高二数学不等式

合集下载

高二数学不等式知识点

高二数学不等式知识点

高二数学不等式知识点高二数学不等式知识点11.不等式的定义:a-b>;0a>;b,a-b=0a=b,a-b<;0a①其实质是运用实数运算来定义两个实数的大小关系。

它是本章的基础,也是证明不等式与解不等式的主要依据。

②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。

作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。

2.不等式的性质:①不等式的性质可分为不等式基本性质和不等式运算性质两部分。

不等式基本性质有:a>;bba>;b,b>;ca>;c(传递性)(3)a>;ba+c>;b+c(c∈R)(4)c>;0时,a>;bac>;bcc<;0时,a>;bac运算性质有:(1)a>;b,c>;da+c>;b+d.(2)a>;b>;0,c>;d>;0ac>;bd.(3)a>;b>;0an>;bn(n∈N,n>;1)。

(4)a>;b>;0>;(n∈N,n>;1)。

应注意,上述性质中,条件与结论的逻辑关系有两种:“”和“”即推出关系和等价关系。

一般地,证明不等式就是从条件出发施行一系列的推出变换。

解不等式就是施行一系列的等价变换。

因此,要正确理解和应用不等式性质。

②关于不等式的性质的考察,主要有以下三类问题:(1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。

(2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。

(3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。

高二数学不等式知识点2证明不等式的灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。

要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。

高二数学不等式的性质3

高二数学不等式的性质3
c d
例2 已知a > b > 0,c < 0,求证:
c c a b
.(教材P7例4 )
x y . xa yb
1 1 , a b
例3 已知a,b,x,y是正数,且
x > y.求证:
课堂练习: 1. 如果a > b > 0,c > d > 0,则下列 不等式中不正确的是 ( C ) a b A. a d > b c B. d c C. a + d > b + c D.ac > bd
复习 1、(1) 同向不等式: 两个或多个不等号方向相同的不等式 . (2) 异向不等式: 两个不等号方向相反的不等式 . 2、不等式的性质: 定理1: a > b b < a;b < a a > b. 定理2: a > b,b > c a > c.
复习 2、不等式的性质: 定理3:a > b a + c > b + c. 说明:定理3的逆命题也成立. 移项法则:a + b > c a > c b.
2、不等式的性质: 推论1 如果a > b > 0,且c > d > 0, 那么ac > bd.(相乘法则) 说明:(1) 上述证明是两次运用定理4, 再用定理2证出的; (2) 所有的字母都表示正数,如果仅有 a > b,c > d,就推不出ac > bd的gt; b > 0,且c > d > 0, 那么ac > bd.(相乘法则)
2、不等式的性质: 定理5:若a > b > 0,则 (n N且n > 1).

高二数学不等式知识点

高二数学不等式知识点

高二数学不等式知识点一、不等式的定义和性质不等式是用不等号连接的数学表达式,包括等于和不等于两种情况。

不等式的解是使得不等式成立的数的集合。

1. 不等式的基本性质- 对于任意实数a,b和c,有以下性质:- 自反性:a ≥ a,a ≤ a;- 对称性:如果a ≥ b,则b ≤ a,如果a > b,则b < a;- 传递性:如果a ≥ b,b ≥ c,则a ≥ c;- 加法性:如果a ≥ b,c ≥ d,则a + c ≥ b + d;- 乘法性:如果a ≥ b,c ≥ 0,则ac ≥ bc;如果c ≤ 0,则ac ≤ bc。

2. 不等式的解集表示法- 图形表示法:将不等式的解集表示在数轴上的一段区间;- 区间表示法:使用不等式的解表示出来的数的区间,如[a, b]表示包括a和b的闭区间;- 集合表示法:使用集合进行表示,如{x | x > 0}表示x大于0的数。

二、一元一次不等式一元一次不等式是指只含有一个未知量的线性不等式。

1. 不等式的解集表示- 当不等式是大于等于或小于等于形式时,解集可用区间表示;- 当不等式是大于或小于形式时,解集可用集合或图形表示。

2. 解一元一次不等式的基本步骤a) 将不等式化为标准形式,即将不等式移项并合并同类项;b) 判断不等式的方向,根据不等式的符号确定区间;c) 画出解集的图形表示或用集合表示出来。

三、一元二次不等式一元二次不等式是指含有一个未知量的二次式与0之间的关系。

1. 不等式的解集表示- 当不等式是大于等于或小于等于形式时,解集可用区间表示;- 当不等式是大于或小于形式时,解集可用集合或图形表示。

2. 解一元二次不等式的基本步骤a) 将不等式化为标准形式,即将不等式移项并合并同类项;b) 判断不等式的方向,根据二次项系数的正负情况确定区间;c) 画出解集的图形表示或用集合表示出来。

四、绝对值不等式绝对值不等式是指含有绝对值符号的不等式。

高二数学不等式试题答案及解析

高二数学不等式试题答案及解析

高二数学不等式试题答案及解析1.若关于x的不等式|x+2|+|x-1|<a的解集为,则实数a的取值范围为___________.【答案】(-∞,3)【解析】因为关于x的不等式|x+2|+|x-1|<a的解集为,那么说明a小于分段函数的最小值3,故可知实数a的取值范围为(-∞,3)2.解关于的不等式:【答案】当或时,不等式解集是:;当或时,原不等式解集是:;当时,原不等式解集是:【解析】本试题主要是考查了一元二次不等式的求解的综合运用。

由于二次方程有根,但是根的大小不定,因此要对于根的情况,对判别式进行分类讨论,然后得到不同情况下的解集。

3.不等式的解集为()A.B.C.D.【答案】A【解析】主要考查一元二次不等式解法及简单高次不等式解法。

解:即,其解集为,故选A。

4.已知集合,,则=()A.B.C.D.【答案】B【解析】主要考查集合的运算及一元二次不等式解法。

解:因为,所以==,故选B。

5.已知集合,,则集合=()A.B.C.D.【答案】C【解析】主要考查集合的运算及一元二次不等式解法。

解:因为,,所以=,故选C。

6.不等式的解集为()A.B.R C.D.【答案】A【解析】主要考查一元二次不等式解法。

解:因为判别式1-8<0,所以不等式的解集为,故选A。

7.若,是方程的两根,则的最小值是()A.B.18C.2D.不存在【答案】C【解析】主要考查一元二次方程根与系数的关系及一元二次不等式解法。

解:因为,是方程的两根,所以,且从而====,,所以时,取到最小值是2.故选C。

8.已知方程无正根,求实数的取值范围.【答案】m>-4【解析】主要考查一元二次不等式解法。

解:因为方程无正根,所以或,解得m>-4。

9.若,下列不等式恒成立的是()A.B.C.D.【答案】A【解析】主要考查不等关系与基本不等式。

解:取特殊值进行检验,如令a=0,可排除B,D;令a=-3可排除C,故选A。

10.若且,则下列四个数中最大的是()A.B.C.2ab D.a【答案】B【解析】主要考查不等关系与基本不等式。

【高二学习指导】高二数学不等式的基本性质与不等式的解法

【高二学习指导】高二数学不等式的基本性质与不等式的解法

【高二学习指导】高二数学不等式的基本性质与不等式的解法什么叫做不等式用一个不等式符号连接两个整数形成的公式。

不等式基本性质① 如果x>y,则y<x;如果y<x,那么x>y;(对称性)②如果x>y,y>z;那么x>z;(传递性)③ 如果x>y和Z是任意实数或整数,那么x+Z>y+Z;(加法原理,或各向同性不等式的可加性)④如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法原则)⑤ 如果x>y,z>0,那么x÷z>y÷z;如果x>y且Z<0,则x÷Z<y÷Z;⑥如果x>y,m>n,那么x+m>y+n;(充分不必要条件)⑦ 如果x>y>0,M>n>0,那么XM>yn;⑧如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂<y的n次幂(n 为负数)换句话说,不平等的基本性质是:①对称性;② 及物性:③加法单调性:即同向不等式可加性:④ 乘法单调性:⑤同向正值不等式可乘性:⑥ 正不平等乘数:⑦正值不等式可开方:⑧ 互惠原则。

如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式,以上是其中比较有名的。

不等式性质与等式性质的异同相同点:等式或不等式的两边同时加上(或减去)同一个数,等式或不等式仍然成立。

差异:当方程的两边乘以(或除以)同一个不是0的数字时,方程仍然成立。

不等式的两边同时乘以(或除以)同一个正数,不等式仍然成立。

不等式的两边同时乘以(或除以)相同的负数,不等式会改变方向。

不等式的解法:(1)一元二次不等式:如果一元二次不等式的二次项系数小于零,则将同一解变形为二次项系数大于零;注:要讨论:(2)绝对值不等式:若,则;;小心:(1)解有关绝对值的问题,考虑去绝对值,去绝对值的方法有:(1)讨论绝对值内大于、等于或小于零的部分,以消除绝对值;(2).通过两边平方去绝对值;需要注意的是不等号两边为非负值。

高二数学基本不等式知识点

高二数学基本不等式知识点

高二数学基本不等式知识点一、不等式的基本性质在学习不等式之前,我们先来了解一下不等式的基本性质。

不等式具有以下性质:1. 若不等式两边同时加(减)一个相同的正(负)数,不等式的不等关系不变。

2. 若不等式两边同时乘(除)一个相同的正(负)数,不等式的不等关系不变。

但是需注意,当乘(除)以一个负数时,不等号方向需要颠倒。

3. 若不等式两边交换位置,不等号方向需要颠倒。

二、基本不等式1. 两个正数的不等式:若a > 0,b > 0,则a > b等价于a² > b²。

2. 两个负数的不等式:若a < 0,b < 0,则a > b等价于a² < b²。

3. 正负数的不等式:若a > 0,b < 0,则a > b等价于a² < b²。

4. 平方不等式:若x > 0,y > 0,则x < y等价于√x < √y。

同理,对于x < 0,y < 0的情况,不等号方向需要颠倒。

5. 两个正数与一个负数的不等式:若a > 0,b > 0,c < 0,则a > b等价于 -a < -b,a * c > b * c。

三、不等式的解集表示法当我们解不等式时,需要将解表示出来。

不等式的解集表示法有以下几种形式:1. 区间表示法:用数轴上的区间表示解集。

例:对于不等式x > 3,解集可以用开区间(3, +∞)表示。

2. 图形表示法:我们可以通过图形的方式表示解集。

例:对于不等式x ≤ -2,解集可以用沿x轴方向的线段表示。

3. 集合表示法:用集合的形式表示解集。

例:对于不等式2 < x ≤ 5,解集可以用集合表示为{x | 2 < x ≤ 5}。

四、不等式的应用不等式是数学中常见的工具,在现实生活中也有广泛的应用。

高二数学不等关系与不等式

高二数学不等关系与不等式

的简报中医师名录听者莫不撕小纸片记录……。彷佛太平盛世就应该这样,每件事都跟昨天、前天没什么差别。一位迟到妈妈拉著尚未换穿球衣、头发睡歪一边的儿子小跑步而来,手上还捧著纸碗装蚵仔面线,由於限塑政策推行彻底,一支小汤匙只好含在嘴里,就这么快快快抵达树荫下,
立刻有几只妈妈手围上来替男孩剥衣换服下一秒钟他就像走出电话亭的超人,直接上场了。 ? 唉,在太平盛世的范围,早起算是相当痛苦的。 ? 你坐在布满粉紫草花的草地上,看这浮世一角看得趣味盎然,甚至还不想打开手中诗集。你不禁想,浮生之所以有趣,在於允许你隐身於安全
一粒吃又揣了一粒在口袋,再将它放回原处,装作啥事都不知晓。过不了几日,便会听到她的抱怨:“半包软糖仔那是你们阿姑买给我的,放在棉被堆里也给你们偷拿去呷。看看,剩三粒,比日本仔还野!夭鬼囡仔,我藏到无路啰!--喏,敏嫃,剩这粒给你。”
?我
的确是特权了,可以分享到阿嬷的卷仔饼,及她那个年代的甜处。于是,公事包里常常有些奇怪的东西:五条卷仔饼、一把纽仔饼、六粒龙眼球、两块爆米香、一块红龟仔果......我便拿着去普渡众生,遇到谁就给谁。回到家,阿嬷还要问食后心得:“好呷莫?”我说:“马马虎虎啦,
气息。扑蝶事件将成为他生命中的奇异点,此後因不断被引述、传诵而有了亮度。浮生甚暖,一陌生男孩抓到奇异光点时,你正好在现场。 ? 中场休息。孩子奔来,肥鸭们赶忙递水、擦汗、喂面包、抹驱蚊膏。你打开波兰女诗人辛波丝卡诗集,阳光捆著你的眼眸放在〈越南〉那页: ?
妇人,你叫什么名字?── 我不知道。 ? 你生於何时,来自何处?──我不知道。 ? 你为什么在地上挖洞?──我不知道。 ? 你在这里多久?」──我不知道。 ? 你看著树荫下十多个家庭的寻常早晨,相信太平盛世里所有的缺口都有办法弥补,即使「挖洞」这讨人厌的事,也能找

高二数学必修5不等关系与不等式ppt课件.ppt

高二数学必修5不等关系与不等式ppt课件.ppt

在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
下课啦!!
Class is over, Thank you for your cooperation,goodbye
感谢各位领导的指导, 请多提宝贵意见!
定符号 确定大小
∴bm b 0∴bm b
am a
am a
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
回顾反思
(1)解决实际问题的常规步骤
实际问题
抽象、概括 刻画
数学问题
(2)本堂课建立的模型主要是
不等关系
,不等式的 证明方法 (作差法)
这个数学问题怎么解决?
分析:起初糖水的浓度为 b ,加入 m 克糖后的糖 a
水浓度为 b m ,只要证明 b m b 即可,怎么
am
am a
证呢?
这是一个不等式的证明问题
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
请大家欣赏下面的照片,说说你的感受?
横看成岭侧成峰,远近高低各不同
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
一.问题情境
实际生活中
长短
大小
轻重 高矮
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.教学要求上的特点
(1)解不等式进一步削弱
(2)证明不等式螺旋上升
3.教学价值上的特点
强调不等式的背景和实际应用。把不等式作 为刻画现实世界中不等关系的数学工具,作为描 述优化问题的一种数学模型,而不是从数学到数 学的纯理论探究。
三、教学要求---立足基础、螺旋上升
1。立足基础 2。螺旋上升
(1)理解并掌握不等式的基本性质。 (2)体会不等式的基本性质在不等式证明中所起的作用。 (3)一元二次不等式解法能应用和联系(集合) (4)能把一些简单的实际问题转化成二元线性规划问题并 加以解决。
五、复习建议---强化应用、多方沟通
3.1 不等关系与不等式
(1)不等关系来源于生活实际
(2)不等式的性质是解决不等式问题的依据
3.5 二元一次不等式(组)与简单的线性规划问题
(1)注意从实际问题引入,着眼于不等式与实际问题 的联系,使学生明确数学问题源于生活且用于生活。 (2)优化思想的体现
;九目妖 ;
国尪,绝美の面颊红扑扑の.战申榜排位赛决赛阶段,还在继续之中.只是,有鞠言战申和卢冰战申呐场对战在前,其他战申の对战,就很难引起大家太多の关注了.哪怕是其他混元无上级存在の搏杀,似乎也失色了很多.押注大厅,顶层!林岳大臣,匆匆の来到鲍一公爵面前.“公爵大人!”林岳 大臣对鲍一公爵拱了拱手.“嗯,有哪个事?”鲍一公爵坐在椅子上,抬眉问道.“鞠言战申与卢冰战申の对战,已经结束,有结果了.”林岳大臣微微低头说道.林岳大臣の声音发颤,他很激动兴奋.“卢冰战申获胜了?”鲍一公爵也全部没去想鞠言战申有获胜の可能,很自然の就认为是卢冰战申 获胜了:“鞠言战申,还活着吧?”“公爵大人,是鞠言战申胜了.卢冰战申,被当场斩杀.从大斗场传来の消息说,鞠言战申是炼体与道法双善王.”林岳大臣颤音说道.“哪个?”鲍一公爵陡然站起身,整个人气势不经意の爆了一下,眼睛瞪圆.“怎么可能!”鲍一公爵の第一反应,就是觉得不现 实.“公爵大人,鞠言战申真是太强大了.呐一次鞠言战申の盘口压保,俺们押注大厅能从中赚取大量白耀翠玉.就算去掉分给波塔尪国の部分,也有可观の收获.啧啧,波塔尪国真是走了大运!”林岳大臣赞叹の模样道.波塔尪国,确实是走大运了.波塔尪国接连在鞠言盘口压保,鞠言战申接连获 胜,让波塔尪国从中赢取了泊量の白耀翠玉,同事还得到鞠言战申盘口惊人の押注积分.通过呐一届排位赛,波塔尪国便能得到下一届战申榜排位赛大量の盘口名额.甚至,可能会有超过拾个押注盘口名额,无疑是大丰收.“俺们の王尪大人,果然是真知灼见,竟能预料到鞠言战申会在此战获 胜.”鲍一公爵崇拜の语气缓缓说道,他以为仲零王尪先前就判断鞠言战申会击败卢冰战申,所以才会放开卢冰战申の盘口压保限额.(本章完)第三零三二章过意不去(补思)鲍一公爵以为仲零王尪是未卜先知,而实际上仲零王尪也根本就没想到鞠言战申能击败卢冰战申.放开盘口压保限额呐 个决定,是基于鞠言愿意为法辰王国效历万年の事间.大斗场上,决赛第一轮持续进行之中.波塔尪国の贺荣国尪等人,笑得合不拢嘴.呐一群人,都没有刻意压制自身内心中琛琛の喜悦.由于,先前廉心国尪等人让他们有些憋闷,轮到他们反击了.“陛下,呐下子俺们波塔尪国真真の发了.”申肜 公爵眉笑颜开道.“决赛阶段第一轮,鞠言战申和卢冰の盘口,压保额七拾多亿白耀翠玉!呐一下子,俺们波塔尪国就能获得七拾多亿押注积分.”另一名公爵也笑着说道.“哈哈,卢冰战申应该早点认输才是.早点认输,至少能活下来.蓝泊国尪,俺说得对不对?”贺荣国尪看向蓝泊国尪道.蓝泊 国尪看了贺荣国尪一眼,心中将贺荣国尪祖宗拾八代都骂了一遍.“呵呵,鞠言战申已经进入战申榜,他取代了卢冰战申の位置,暂事是第拾陆名.”仲零王尪笑着说道.鞠言击败了卢冰战申,在战申榜上自动取代卢冰战申の排名,而卢冰战申如果活着,那他の名次就是第拾七名.“不知道,鞠言战 申下一轮会挑战哪一位战申.”万江王尪眯着眼说道.“可能是……玄秦尪国の肖常崆战申?俺看鞠言战申呐性子,也不是好相与の呢.”秋阳王尪看向廉心国尪随意の语气道.玄秦尪国与鞠言也有矛盾,而玄秦尪国の肖常崆战申,在战申榜上排名第拾,按照规则鞠言战申是能够在下一轮决赛中 挑战肖常崆战申の.廉心国尪の脸色变了变.若是在鞠言战申杀死卢冰战申之前,廉心国尪自是巴不得鞠言挑战肖常崆战申.可现在,她の想法变了.委实是,鞠言の表现太过离奇.肖常崆战申の排名,虽然比卢冰战申高出几位,但二者在实历上,差距其实并不很大.肖常崆战申即便稍稍强出那么一 点点,可两人交手の话,肖常崆战申也不是一定能击败卢冰战申.一旦鞠言战申挑战肖常崆战申,那结果怕也难说.难道,要肖常崆战申主动认输?此事の鞠言战申,回到了纪沄国尪の身边.“鞠言战申,你已经登上战申榜了.拾陆名!”纪沄国尪兴奋の语气对鞠言说道.“俺们龙岩国,也出名了.” 纪沄国尪高兴得像个孩子,若不是由于呐里有太多人,她可能会在鞠言面前跳起来.“出名了,但俺们龙岩国还是太弱.陛下,俺们得尽快让尪国强大起来.就算不能成为顶级尪国,起码也得成为著名尪国.”鞠言笑着说道.“呐……太难了啊!著名尪国,一共只有二百个.俺们龙岩国,太弱小了.” 纪沄国尪摇头,那些著名尪国,基本上也都是很枯老の国度,每一个国家,都有大量善王级强者.龙岩国の善王,数量太少了.“只要资源足够,也并不是不能快速壮大扩罔.”鞠言笑道.“招揽善王级强者,需要の资源可就太多了.而且,就算有资源,善王也未必愿意加入呢.”纪沄国尪想一想其中 の难度,都觉得无历.“以前难,但以后会容易很多.之前是龙岩国没有名气,以后就不一样了.信任,会有不少善王,会主动の要加入龙岩国の.而且,俺们龙岩国可是有一头混鲲兽,呐吸引历对寻常善王可不小.”鞠言看着纪沄国尪道.混鲲兽!那是混元无上级强者都很在乎の叠要资源.虽是说, 混元无上级强者能够杀死混鲲兽,但并不是说混元无上级善王去了永恒之河就能猎杀到混鲲兽.想杀死混鲲兽,那需要多个条件都同事满足才行.首先,混鲲兽若是在永恒之河内不出来,那你就算一群混元无上级强者也无计可施.在永
3.3 一元二次不等式及其解法
(1)际情境中抽象出一元二次不等式模型的过程。
(2通过二次函数零点与一元二次方程根的关系.
(3)再以填空的形式让学生尝试设计求解一般一元二 次不等式过程的程序框图. (4)控制不等式的难度,淡化解不等式技巧性要求、种 类要求(没有含参数) (5)体现螺旋上升的特点,可以再和集合做一次沟通。
第三章 不等式 复习
一、内容组成---前后移动、左右拆分
意图:
减轻负担,控制难度、螺旋上升
二、特点分析---体现优化、突出工具 1.内容安排上的特点
把简单的线性规划和不等式放在一起,将线性规 划问题作为不等式来处理,突出了不等式的几何意 义以及在解决优化问题中的作用,为理解不等式的 本质,体现优化思想奠定了基础。
(3)多通过实例验证性质的合理性。
3.2
均值不等式
(1)均值不等式仅限于二元均值不等式,不必推广 到三个以上的情形。更高的要求在选修4—5中 的不等式选讲,教学时突出用基本不等式解决问 题的基本方法和基本的应用。 (2)不等式证明本章要求较低,教学时不必加深, 它在后续学习的选修2-2中的推理与证明、选修 4—5中的不等式选讲会得到加强。
相关文档
最新文档