北师大版数学九年级上册第四章图形的相似 同步检测(无答案)
北师大九年级上册数学第四章 图形的相似 单元测试卷(无答案)

北师大九年级上册数学第四章 图形的相似 单元测试卷一、选择题〔每题3分,共30分〕1、假设a 、b 、c 、d 是互不相等的正数,且a b =cd ,那么以下式子错误的选项是〔 〕A 、a b c d b d --=B 、a b c d a b c d --=++C 、2222a c b d= D 、1111a c b d ++=++ 2、在梯形ABCD 中,AD ∥BC ,AC 与BD 相交于O ,假如AD ∶BC =1∶3,那么以下结论正确的选项是〔 〕A.S △COD =9S △AODB.S △ABC =9S △ACDC.S △BOC =9S △AODD.S △DBC =9S △AOD3、假设△ABC 与△A ′B ′C ′相似,∠A =55°,∠B =100°,那么∠C ′的度数是〔 〕A.55°B.100°C.25°4、矩形ABCD 中,AB =1,在BC 上取一点E , 沿AE 将△ABE 向上折叠,使B 点落在AD 上的F 点,假设四边形EFDC 与矩形ABCD 相似,那么AD =〔 〕A 、B 、C 、D 、25、如图,在△ABC 中,AB =8,BC =7,AC =6,延长边BC 到点P ,使得△PAB 与△PCA 相似.那么PC 的长是( ).(A)7 (B)8 (C)9 (D)10〔第4题图〕 〔第5题图〕 〔第6题图〕 6、如图,在△ABC 中,BC >AC ,点D 在BC 上,且DC =AC ,∠ACB 的平分线交AD 于E ,点F 是AB 的中点,连接EF ,那么S △AEF ∶S 四边形BDEF 为 ( )A.3∶4B.1∶2C.2∶3D.1∶37、如图7,6BC =,E ,F 分别是线段AB 和线段AC 的中点,那么线段EF 的长是〔 〕A .6B .5 D .38、如图10,梯形ABCD 的对角线交于点O ,有以下四个结论:④AOD BOC S S =△△.其中始终正确的有〔 〕A . 1个B .2个C .3个D .4个 9、如图,平行四边形ABCD 中,AB ∶BC =3∶2,∠DAB =60°,E 在AB 上,且AE ∶EB =1∶2,F是BC 的中点,过D 分别作DP ⊥AF 于P ,DQ ⊥CE 于Q ,那么DP ∶DQ 等于〔 〕A.3∶4 B.13∶25 C .13∶26 D.23∶1310、如图,CB=CA,∠ACB=90°,点D在边BC上〔与B、C不重合〕,四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CEFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是〔〕A、1B、2C、3D、4〔第7题图〕〔第8题图〕〔第9题图〕〔第10题图〕二、填空题〔每题8分,共24分〕11、如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC相交于F.假设AD=8cm,AB=6cm,AE=4cm.那么△EBF的周长是________cm.12、如下图,正方形ABCD的边长为2,点E、F分别为边AB、AD的中点,点G是CF上的一点,使得3 CG=2 GF,那么三角形BEG的面积为13、如图,□ABCD中,E是AB中点,F在AD上,且AF=12FD,EF交AC于G,那么AG︰AC =______.14、如图10,Rt△DEF是由Rt△ABC沿BC方向平移得到的,假如AB=8,BE=4,DH=3,那么△HEC的面积为 .〔第11题图〕〔第12题图〕〔第13题图〕〔第14题图〕15、如图,E是正方形ABCD的边AB上的动点,EF⊥DE交BC于点F.假设正方形的边长为4,AE=x,BF=y.那么y与x的函数关系式为.16、如图,在Rt△ABC中,∠ACB=90°,AC=BC=6 cm,动点P从点A出发,沿AB方向以每秒2cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1 cm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′.设点Q运动的时间为t s,假设四边形QPCP′为菱形,那么t的值为 .17、如图,射线AM,BN都垂直于线段AB,点E为AM上一点,过点A作BE的垂线AC分别交BE,BN于点F,C,过点C作AM的垂线CD,垂足为D.假设CD=CF,那么AE AD.18、如图,P为平行四边形ABCD边AD上一点,E,F分别是PB,PC的中点,△PEF,△PDC,△PAB的面积分别为S,S1,S2,假设S=2,那么S1+S2= .〔第15题图〕〔第16题图〕〔第17题图〕〔第18题图〕三、解答题〔共66分〕19、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.〔1〕证明:△ACD∽△CBD;〔2〕AD=2,BD=4,求CD的长.20、如图,梯形ABCD中,AB∥CD,且AB=2CD,E,F分别是AB,BC的中点,EF与BD相交于点M。
北师大版九年级数学上册第四章 图形的相似 单元测试题(无答案)

13、两个相似三角形面积之比为 2:7,较大三角形一边上的高为 2 ,则较小三角形的对应
边上的高为_______.
14、如图所示,已知△OAB 与△OA1B1 是相似比为 1:2 的人位似图形,点 O 是位似中心,若
6
△OAB 内的点 P(x,y)与△OA1B1 内的点 P1 对应,则 P1 的坐标是
。
4
A
B
2
10
5
O
5
10
2
4
B1
A1
15、如图,在平行四边形 ABCD 中,AB=8cm,AD=4cm,E 为 AD 的中点,在 AB 上取一点 F,使 △CBF∽△CDE,则 AF= ______cm。
3/7
16、如图,矩形 ABCD 中,E,F 分别在 BC,AD 上,矩形 ABCD∽矩形 ECDF,且 AB=2,S 矩形 ABCD=3S 试求 矩形 ECDF。 S 矩形 ABCD=_________.
A.12cm B. 2 3 cm C. 3 cm D.2cm
10、按如下方法将△ABC 的三边缩小为原来的二分之一,如图所示,任取一点 O,连结 OA、 2/7
OB、OC 并取它们的中点 D、E、F,得△DEF,则下列说法正确的个数是( )
①△ABC 和△DEF 是位似图形;②△ABC 和△DEF 是相似图形;③△ABC 和△DEF 的周长比是 4:1;
25、如图,在ΔABC 中,BA=BC=20cm,AC=30cm,点 P 从 A 点出发,沿着 AB 以每秒 4cm 的速 度向 B 点运动;同时点 Q 从 C 点出发,沿 CA 以每秒 3cm 的速度向 A 点运动,设运动时间
为 x。(1)当 x 为何值时,PQ∥BC?(2)当 SBCQ = 1 ,求 SBPQ 的值;
北师大版九年级数学上册 第四章 图形的相似 4.3 相似多边形 同步测试题(无答案)

4.3 多边形相似同步测试题(满分120分;时间:120分钟)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!题号一二三总分得分一、选择题(本题共计10 小题,每题 3 分,共计30分,)1. 下列各组图形中一定相似的图形是()A.底角对应相等的两个等腰梯形B.有一个角为的两个菱形C.两邻边之比相等的两个平行四边形D.两个矩形2. 如果两个相似多边形的面积比为,那么这两个相似多边形的相似比为()A. B. C. D.3. 下列各组图形中相似的图形是()A.对应边成比例的多边形B.四个角都对应相等的两个梯形C.有一个角相等的两个菱形D.各边对应成比例的两个平行四边形4. 下列两个图形一定相似的是()A.两个菱形B.两个矩形C.两个正方形D.两个等腰梯形5. 已知两个相似五边形的一组对应边分别是和,如果它们的面积之差是,则较大的五边形的面积是()A. B. C. D.6. 下列说法正确的是()A.对应边都成正比例的多边形相似B.对应角都相等的多边形相似C.等边三角形都相似D.矩形都相似7. 如图所示,一般书本的纸张是在原纸张多次对开得到的,矩形沿对开后,再把矩形沿对开,依此类推,若各种开本的矩形都相似,那么等于()D.A. B. C.8. 下列说法中,错误的是()A.所有的等边三角形都相似B.和同一图形相似的两图形相似C.所有的等腰直角三角形都相似D.所有的矩形都相似9. 下列各组图形不一定相似的是()A.两个等边三角形B.各有一个角是的两个等腰三角形C.两个正方形D.各有一个角是的两个等腰三角形10. 如图,矩形中,,,若矩形与矩形相似,则矩形的面积是()A. B. C. D.二、填空题(本题共计8 小题,每题3 分,共计24分,)11. 如图,在矩形中,、分别是、的中点.若矩形与矩形是相似的矩形,则________.12. 已知一个矩形的长和宽分别为和,另一个矩形的一组邻边的长为和,若这两个矩形是相似的,则的值为________.13. 在一张复印出来的纸上,一个多边形的一条边由原图中的变成了,这次复印的放缩比例是________.14. 如图所示,,分别为平行四边形的边,中点,且,则等于________.15. 下列四个结论:①两个正三角形相似;②两个等腰直角三角形相似;③两个菱形相似;④两个矩形相似;⑤两个正方形相似,其中正确的结论是________.16. 如图所示,一般书本的纸张是原纸张多次对开得到的,矩形沿对开后,再把矩形沿对开,依此类推,若各种开本的矩形都相似,那么等于________.17. 若两个相似多边形的对应边的比是,则这两个多边形的周长比是________.18. 如图,在长为,宽为的矩形中,截去一个矩形,使得留下的矩形与截去的矩形相似,则所截取的线段的长度可以是________.三、解答题(本题共计8 小题,共计66分,)19. 如图,在矩形中,点、分别是、上一点,若矩形与矩形相似,且,,求的长.20. 小林在一块长为米,宽为米,一边靠墙的矩形小花园周围栽种了一种花做装饰,这种花所占的边框宽为厘米,请问边框内外缘所围成的两个矩形相似吗?21. 已知四边形与四边形相似,如图所示,求、的长和的大小.22. 将一张矩形纸片,以它的一条宽为边长剪去一个正方形,将剩下的矩形再以一条宽为边长剪去一个正方形,若第二次剪裁后所留下的矩形与原来的矩形相似,则矩形的宽与长的比值是多少?23. 如图,矩形的花坛宽米,长米.现计划在该花坛四周修筑小路,使小路四周所围成的矩形与矩形相似,并且相对两条小路的宽相等,试问小路的宽与的比值是多少,说出你的理由.24. (1)观察下面两组图形,图中的两个图形相似吗?为什么?图中的两个图形呢?与同伴交流.24.(2)如果两个多边形不相似,那么它们的对应角可能都相等吗?对应边可能都成比例吗?25. 如图是一个由个相似(形状相同,大小不同)的直角三角形所组成的图案,它是否有点像一个商标图案?你能否也用相似图形设计出几个美丽的图案?最好再给你设计的图案取一个名字.26. 学生会举办一个校园摄影艺术展览会,小华和小刚准备将矩形的作品四周镶上一圈等宽的纸边,如图所示.两人在设计时发生了争执:小华要使内外两个矩形相似,感到这样视觉效果较好;小刚试了几次不能办到,表示这是不可能的.小红和小莉了解情况后,小红说这一要求只有当矩形是黄金矩形时才能做到,小莉则坚持只有当矩形是正方形时才能做到.请你动手试一试,说一说你的看法.。
北师大九年级数学上《第四章图形的相似》单元测试含答案

第四章 图形的相似一、选择题(本大题共7小题,共28分)1.已知x y =32,那么下列等式中,不一定正确的是( )A .x +2y +2=32B .2x =3yC .x +y y =52 D .x x +y =352.如图4-Z -1,l 1∥l 2∥l 3,已知AB =6 cm ,BC =3 cm ,A 1B 1=4 cm ,则线段B 1C 1的长为( )A .6 cmB .4 cmC .3 cmD .2 cm图4-Z -1图4-Z -23.如图4-Z -2所示,在△ABC 中,D ,E 分别为AC ,BC 边上的点,AB ∥DE ,CF 为AB 边上的中线.若AD =5,CD =3,DE =4,则BF 的长为( )A .323B .163C .103D .83图4-Z -34.如图4-Z -3,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论:①DE BC =12;②S △DOE S △COB =12;③AD AB =OE OB ;④S △ODB S △BDC =13.其中正确的个数为( ) A .1 B .2 C .3 D .45.在Rt △ABC 和Rt △DEF 中,∠C =∠F =90°,下列条件中不能判定这两个三角形相似的是( )A .∠A =55°,∠D =35°B .AC =9,BC =12,DF =6,EF =8 C .AC =3,BC =4,DF =6,DE =8D .AB =10,AC =8,DE =15,EF =96.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则它的宽约为( )A .12.36 cmB .13.64 cmC .32.36 cmD .7.64 cm7.如图4-Z -4,在Rt △ABC 中,∠C =90°,AC =BC =6 cm ,点P 从点A 出发,沿AB 方向以每秒 2 cm 的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒1 cm 的速度向终点C 运动,将△PQC 沿BC 翻折,点P 的对应点为点P ′.设点Q 运动的时间为t s ,若四边形QPCP ′为菱形,则t 的值为( )图4-Z -4A . 2B .2C .2 2D .3二、填空题(本大题共6小题,共24分)8.有一块三角形的草地,它的一条边长为25 m .在图纸上,这条边的长为5 cm ,其他两条边的长都为4 cm ,则其他两边的实际长度都是________ m .9.若a 5=b 7=c8,且3a -2b +c =3,则2a +4b -3c =________.10.已知甲、乙两个相似三角形对应中线之比为1∶2,甲三角形的面积为5 cm 2,则乙三角形的面积为__________.11.如图4-Z -5,在两个直角三角形中,∠ACB =∠ADC =90°,AC =6,AD =2.当AB =________时,△ABC ∽△ACD.4-Z-54-Z-612.如图4-Z-6,数学兴趣小组想测量电线杆AB的高度,他们发现电线杆的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4 m,BC=10 m,CD与地面成30°角,且此时测得高1 m的标杆的影长为2 m,则电线杆的高度为________m(结果保留根号).图4-Z-713.如图4-Z-7,将边长为6 cm的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C 落在点Q处,EQ与BC相交于点G,则△EBG的周长是________ cm.三、解答题(共48分)14.(10分)如图4-Z-8,矩形ABCD是台球桌面,AD=260 cm,AB=130 cm,球目前在E的位置,AE =60 cm,如果小宝瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到点D的位置.(1)求证:△BEF∽△CDF;(2)求CF的长.图4-Z-815.(12分)如图4-Z-9,△ABC三个顶点的坐标分别为A(1,2),B(3,1),C(2,3),以原点O为位似中心,将△ABC放大为原来的2倍得到△A′B′C′.(1)在图中的第一象限内画出符合要求的△A′B′C′(不要求写画法);(2)求△A′B′C′的面积.图4-Z-916.(12分)如图4-Z-10,一块材料的形状是锐角三角形ABC,边BC=12 cm,高AD=8 cm.把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上,这个正方形零件的边长是多少?图4-Z-1017.(14分)如图4-Z-11,在▱ABCD中,对角线AC,BD相交于点O,M为AD的中点,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△CND的面积为2,求四边形ABNM的面积.图4-Z-11详解1.A2.D [解析] ∵l 1∥l 2∥l 3,∴A 1B 1B 1C 1=AB BC. ∵AB =6 cm ,BC =3 cm ,A 1B 1=4 cm , ∴4B 1C 1=63,∴B 1C 1=2(cm).故选D. 3.B 4.C5.C [解析] A 项,∵∠A =55°,∴∠B =90°-55°=35°.∵∠D =35°,∴∠B =∠D .又∵∠C =∠F ,∴△ABC ∽△EDF ;B 项,∵AC =9,BC =12,DF =6,EF =8,∴AC DF =BC EF =32.又∵∠C =∠F ,∴△ABC ∽△DEF ;C 项,有一组角相等、两边对应成比例,但该组角不是这两边的夹角,故不相似;D 项,易得AB =10,AC =8,BC =6,DE =15,DF =12,EF =9,∴AC DF =BC EF =23.又∵∠C =∠F ,∴△ABC ∽△DEF .故选C.6.A7.B [解析] 连接PP ′交BC 于点O ,∵四边形QPCP ′为菱形,∴PP ′⊥QC ,∴∠POQ =90°.∵∠ACB =90°,∴PO ∥AC ,∴AP AB =CO CB .∵点Q 运动的时间为t s ,∴AP =2t ,QB =t ,∴QC =6-t ,∴CO =3-t2.∵AC =CB =6,∠ACB =90°,∴AB =6 2,∴2t6 2=3-t26,解得t =2.8.20 [解析] 设其他两边的实际长度都是x m ,由题意,得x 4=255,解得x =20.即其他两边的实际长度都是20 m.9.143 [解析] 设a 5=b 7=c8=x ,则a =5x ,b =7x ,c =8x .因为3a -2b +c =3,所以15x -14x +8x =3,解得x =13,所以2a +4b -3c =10x +28x -24x =14x =143.10.20 cm 211.312.(7+3)[解析] 如图,过点D 作DE ⊥BC 交其延长线于点E ,连接AD 并延长交BC 的延长线于点F ,∵CD =4 m ,CD 与地面成30°角,∴DE =12CD =12×4=2(m),CE =CD 2-DE 2=2 3 m .∵高1 m 的标杆的影长为2 m ,∴DE EF =12,AB BF =12,∴EF =2DE =2×2=4(m),∴BF =BC +CE +EF =10+2 3+4=(14+2 3)m ,∴AB =12×(14+2 3)=(7+3)m.13.[全品导学号:52652189]12 [解析] 根据折叠的性质可得∠FEG =90°,设AF =x cm ,则EF =(6-x )cm.在Rt △AEF 中,AF 2+AE 2=EF 2,即x 2+32=(6-x )2,解得x =94,所以AF =94 cm ,EF =154 cm ,根据△AFE ∽△BEG ,可得AF BE =AE BG =EF EG ,即943=3BG =154EG,所以BG =4 cm ,EG =5 cm ,所以△EBG 的周长为3+4+5=12(cm).14.解:(1)证明:由题意,得∠EFG =∠DFG .∵∠EFG +∠BFE =90°,∠DFG +∠CFD =90°,∴∠BFE =∠CFD . 又∵∠B =∠C =90°, ∴△BEF ∽△CDF . (2)∵△BEF ∽△CDF ,∴BE CD =BF CF ,即70130=260-CF CF, ∴CF =169(cm).15.解:(1)△A ′B ′C ′如图所示.(2)图中每个小正方形的边长为1个单位长度,由勾股定理可得AC =2,AB =CB =5,AC 边上的高=(5)2-⎝ ⎛⎭⎪⎫222=322,所以△ABC 的面积S =12×2×32 2=32.设△A ′B ′C ′的面积为S ′,因为△ABC ∽△A ′B ′C ′,所以S S ′=⎝ ⎛⎭⎪⎫122,得S ′=4S =4×32=6,即△A ′B ′C ′的面积为6.16.解:如图,∵四边形EFHG 是正方形, ∴EF ∥BC ,∴△AEF ∽△ABC ,而AD ⊥BC , ∴EF BC =AK AD.设正方形EFHG 的边长为x cm ,则AK =(8-x )cm ,∴x 12=8-x 8,解得x =4.8. 答:这个正方形零件的边长为4.8 cm.17.解:(1)∵在▱ABCD 中,AD ∥BC ,AD =BC ,OB =OD , ∴∠DMN =∠BCN ,∠MDN =∠NBC , ∴△MND ∽△CNB , ∴MD CB =DN BN. ∵M 为AD 的中点,∴MD =12AD =12BC ,即MD CB =12,∴DN BN =12,即BN =2DN . 设OB =OD =x ,则BD =2x ,BN =OB +ON =x +1,DN =OD -ON =x -1,∴x +1=2(x -1),解得x =3, ∴BD =2x =6.(2)∵△MND ∽△CNB ,且相似比为1∶2, ∴MN ∶CN =DN ∶BN =1∶2,∴S △MND =12S △CND =1,S △CNB =2S △CND =4,∴S △ABD =S △BCD =S △CNB +S △CND =4+2=6, ∴S 四边形ABNM =S △ABD -S △MND =6-1=5.。
北师大版九年级数学上册第四章 图形的相似4.1-4.3 同步测试题(含答案)

北师大版九年级数学上册第四章图形的相似4.1-4.3 同步测试题一、选择题1、下列各组中的四条线段成比例的是(C)A.a=2,b=3,c=2,d= 3B.a=4,b=6,c=5,d=10C.a=2,b=5,c=23,d=15D.a=2,b=3,c=4,d=12、已知a,b,c,d成比例线段,其中a=3 cm,b=2 cm,c=6 cm,则d的长度为(A)A.4 cm B.5 cm C.6 cm D.9 cm3、如图,直线l1∥l2∥l3,两条直线AC和DF与l1,l2,l3分别相交于点A,B,C和点D,E,F.则下列比例式不正确的是(D)A.ABBC=DEEFB.ABAC=DEDFC.ACAB=DFDED.EFED=BCAC4、已知x∶y=3∶2,则下列各式中正确的是(A)A.x+yy=52B.x-yy=13C.xy=23D.x+1y+1=435、若△ABC∽△A′B′C′,且相似比为2∶1,A′C′=5 cm,则AC等于(C)A.5 cm B.52cm C.10 cm D.54cm6、在比例尺是1∶4 000的成都市城区地图上,位于锦江区的九眼桥的长度约为3 cm,它的实际长度用科学记数法表示为(B)A.12×103 cm B.1.2×102 mC.1.2×104m D.0.12×105 cm7、在等腰△ABC中,AB=AC,∠A=120°,AD为高,则AD∶AB为(D)A.2∶1 B.1∶1C.1∶3 D.1∶28、如果x ∶y =3∶5,那么x ∶(x +y)=(B)A.35B.38C.25D.589、图,在△ABC 中,D ,E 分别为AB ,AC 边上的点,DE ∥BC ,点F 为BC 边上一点,连接AF 交DE 于点G ,则下列结论中一定正确的是(C)A.AD AB =AEECB.AG GF =AEBDC.BD AD =CEAED.AG AF =AC EC10、如图,在△ABC 中,点D ,E ,F 分别是边AB ,AC ,BC 上的点,DE ∥BC ,EF ∥AB ,且AD ∶DB =3∶5,那么CF ∶CB 等于(C)A .3∶8B .3∶5C .5∶8D .2∶5二、填空题11、如果x -y x +y =38,那么x y =115.12、如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F.已知AB AC =13,则EFDE=2.13、已知一多边形的边长是2,3,4,5,6,另一个和它相似的多边形的最长边是24,则这个多边形的最短边是8.14、如图,AB ∥CD ∥EF ,AF 与BE 相交于点G ,且AG =2,GD =1,DF =5,那么BC BE 的值等于38.15、如图,EF 分别为矩形ABCD 的边AD ,BC 的中点,若矩形ABCD ∽矩形EABF ,AB =1,则AD16、如图,AB ∥CD ∥EF.若AD ∶AF =3∶5,BC =6,则CE 的长为4.17、如图,AD 是△ABC 的中线,E 是AD 上一点,AE ∶ED =1∶3,BE 的延长线交AC 于F ,AF ∶FC 为1∶6.18、已知三条线段的长分别为 1 cm ,2 cm , 2 cm ,如果另外一条线段与它们是成比例线段,那么另外一条线段的长为2_cm 或22_cm . 三、解答题19、如图,直线PQ 经过菱形ABCD 的顶点C ,分别交边AB 和AD 的延长线于点P 和Q ,BP =12AB ,求证:DQ =2AB.证明:∵四边形ABCD 是菱形,∴BC ∥AD ,CD ∥AB ,AB =DA. ∴BP AB =CP QC =DA DQ. 又∵AB =AD ,BP AB =12,∴AB DQ =12.∴DQ =2AB.20、如图,四边形ABCD 为平行四边形,AE 平分∠BAD 交BC 于点E ,过点E 作EF ∥AB ,交AD 于点F ,连接BF.(1)求证:BF 平分∠ABC ;(2)若AB =6,且四边形ABCD ∽四边形CEFD ,则BC 证明:∵四边形ABCD 是平行四边形,∴AD ∥BC. ∴∠FAE =∠AEB. ∵EF ∥AB ,∴四边形ABEF 是平行四边形. ∵AE 平分∠BAD ,∴∠FAE =∠BAE. ∴∠BAE =∠AEB.∴AB =EB. ∴四边形ABEF 是菱形. ∴BF 平分∠ABC.21、如图,直线l 1,l 2,l 3分别交直线l 4于点A ,B ,C ,交直线l 5于点D ,E ,F ,且l 1∥l 2∥l 3,直线l 4,l 5相交于点O ,已知EF ∶DF =5∶8,AC =24.(1)求AB 的长;(2)当DE =3,OE =1时,求OBOC的值.解:(1)∵l 1∥l 2∥l 3, ∴EF ∶DF =BC ∶AC =5∶8, ∴BC =15. ∴AB =AC -BC =9. (2)OB OC =14. 22、如图,直线PQ 经过菱形ABCD 的顶点C ,分别交边AB 和AD 的延长线于点P 和Q ,BP =12AB ,求证:DQ =2AB.证明:∵四边形ABCD 是菱形, ∴BC ∥AD ,CD ∥AB ,AB =DA. ∴BP AB =CP QC =DA DQ. 又∵AB =AD ,BP AB =12,∴AB DQ =12.∴DQ =2AB.23、如图所示,△ABC 中,AD 是BC 边上的中线,F 是AD 边上一点,射线CF 交AB 于E 点,且AE EB =16,求AFFD的值.解:取CE 的中点G ,连接DG.∵AD 是BC 边上的中线, ∴DG 是△BCE 的中位线. ∴DG ∥BE ,DG =12BE.∵AE EB =16, ∴AE DG =13. ∴AF FD =AE DG =13.。
北师大九年级上第四章图形的相似检测题含解析

第四章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列说法正确的是( C )A .对应边都成比例的多边形相似B .对应角都相等的多边形相似C .边数相同的正多边形相似D .矩形都相似2.已知△ABC ∽△DEF ,相似比为3∶1,且△ABC 的周长为18,则△DEF 的周长为( C )A .2B .3C .6D .543.如图,已知BC ∥DE ,则下列说法不正确的是( C )A .两个三角形是位似图形B .点A 是两个三角形的位似中心C .AE ∶AD 是相似比 D .点B 与点E ,点C 与点D 是对应位似点4.如图,身高为1.6 m 的小红想测量学校旗杆的高度,当她站在C 处时,她头顶端的影子正好与旗杆顶端的影子重合,并测得AC =2.0 m ,BC =8.0 m ,则旗杆的高度是( C )A .6.4 mB .7.0 mC .8.0 mD .9.0 m,第3题图) ,第4题图) ,第5题图) ,第6题图)5.如图,为估算某河的宽度,在河对岸选定一个目标点,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上.若测得BE =20 m ,CE =10 m ,CD =20 m ,则河的宽度AB 等于( B )A .60 mB .40 mC .30 mD .20 m6.如图,矩形ABCD 的面积是72,AE =12DC ,BF =12AD ,那么矩形EBFG 的面积是( B ) A .24 B .18 C .12 D .97.如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以点C ,D ,E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是( B )A .(6,0)B .(6,3)C .(6,5)D .(4,2),第7题图) ,第8题图) ,第9题图) ,第10题图)8.(2016·咸宁)如图,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论:①DE BC =12;②S △DOE S △COB =12;③AD AB =OE OB ;④S △ODE S △ADC =13.其中正确的个数有( B ) A .1个 B .2个 C .3个 D .4个9.如图,在△ABC 中,∠A =36°,AB =AC ,AB 的垂直平分线OD 交AB 于点O ,交AC 于点D ,连接BD.下列结论错误的是( C )A .∠C =2∠AB .BD 平分∠ABCC .S △BCD =S △BOD D .点D 为线段AC 的黄金分割点10.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =8,AD =3,BC =4,点P 为AB 边上一动点,若△PAD 与△PBC 是相似三角形,则满足条件的点P 的个数是( C )A .1个B .2个C .3个D .4个二、填空题(每小题3分,共18分)11.若x y =m n =45(y ≠n),则x -m y -n=__45__. 12.如图是两个形状相同的红绿灯图案,则根据图中给出的部分数值,得到x 的值是__16__.13.如图,在△ABC 中,点P 是AC 上一点,连接BP.要使△ABP ∽△ACB ,则必须有∠ABP =__∠C __或∠APB =__∠ABC __或AB AP =__AC AB__. ,第12题图) ,第13题图),第14题图) ,第15题图)14.如图,在矩形ABCD 中,AB =2,BC =3,点E 是AD 的中点,CF ⊥BE 于点F ,则CF =__125__. 15.如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆,小丽站在离南岸边15米的点P 处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为__22.5__米.16.(2016·十堰)如图,以点O 为位似中心,将△ABC 缩小后得△A′B′C′,已知OB =3OB′,则△A′B′C′与△ABC 的面积之比为__1∶9__.三、解答题(共72分)17.(10分)如图,点D 是△ABC 的边AC 上的一点,连接BD ,已知∠ABD =∠C ,AB =6,AD =4,求线段CD 的长.在△ABD 和△ACB 中,∠ABD =∠C ,∠A =∠A ,∴△ABD ∽△ACB ,∴AB AC =AD AB,∵AB =6,AD =4,∴AC =AB 2AD =364=9,则CD =AC -AD =9-4=518.(10分)一个钢筋三角架三边长分别是20厘米、50厘米、60厘米,现在再做一个与其相似的钢筋三角架,而只有长为30厘米和50厘米的两根钢筋,要求以其中一根为一边,从另一根上截下两段(允许有余料)作为两边,则不同的截法有多少种?写出你的设计方案,并说明理由.两种截法:①30厘米与60厘米的两根钢筋为对应边,把50厘米的钢筋按10厘米与25厘米两部分截,则有1020=2550=3060=12,从而两个三角形相似;②30厘米与50厘米的两根钢筋为对应边,把50厘米的钢筋截出12厘米和36厘米两部分,则有2012=5030=6036=53,从而两个三角形相似19.(10分)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别为A(-1,2),B(-3,4),C(-2,6).(1)画出△ABC 绕点A 顺时针旋转90°后得到的△A 1B 1C 1;(2)在网格内以原点O 为位似中心,画出将△A 1B 1C 1三条边放大为原来的2倍后的△A 2B 2C 2.20.(10分)如图,矩形ABCD 为台球桌面.AD =260 cm ,AB =130 cm .球目前在E 点位置,AE =60 cm .如果小丁瞄准了BC 边上的点F 将球打进去,经过反弹后,球刚好弹到D 点位置.(1)求证:△BEF ∽△CDF ;(2)求CF 的长.(1)∵FG ⊥BC ,∠EFG =∠DFG ,∴∠BFE =∠CFD ,又∵∠B =∠C =90°,∴△BEF∽△CDF(2)设CF =x ,则BF =260-x ,∵AB =130,AE =60,BE =70,由(1)得,△BEF ∽△CDF ,∴BE CD =BF CF ,即70130=260-x x,∴x =169,即CF =169 cm21.(10分)如图,在△ABC 中,AD 是中线,且CD 2=BE·BA.求证:ED·AB =AD·BD.∵AD 是中线,∴BD =CD ,又CD 2=BE ·BA ,∴BD 2=BE ·BA ,即BE BD =BD AB ,又∠B =∠B ,∴△BED ∽△BDA ,∴ED AD =BD AB ,∴ED ·AB =AD·BD22.(10分)如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为点E ,连接DE ,点F 为线段DE 上一点,且∠AFE =∠B.(1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =63,AF =43,求AE 的长.(1)∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,∴∠C +∠B =180°,∠ADF =∠DEC.∵∠AFD +∠AFE =180°,∠AFE =∠B ,∴∠AFD =∠C ,∴△ADF ∽△DEC (2)∵四边形ABCD 是平行四边形,∴CD =AB =8.由(1)知△ADF ∽△DEC ,∴AD DE=AF CD ,∴DE =AD·CD AF =63×843=12.在Rt △ADE 中,由勾股定理得AE =DE 2-AD 2=122-(63)2=623.(12分)将一副三角尺如图①摆放(在Rt △ABC 中,∠ACB =90°,∠B =60°;在Rt △DEF 中,∠EDF =90°,∠E =45°),点D 为AB 的中点,DE 交AC 于点P ,DF 经过点C.(1)求∠ADE 的度数;(2)如图②,将△DEF 绕点D 顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE ′交AC 于点M ,DF ′交BC 于点N ,试判断PM CN的值是否随着α的变化而变化?如果不变,请求出PM CN的值;反之,请说明理由. (1)由题意知,CD 是Rt △ABC 斜边AB 上的中线,∴AD =BD =CD ,∵在△BCD 中,BD =CD 且∠B =60°,∴△BCD 是等边三角形,∴∠BCD =∠BDC =60°,∴∠ADE =180°-∠BDC -∠EDF =180°-60°-90°=30° (2)PM CN的值不会随着α的变化而变化,理由如下:∵△APD 的外角∠MPD =∠A +∠ADE =30°+30°=60°,∴∠MPD =∠BCD =60°,∵在△MPD 和△NCD 中,∠MPD =∠NCD =60°,∠PDM =∠CDN =α,∴△MPD ∽△NCD ,PM CN =PD CD,∵∠ACB =90°,∠BCD =60°,∴∠PCD =30°.在Rt △PD CD=13=33,∴PMCN=PDCD=33PCD中,∠PCD=30°,∴。
新北师大版九年级上第四章图形的相似检测题含答案

第四章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.下列说法正确的是(C)A.对应边都成比例的多边形相似B.对应角都相等的多边形相似C.边数相同的正多边形相似D.矩形都相似2.已知△ABC∽△DEF,相似比为3∶1,且△ABC的周长为18,则△DEF的周长为(C)A.2B.3C.6D.543.如图,已知BC∥DE,则下列说法不正确的是(C)A.两个三角形是位似图形B.点A是两个三角形的位似中心C.AE∶AD是相似比D.点B与点E,点C与点D是对应位似点4.如图,身高为1.6m的吴格霆想测量学校旗杆的高度,当她站在C处时,她头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2.0m,BC=8.0m,则旗杆的高度是(C) A.6.4mB.7.0mC.8.0mD.9.0m,第3题图),第4题图),第5题图),第6题图)5.如图,为估算某河的宽度,在河对岸选定一个目标点,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,CE=10m,CD=20m,则河的宽度AB等于(B)A.60mB.40mC.30mD.20m6.“标准对数视力表”对我们来说并不陌生,如图是视力表的一部分,其中最上面较大的“E”与下面四个较小“E”中的哪一个是位似图形(B)A.左上B.左下C.右上D.右下7.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以点C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是(B)A.(6,0) B.(6,3) C.(6,5) D.(4,2),第7题图),第8题图),第9题图),第10题图)8.如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,则△ABC与△DCA 的面积比为( C )A .2∶3B .2∶5C .4∶9D.2∶ 39.如图,在△ABC 中,∠A =36°,AB =AC ,AB 的垂直平分线OD 交AB 于点O ,交AC 于点D ,连接BD .下列结论错误的是( C )A .∠C =2∠AB .BD 平分∠ABCC .S △BCD =S △BOD D .点D 为线段AC 的黄金分割点10.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =8,AD =3,BC =4,点P 为AB 边上一动点,若△P AD 与△PBC 是相似三角形,则满足条件的点P 的个数是( C )A .1个B .2个C .3个D .4个二、填空题(每小题3分,共18分)11.若x y =m n =45(y ≠n ),则x -m y -n=__45__. 12.如图是两个形状相同的红绿灯图案,则根据图中给出的部分数值,得到x 的值是__16__.13.如图,在△ABC 中,点P 是AC 上一点,连接BP .要使△ABP ∽△ACB ,则必须有∠ABP =__∠C __或∠APB =__∠ABC __或AB AP =__AC AB__. ,第12题图),第13题图),第14题图),第15题图)14.如图,矩形ABCD 中,AB =2,BC =3,点E 是AD 的中点,CF ⊥BE 于点F ,则CF =__125__. 15.如图所示,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆,小丽站在离南岸边15米的点P 处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为__22.5__米.16.劳技课上小敏拿出了一个腰长为8厘米,底边为6厘米的等腰三角形,她想用这个等腰三角形加工出一个边长比是1∶2的平行四边形,平行四边形的一个内角恰好是这个等腰三角形的底角,平行四边形的其他顶点均在三角形的边上,则这个平行四边形的较短的边长为__2.4_cm 或2411_cm __. 三、解答题(共72分)17.(10分)如图,点D 是△ABC 的边AC 上的一点,连接BD ,已知∠ABD =∠C ,AB =6,AD =4,求线段CD 的长.解:在△ABD 和△ACB 中,∠ABD =∠C ,∠A =∠A ,∴△ABD ∽△ACB ,∴AB AC=AD AB ,∵AB =6,AD =4,∴AC =AB 2AD =364=9,则CD =AC -AD =9-4=518.(10分)一个钢筋三角架三边长分别是20厘米、50厘米、60厘米,现在再做一个与其相似的钢筋三角架,而只有长为30厘米和50厘米的两根钢筋,要求以其中一根为一边,从另一根上截下两段(允许有余料)作为两边,则不同的截法有多少种?写出你的设计方案,并说明理由.解:两种截法:①30厘米与60厘米的两根钢筋为对应边,把50厘米的钢筋按10厘米与25厘米两部分截,则有1020=2550=3060=12,从而两个三角形相似;②30厘米与50厘米长的两根钢筋为对应边,把50厘米分截出12厘米和36厘米两部分,则有2012=5030=6036=53,从而两三角形相似19.(10分)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别为A (-1,2),B (-3,4),C (-2,6).(1)画出△ABC 绕点A 顺时针旋转90°后得到的△A 1B 1C 1;(2)在网格内以原点O 为位似中心,画出将△A 1B 1C 1三条边放大为原来的2倍后的△A 2B 2C 2.解:20.(10分)如图,矩形ABCD 为台球桌面.AD =260cm ,AB =130cm.球目前在E 点位置,AE =60cm.如果小丁瞄准了BC 边上的点F 将球打进去,经过反弹后,球刚好弹到D 点位置.(1)求证:△BEF ∽△CDF ;(2)求CF 的长.解:(1)证明:∵FG ⊥BC ,∠EFG =∠DFG ,∴∠BFE =∠CFD ,又∵∠B =∠C =90°,∴△BEF ∽△CDF(2)解:设CF =x ,则BF =260-x ,∵AB =130,AE =60,BE =70,由(1)得:△BEF∽△CDF ,∴BE CD =BF CF ,即70130=260-x x,∴x =169cm ,即CF =169cm 21.(10分)已知,如图,△ABC 中,AD 是中线,且CD 2=BE ·BA .求证:ED ·AB =AD ·BD .证明:∵AD 是中线,∴BD =CD ,又CD 2=BE ·BA ,∴BD 2=BE ·BA ,即BE BD =BD AB,又∠B =∠B ,∴△BED ∽△BDA ,∴ED AD =BD AB ,∴ED ·AB =AD ·BD22.(10分)如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为点E ,连接DE ,点F 为线段DE 上一点,且∠AFE =∠B .(1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =63,AF =43,求AE 的长.解:(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC.∴∠C +∠B =180°,∠ADF =∠DEC.∵∠AFD +∠AFE =180°,∠AFE =∠B ,∴∠AFD =∠C.∴△ADF ∽△DEC (2)∵四边形ABCD 是平行四边形,∴CD =AB =8.由(1)知△ADF ∽△DEC ,∴AD DE =AF CD .∴DE =AD ·CD AF =63×843=12.在Rt △ADE 中,由勾股定理得AE =DE 2-AD 2=122-(63)2=623.(12分)将一副三角尺如图①摆放(在Rt △ABC 中,∠ACB =90°,∠B =60°;在Rt △DEF 中,∠EDF =90°,∠E =45°)点D 为AB 的中点,DE 交AC 于点P ,DF 经过点C .(1)求∠ADE 的度数;(2)如图②,将△DEF 绕点D 顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE ′F ′,DE ′交AC 于点M ,DF ′交BC 于点N ,试判断PM CN的值是否随着α的变化而变化?如果不变,请求出PM CN的值;反之,请说明理由. 解:(1)由题意知:CD 是Rt △ABC 中斜边AB 上的中线,∴AD =BD =CD ,∵在△BCD 中,BD =CD 且∠B =60°,∴△BCD 是等边三角形,∴∠BCD =∠BDC =60°,∴∠ADE =180°-∠BDC -∠EDF =180°-60°-90°=30°(2)PM CN的值不会随着α的变化而变化,理由如下:∵△APD 的外角∠MPD =∠A +∠ADE =30°+30°=60°,∴∠MPD =∠BCD =60°,∵在△MPD 和△NCD 中,∠MPD=∠NCD =60°,∠PDM =∠CDN =α,∴△MPD ∽△NCD ,PM CN =PD CD,又∵由(1)知AD =CD ,∴∠ACD =∠A =30°,即∠PCD =30°.在Rt △PCD 中,∠PCD =30°,∴PD CD=13=33,∴PM CN =PD CD =33。
北师大版九年级数学上册第四章 图形的相似 综合单元测试卷(无答案)

北师大版九年级数学上册第四章图形的相似综合单元测试卷姓名:___________考号:__________班级:___________得分:_________________一、选择题(每小题3分,共36分)1.下列各组线段(单位:cm)中,成比例线段的是()A.1,2,3,4B.1,2,2,4C.3,5,9,13D.1,2,6,32.两个三角形的一组对应边分别为3cm,4.5cm,那么它们对应角平分线的比()A.23B.32C.49D.943.如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若1,2AEBC FBDE=则=()A.23B.12C.13D.14.如图,已知在△ABC中,点D,E,F分别是边AB,AC,BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于()A.5:8B.3:8C.3:5D.2:55.如图,点F在平行四边形ABCD的边AB上,射线CF交DA的延长线于点E,在不添加辅助线的情况下,与△AEF相似的三角形有()A.0个B.1个C.2个D.3个6.美是一种感觉,当人体的下半身长与身高的比值越接近0.618时越给人一种美感.已知某女士身高160cm,下半身长与身高的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度约为( )A.6cmB.10cmC.4cmD.8cm7.如图,六边形ABCDEF∽六边形GHIKL,相似比为2:1,则下列结论正确的是( )A.∠E=2∠K B BC=2HI C.C六边形ABCDEF =C六边形GHIJKLD.S六边形ABCDEF=2S六边形GHIJKL8.如图,△ABC中,∠A=78°,AB=4,AC=6.将△AEC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )9.阳光通过窗口AB照射到室内,在地面上留下2.7米的亮区DE(如图所示),已知亮区到窗口下的墙角的距离EC=8.7米,窗口高AB=1.8米,则窗口底边离地面的高BC为( )A.4米B.3.8米C.3.6米D.3.4米10.如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,则S△ABC:S△DCA=( )A.2:3B.2:5C.2:3D.4:911.如图,已知AB,CD,EF都与BD垂直,垂足分別是B,D,F,且AB=1,CD =3,那么EF的长是( )A.23B.34C.13D.4512.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC是相似三角形,则满足条件的点P个数是( )A.1B.2C.3D.4二、填空题(每小题4分,共24分)13.上海与杭州的实际距离约200千米,在比例尺为1:5000000的地图上,它们的图上距离约__________厘米.14.一个四边形的边长分别是3,4,5,6,另一个与它相似的四边形最小边长为6,则它的最长边长是___________15已知a:b:c=4:3:2,则2a b cc+-=_________16.如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是__________(只需写一个条件,不添加辅助线和字母)17.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=14CD,下列结论:①∠BAE=30°②△ABE∽△AEF;③AE⊥EF;④△ADF∽△ECF.其中正确的是_______(填序号)18.如图,已知△ABC和△DEC的面积相等,点E在BC边上,DE∥AB交AC于点F,AB=12,EF=9,则DF的长是________三、解答题(共60分)19.(6分)如图,在△ABC中,D,E分別是AC,AB边上的点,∠AED=∠C,AB=6,AD=4,AC=5,求AE的长?20.(8分)如图,已知EC∥AB,∠EDA=∠ABF.(1)求证:四边形ABCD是平行四边形(2)求证:OA2=OE・OF.21.(8分)如图,△ABC的顶点坐标分别为A(1,1),B(2,3),C(3,0),(1)以点O为位似中心画三角形,使它与△ABC位似,且相似比为2;(2)在(1)的条件下,若M(a,b)为△ABC边上的任意一点,则(1)中所画三角形的边上与点M对应的点M的坐标为________22.(8分)如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E(1)求证:AG=CG;(2)求证:AG2=GE・GF23.(8分)晚饭后,小聪和小军在社区广场散步.小聪问小军:“你有多高?"小军一时语塞小,小聪思考片刻提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N 点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长,已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)24.(10分)某高中学校为高一新生设计的学生板発的正面视图如图所示,其中BA =CD,BC=20cm,BC,EF平行于地面AD且到地面AD的距离分别为40cm,8cm,为使板発两腿底端A,D之间的距离为50cm,那么横梁EF应为多长?(材质及其厚度等暂忽略不计)25.(12分)如图,四边形ABCD中,AC⊥BD交BD于点E,点F,M分别是AB,BC 的中点,BN平分∠ABE交AM于点N,AB=AC=BD,连接MF,NF.(1)判断△BMN的形状,并证明你的结论;(2)判断△MFN与△BDC之间的关系,并说明理由?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学——相似图形检测 一、选择题 1、两个相似三角形的面积比为 4:9,周长和是20 cm ,则这两个三角形的周长分别
( )
A 、8cm 和12cm
B 、 7cm 和13cm
C 、9cm 和11cm
D 、4cm 和16cm
2、若两个相似三角形的面积之比为2:3,则它们对应角的平分线之比为( )
A 、32
B 、2
3 C 、36 D 、26 3、如图6, 在Rt ABC △中,90ACB =∠,CD AB ⊥于D ,若1AD =,4BD =,则CD =
( )A .2 B .4 C .2 D .3
4、如图7,6BC =,E ,F 分别是线段AB 和线段AC 的中点,
那么线段EF 的长是( ) A .6 B .5 C .4.5 D .3
5、如图8,点E 是ABCD 的边BC 延长线上的一点,AE 与CD 相交于点G ,AC 是
ABCD 的对角线,则图中相似三角形共有( )
A .2对
B .3对
C .4对
D .5对
6、如图10,梯形ABCD 的对角线交于点O ,有以下四个结论:
①AOB COD △∽△; ②AOD ACB △∽△;
③::DOC AOD S S DC AB =△△;④AOD BOC S S =△△.
其中始终正确的有( ) A . 1个 B .2个 C .3个 D .4个
7、用作相似图形的方法,可以将一个图形放大或缩小,相似中心位置可选在( )
A .原图形的外部
B .原图形的内部
C .原图形的边上
D .任意位置
8、如图11是小孔成像原理的示意图,根据图中所标注的尺寸,
这支蜡烛在暗盒中所成的像CD 的长是( )
A .16cm
B .13 cm
C .12 cm
D .1cm
9、如图,ACD ∆和ABC ∆相似需具备的条件是( )
A.AC AB CD BC =
B.CD BC AD AC
= C.2AC AD AB =⋅ D.2CD AD BD =⋅ 10、如图,一张矩形报纸ABCD 的长AB a =,宽BC b =,E F 、分别是AB CD 、的中点,将这张报纸沿着直线EF 对折后,矩形AEFD 的长与宽的比等于矩形ABCD 的长与宽的比,则
:a b 等于( )A.2:1 B.1:2 C.3:1 D.1:3
(11) (12)
11、下列四个三角形,与右图中的三角形相似的是( )
A B C D
B C
E F A B C D。