MN=2,∴tan∠MAC==;②当N点在BC上,如图2,BC==2,∵BC•AN=AC•BC,解得AN==,∵S△AMN=AN•M N=2,∴MN==,∴∠MAC===;。

【2018中考数学真题】湖南邵阳市试题(含答案)【2018数学中考真题解析系列】

【2018中考数学真题】湖南邵阳市试题(含答案)【2018数学中考真题解析系列】

湖南省邵阳市2018年中考数学真题试题温馨提示:(1)本学科试卷分试题卷和答题卡两部分,考试时量为120分钟,满分为120分;(2)请你将姓名、准考证号等相关信息按要求填涂在答题卡上;(3)请你在答题卡上作答,答在本试题卷上无效.一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的)1.用计算器依次按键,得到的结果最接近的是A.1.5 B.1.6 C.1.7 D.1.82.如图(一)所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为A.20° B.60°C.70° D.160°3.将多项式x-x3因式分解正确的是A.x(x2-1) B.x(1-x2) C.x(x+1)(x-1) D.x(1+x)(1-x)4.下列图形中,是轴对称图形的是5.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10-9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为A.28×10-9 m B.2.8×10-8 mC.28×109 m D.2.8×108 m6.如图(二)所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是A.80° B.120°C.100° D.90°7.小明参加100m短跑训练,2018年1~4月的训练成绩如下表所示:一百馒头一百僧,大僧三个更无争, 小僧三人分一个,大小和尚得几丁.体育老师夸奖小明是“田径天才”.请你预测小明5年(60个月)后100m 短跑的成绩为(温馨提示:目前100m 短跑世界记录为9秒58) A .14.8s B .3.8sC .3sD .预测结果不可靠8.如图(三)所示,在平面直角坐标系中,已知点A (2,4),过 点A 作AB ⊥x 轴于点B .将△AOB 以坐标原点O 为位似中心缩小为原图形的12,得到△COD ,则CD 的长度是A .2B .1C .4D .2 59.根据李飞与刘亮射击训练的成绩绘制了如图(四)所示的折线统计图.根据图(四)所提供的信息,若要推荐一位成绩较稳定...的选手去参赛,应推荐 A .李飞或刘亮 B.李飞 C .刘亮 D .无法确定10.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人.下列求解结果正确的是A .大和尚25人,小和尚75人B .大和尚75人,小和尚25人C .大和尚50人,小和尚50人D .大、小和尚各100人 二、填空题(本大题有8个小题,每小题3分,共24分)11.点A 在数轴上的位置如图(五)所示,则点A 表示的数的相反数是 .12.如图(六)所示,点E 是平行四边形ABCD 的边BC 延长线上一点,连接AE ,交CD 于点F ,连接BF .写出图中任意一对相似三角形: .13.已知关于x 的方程x 2+3x -m =0的一个解为-3,则它的另一个解是 .14.如图(七)所示,在四边形ABCD 中,AD ⊥AB ,∠C =110°,它的一个外角∠ADE =60°, 则∠B 的大小是 .15.某市对九年级学生进行“综合素质”评价,评价结果分为A ,B ,C ,D ,E 五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图(八)所示的统计图.已知图中从左到右的五个长方形的高之比为2∶3∶3∶1∶1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A ”的学生约为 人.16.如图(九)所示,一次函数y =ax +b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4).结合图象可知,关于x 的方程ax +b =0的解是 .17.如图(十)所示,在等腰△ABC 中,AB =AC ,∠A =36°.将△ABC 中的∠A 沿DE 向下翻折,使点A 落在点C 处.若AE =3,则BC 的长是_________.18.如图(十一)所示,点A 是反比例函数y =kx图象上一点,作AB ⊥x 轴,垂足为点B .若△AOB 的面积为2,则k 的值是 .三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分.解答应写出必要的文字说明、演算步骤或证明过程) 19.计算:(-1)2+( π -3.14)0-|2-2|.20.先化简,再求值:( a -2b )( a +2b )-(a -2b )2+8b 2,其中a =-2,b =12.21.如图(十二)所示,AB 是⊙O 的直径,点C 为⊙O 上一点,过点B 作BD ⊥CD ,垂足为点D ,连结BC .BC 平分∠ABD . 求证:CD 为⊙O 的切线.22.某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图(十三)所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:结合以上信息,回答下列问题:(1)求服装项目的权数及普通话项目对应扇形的圆心角大小; (2)求李明在选拔赛中四个项目所得分数的众数和中位数;(3)根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.23.某公司计划购买A ,B 两种型号的机器人搬运材料.已知A 型机器人比B 型机器人每小时多搬运30kg 材料,且A 型机器人搬运1000 kg 材料所用的时间与B 型机器人搬运800 kg 材料所用的时间相同.(1)求A ,B 两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A ,B 两种型号的机器人共20台,要求每小时搬运材料不得少于2800 kg ,则至少购进A 型机器人多少台?24.某商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式自动扶梯.如图(十四)所示,已知原阶梯式自动扶梯AB 长为10m ,坡角∠ABD 为30°;改造后的斜坡式自动扶梯的坡角∠ACB 为15°,请你计算改造后的斜坡式自动扶梯AC 的长度.(结果精确到0.1m .温馨提示:sin15°≈0.26, cos15°≈0.97,tan15°≈0.27 )25.如图(十五)所示,在四边形ABCD 中,点O ,E ,F ,G 分别是AB ,BC ,CD ,AD 的中点,连接OE ,EF ,FG ,GO ,GE .(1)证明:四边形OEFG 是平行四边形;(2)将△OGE 绕点O 顺时针旋转得到△OMN ,如图(十六)所示,连接GM ,EN .①若OE =3,OG =1,求ENGM的值;②试在四边形ABCD 中添加一个条件,使GM ,EN 的长在旋转过程中始终相等.(不要求证明)26.如图(十七)所示,将二次函数y =x 2+2x +1的图象沿x 轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y =ax 2+bx +c 的图象.函数y =x 2+2x +1的图象的顶点为点A .函数y =ax 2+bx +c 的图象的顶点为点B ,和x 轴的交点为点C ,D (点D 位于点C 的左侧). (1)求函数y =ax 2+bx +c 的解析式;(2)从点A ,C ,D 三个点中任取两个点和点B 构造三角形,求构造的三角形是等腰三角形的概率;(3)若点M 是线段BC 上的动点,点N 是△ABC 三边上的动点,是否存在以AM 为斜边的Rt △AMN ,使△AMN 的面积为△ABC 面积的13,若存在,求tan∠MAN 的值;若不存在,请说明理由.邵阳市2018年初中毕业学业考试参考答案及评分标准数 学一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的)二、填空题(本大题有8个小题,每小题3分,共24分)11.-212.答案不唯一.例如△EFC ∽△AFD ,△EAB ∽△AFD ,△EFC ∽△EAB . 13.x =0 14.40° 15.16000 16.x =2 17. 3 18.4三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分.解答应写出必要的文字说明、演算步骤或证明过程) 19.(8分)解:(-1 )2+(π-3.14 )0-|2-2|=1+1-(2-2)………………………………………………………………………5分 =2-2+ 2 ……………………………………………………………………7分 =2. …………………………………………………………………………8分 20.(8分)解:( a -2b )( a +2b )-(a -2b )2+8b 2=a 2-(2b )2-(a 2-4ab +4b 2)+8b 2 =a 2-4b 2-a 2+4ab -4b 2+8b 2=4ab . ……………………………………………………………………………6分 将a =-2,b =12 代入得:原式=4×(-2)×12=-4. (8)分21.(8分)证明:∵BC 平分∠ABD ,∴∠OBC =∠DBC .……………………………………………2分∵OB =OC ,∴∠OBC =∠OCB .……………………………………………………4分 ∴∠DBC =∠OCB .∴OC ∥BD .……………………………………………………6分 ∵BD ⊥CD ,∴OC ⊥CD . 又∵点C 为⊙O 上一点,∴CD 为⊙O 的切线.…………………………………………………………………8分 22.(8分)解:(1)服装项目的权数为10%,普通话项目对应扇形的圆心角为72°;……………2分 (2)众数为85,中位数为82.5;………………………………………………………4分 (3)李明的得分为80.5,张华的得分为78.5,应推荐李明参加比赛.……………8分 23.(8分)解:(1)设A 型机器人每小时搬运x kg 材料,则B 型机器人每小时搬运(x -30)kg 材料,依题意得: 1000x =800x -30.………………………………………………………2分解得x =150,经检验,x =150是原方程的解.所以A 型机器人每小时搬运150kg 材料,B 型机器人每小时搬运120kg 材料. 答:略..............................................................................................4分 (2)设公司购进A 型机器人y 台,则购进B 型机器人(20-y )台,依题意得: 150y +120(20-y )≥2800. (6)分解得y ≥1313.因为y 为整数,所以公司至少购进A 型机器人14台.答:略.…………………………………………………………………………………8分 24.(8分)解:在Rt △ABD 中,∠ABD =30°,所以AD =12AB =5.………………………………………………………………………2分在Rt △ACD 中,sin ∠ACD =AD AC,所以AC =AD sin ∠ACD =5sin15°≈19.2(m).答:略.……………………………………………………………………………………8分25.(8分) 解:(1)连接AC ,∵点O ,E ,F ,G 分别是AB ,BC ,CD ,AD 的中点, ∴OE ∥AC ,OE =12AC ,GF ∥AC ,GF =12AC .∴OE ∥GF ,OE =GF .∴四边形OEFG 是平行四边形.……………………………………………………3分 (2)①∵△OGE 绕点O 顺时针旋转得到△OMN , ∴OG =OM ,OE =ON ,∠GOM =∠EON . ∴OGOE =OM ON.∴△OGM ∽△OEN . ∴EN GM =OE OG =31=3.………………………………………………………6分 ②答案不唯一,满足AC =BD 即可.……………………………………………8分26.(10分) 解:(1)将抛物线y =x 2+2x +1沿x 轴翻折得到:y =-x 2-2x -1,将抛物线y =-x 2-2x -1,向右平移1个单位得到:y =-x 2, 将抛物线y =-x 2向上平移4个单位得到:y =-x 2+4.所求函数y =ax 2+bx +c 的解析式为y =-x 2+4. (2)分(2)从A ,C ,D 三个点中任选两个点和点B 构造的三角形有:△BAC ,△BAD ,△BCD .A ,B ,C ,D 的坐标分别为(-1,0),(0,4),(2,0),(-2,0),可求得AB =17,AC =3,BC =25,AD =1,BD =25,CD =4,只有△BCD 为等腰三角形,所以构造的三角形是等腰三角形的概率P =13.…4分(3)S △ABC =12 AC ·BO =12×3×4=6.①当点N 在边AC 上时,点M 在边BC 上,在Rt △AMN 中,MN ⊥AC . 设点N 的坐标为(m ,0),则AN =m +1,点M 的横坐标为m .由B (0,4),C (2,0)易得线段BC 的解析式为y =-2x +4,其中0≤x ≤2, 所以点M 的纵坐标为-2m +4,则MN =-2m +4.S △AMN =12AN ·MN =12(m +1)(-2m +4)=13S △ABC =2. 解得m 1=1,m 2=0.当m =1时,N 点的坐标为(1,0),M 点的坐标为(1,2),AN =2,MN =2.tan ∠MAN =MN AN =22=1.……………5分 当m =0时,N 点的坐标为(0,0),M 点与点B 重合,坐标为(0,4),AN =1,MN =4.tan ∠MAN =MN AN =41=4.………………………………………………………6分 ②当点N 在BC 上时,点M 在BC 上,Rt △AMN 中,MN ⊥AN ,因为S △AMN =13S △ABC ,所以12AN ·MN =13×12BC ·AN , 所以MN =13BC =253. 因为S △ABC =12BC ·AN =12×25·AN =6, 所以AN =65. 所以tan ∠MAN =MN AN =25365=59.…………8分 ③当点N 在AB 上时,点M 在BC 上,Rt △AMN 中,MN ⊥AN .设AN =t ,则BN =17–t ,过点A 作AG ⊥BC 于点G ,由②得AG =65. 在Rt △ABG 中,BG =AB 2-AG 2=75. 易证△BNM ∽△BGA ,所以BN BG =MN AG ,即17-t 75=MN 65, 求得MN =617-6t 7, 所以S △AMN =12AN ·MN =12t ·617-6t 7=2, 化简得3t 2-317t +14=0,△=(317)2-4×3×14=-15<0,此方程无解, 所以此情况不存在.综上所述,当点N 在AC 上,点M 与点B 重合时,tan ∠MAN =4;当点N 在AC 上,点M 不与点B 重合时,tan ∠MAN =1;当点N 在BC 上时,tan ∠MAN =59.…………………………10分 注:解答题用其它方法解答参照给分.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018湖南邵阳教师招聘数学类考试热点知识(484)点评:此题属于资料分析题,解答时从资料中寻找解题线索,提取有利于解题的信息,与所学知识建立链接,从而得出答案.
3.从今年3月底开始,在上海、江苏等地出现了H7N9禽流感疫情.到目前为止已报告130多例人感染H7N9禽流感确诊病例.根据所学知识回答下列问题:
(1)H7N9禽流感的病原体是[ H7N9禽流感病毒].
(2)H7N9禽流感之所以称为传染病,是因为它具有传染性和[ 流行性]的特点.
(3)在疫情发生后,医护人员把禽流感患者的密切接触者进行医学隔离一段时间,这种措施属于[ 控制传染源].
(4)在疫情发生的市场等地,防疫人员对其进行喷药消毒灯,这种措施属于[ 切断传播途径].
考点:传染病的预防措施;病原体与传染病的病因;传染病的特点.
分析:此题考查的是病原体与传染病的预防措施.结合题意,分析解答.
解答:(1)引起传染病的细菌、病毒和寄生虫等生物,称做病原体.因此,H7N9禽流感的病原体是H7N9禽流感病毒.
(2)传染病是指由病原体引起的,能够在人与人之间、人与动物之间传播的疾病,具有传染性和流行性的特点,H7N9禽流感属于传染病,因此具有传染性和流行性的特点.
(3)传染病流行的三个基本环节是:传染源、传播途径和易感人群.传染源:能够散播病原体的人或动物.传播途径:病原体离开传染源到达健康人所经过的途径叫传播途径,如空气传播、饮食传播、生物媒介传播等.易感人群:对某种传染病缺乏免疫力而容易感染该病的人群叫易感人群.预防传染病的措施为:控制传染源、切断传播途径、保护易感人群,
因此医护人员把禽流感患者的密切接触者进行医学隔离一段时间,这种措施属于控制传染源.
(4)由(3)可知,防疫人员对其进行喷药消毒灯,这种措施属于切断传播途径.
故答案为:(1)H7N9禽流感病毒;(2)流行性;(3)控制传染源;(4)切断传播途径
点评:此题综合性较强,要结合实际传染病的例子来考查传染病的预防措施的知识,注意对知识的灵活运用.
4.药物可以分为处方药和非处方药,非处方药不需要凭医师处方即可购买使用,非处方药简称为[ OTC ].无论是处方药还是非处方药,都应该仔细阅读[ 使用说明书],以确保用药安全.
考点:安全用药的常识.
分析:此题主要考查的是药品的分类以及安全用药等知识.
解答:药品主要包括非处方药和处方药,非处方药是不需要医师处方、即可自行判断、购买和使用的药品,简称OTC.《中华人民共和国药品管理法》中规定:药品的标签应当包含药品通用名称、适应症或者功能主治、规格、用法用量、生产日期、产品批号、有效期、生产企业等内容.通过药品使用说明书,我们能了解药品的适应症、用法用量、是否过期等信息,这是我们安全用药的基本要求,无论是处方药还是非处方药,在使用之前,都应该仔细阅读使用说明书,了解药物的主要成分、适应症、用法与用量、药品规格、注意事项、生产日期和有效期等,以确保用药安全.
故答案为:OTC 使用说明书
文章来源于长理职培供稿!。

相关文档
最新文档