新课标人教版七年级数学实数练习题
人教版七年级数学-实数常考题目训练 (含答案)

人教版七年级数学-实数常考题目训练姓名:学校:学号:一.选择题(共17小题)1.平方根等于它本身的数是()A.﹣1B.0C.1D.±12.若方程x2=5的解分别为a、b,且a>b,下列说法正确的是()A.5的平方根是a B.5的平方根是bC.5的算术平方根是a D.5的算术平方根是b3.已知2a﹣1和﹣a+4是一个正数的平方根,则这个正数的值是()A.9B.1C.7D.49或4.的算术平方根是()A.±3B.3C.﹣3D.95.有下列说法:①﹣3是的平方根;②﹣7是(﹣7)2的算术平方根;③25的平方根是±5;④﹣9的平方根是±3;⑤0没有算术平方根;⑥的平方根为;⑦平方根等于本身的数有0,1.其中,正确的有()A.1个B.2个C.3个D.4个6.下列各式中正确的是()A.B.C.D.7.若+|b﹣4|=0,那么a﹣b=()A.1B.﹣1C.﹣3D.﹣58.计算正确的是()A.=±2B.=3C.=﹣2D.±=±49.3是27的()A.算术平方根B.平方根C.立方根D.立方10.下列说法:①的立方根是;②是17的平方根;③﹣27没有立方根;④比大且比小的实数有无数个.错误的有()A.①③B.①④C.②③D.②④11.在下列各数中是无理数的有()﹣0.55555…,,,,﹣π,,3.1415,2.020202…(相邻两个2之间有1个0).A.2个B.3个C.4个D.5个12.估计﹣1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间13.实数的整数部分是()A.4B.5C.6D.714.已知实数a,b,c在数轴上对应点的位置如图所示,化简|a|﹣|a﹣b|+|c﹣a|+|b﹣c|的结果是()A.a+2b﹣2c B.2a+2b C.a﹣2c D.a+2b15.如图,在数轴对应的点可能是()A.点A B.点B C.点C D.点D16.如图,数轴上的三点A,B,C分别表示有理数a,b,c,则化简|a﹣b|﹣|c﹣a|+|b﹣c|的结果是()A.2a﹣2c B.0C.2a﹣2b D.2b﹣2c17.下列说法正确的个数()①无限小数都是无理数;②带根号的数都是无理数;③无理数与无理数的和一定是无理数;④无理数与有理数的和一定是无理数;⑤是分数;⑥无理数与有理数的积一定是无理数.A.1个B.2个C.3个D.4个二.填空题(共5小题)18.若一个数的平方等于6,则这个数等于.19.若=3,求2x+5的平方根.20.9的算术平方根是;的立方根是;=.21.若的算术平方根是a,则a的相反数为.22.已知的小数部分是a,的整数部分是b,则a+b=.三.解答题(共8小题)23.解方程:(1)4x2=16;(2)9x2﹣121=0.(3)4x2﹣9=0;(4)8(x+1)3=125.(5)(x﹣3)3+27=0.(6)(x﹣1)2=4;23.计算:+++.|﹣3|﹣++(﹣2)2.24.已知某正数的两个不同的平方根是3a﹣14和a﹣2;b﹣15的立方根为﹣3.(1)求a、b的值;(2)求4a+b的平方根.25.已知2x+3的算术平方根是3,5x+y+2的立方根是2,求x﹣y+4的平方根.人教版七年级数学-实数常考题目训练参考答案与试题解析一.选择题(共17小题)1-5:BCDBC 6-10:BDDCA 11-17ACCCCBA1.平方根等于它本身的数是()A.﹣1B.0C.1D.±1【解答】解:平方根等于它本身的数是0.故选:B.2.若方程x2=5的解分别为a、b,且a>b,下列说法正确的是()A.5的平方根是a B.5的平方根是bC.5的算术平方根是a D.5的算术平方根是b【解答】解:∵x2=5的解分别为a、b,∴5的平方根是a、b,∴选项A不符合题意;∵x2=5的解分别为a、b,∴5的平方根是a、b,∴选项B不符合题意;∵x2=5的解分别为a、b,且a>b,∴5的算术平方根是a,∴选项C符合题意;∵x2=5的解分别为a、b,且a>b,∴5的算术平方根是a,∴选项D不符合题意.故选:C.3.已知2a﹣1和﹣a+4是一个正数的平方根,则这个正数的值是()A.9B.1C.7D.49或【解答】解:∵2a﹣1和﹣a+4是一个正数的平方根,∴①2a﹣1+4﹣a=0,解得a=﹣3,把a=﹣3代入4﹣a得7,∴这个正数的值是49;②2a﹣1=4﹣a,解得a=,把a=代入4﹣a得=,∴这个正数的值是;故选:D.4.的算术平方根是()A.±3B.3C.﹣3D.9【解答】解:∵=9,∴的算术平方根是:=3.故选:B.5.有下列说法:①﹣3是的平方根;②﹣7是(﹣7)2的算术平方根;③25的平方根是±5;④﹣9的平方根是±3;⑤0没有算术平方根;⑥的平方根为;⑦平方根等于本身的数有0,1.其中,正确的有()A.1个B.2个C.3个D.4个【解答】解:①=9,﹣3是的平方根,故①正确;②7是(﹣7)2的算术平方根,故②错误;③25的平方根是±5,故③正确;④﹣9没有平方根,故④错误;⑤0的算术平方根是0,故⑤错误;⑥=3,的平方根为,故⑥正确;⑦平方根等于本身的数有0,故⑦错误.故选:C.6.下列各式中正确的是()A.B.C.D.【解答】解:A.=5,故A不符合题意;B.=5,故B符合题意;C.被开方数小于0,无意义,故C不符合题意;D.被开方数小于0,无意义,故D不符合题意;故选:B.7.若+|b﹣4|=0,那么a﹣b=()A.1B.﹣1C.﹣3D.﹣5【解答】解:∵+|b﹣4|=0,而,|b﹣4|≥0,∴a+1=0,b﹣4=0,解得a=﹣1,b=4,∴a﹣b=﹣1﹣4=﹣5.故选:D.8.计算正确的是()A.=±2B.=3C.=﹣2D.±=±4【解答】解:A.根据算术平方根的定义,=2,故A错误.B.根据立方根的定义,≠3,故B错误.C.根据二次根式的定义,无意义且≠﹣2,故C错误.D.根据平方根的定义,,故D正确.故选:D.9.3是27的()A.算术平方根B.平方根C.立方根D.立方【解答】解:∵33=27,∴3是27的立方根,故选:C.10.下列说法:①的立方根是;②是17的平方根;③﹣27没有立方根;④比大且比小的实数有无数个.错误的有()A.①③B.①④C.②③D.②④【解答】解:①的立方根为,故错误;②﹣是17的平方根,正确;③﹣27有立方根,故错误;④比大且比小的实数有无数个,正确.综上可得①③正确.故选:A.11.在下列各数中是无理数的有()﹣0.55555…,,,,﹣π,,3.1415,2.020202…(相邻两个2之间有1个0).A.2个B.3个C.4个D.5个【解答】解:=4,=2,无理数有,﹣π,共有2个,故选:A.12.估计﹣1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间【解答】解:∵25<26<36,∴5<<6,∴4<﹣1<5,∴估计﹣1的值在:4到5之间,故选:C.13.实数的整数部分是()A.4B.5C.6D.7【解答】解:∵16<17<25,∴4<<5,∴6<2+<7,∴2+的整数部分是6,故选:C.14.已知实数a,b,c在数轴上对应点的位置如图所示,化简|a|﹣|a﹣b|+|c﹣a|+|b﹣c|的结果是()A.a+2b﹣2c B.2a+2b C.a﹣2c D.a+2b【解答】解:∵a<0,a<b,c<a,b>c,∴a﹣b<0,c﹣a<0,b﹣c>0,∴原式=﹣a+a﹣b+a﹣c+b﹣c=a﹣2c,故选:C.15.如图,在数轴对应的点可能是()A.点A B.点B C.点C D.点D【解答】解:∵<<,∴3<<4,∴在数轴对应的点可能是C点.故选:C.16.如图,数轴上的三点A,B,C分别表示有理数a,b,c,则化简|a﹣b|﹣|c﹣a|+|b﹣c|的结果是()A.2a﹣2c B.0C.2a﹣2b D.2b﹣2c【解答】解:由数轴得,c>0,a<b<0,因而a﹣b<0,c﹣a>0,b﹣c<0.∴原式=b﹣a﹣c+a+c﹣b=0.故选:B.17.下列说法正确的个数()①无限小数都是无理数;②带根号的数都是无理数;③无理数与无理数的和一定是无理数;④无理数与有理数的和一定是无理数;⑤是分数;⑥无理数与有理数的积一定是无理数.A.1个B.2个C.3个D.4个【解答】解:∵无限循环小数是有理数,∴①的说法错误;∵带根号且开不尽方的数才是无理数,∴②的说法错误;∵互为相反数的两个数相加等于0,∴两个互为相反数的无理数相加等于0,是有理数,∴③的说法错误;∵无理数与有理数的和一定是无理数,∴④的说法正确;∵是无理数,而分数是有理数,∴⑤的说法错误;∵0乘以任何数都等于0,∴一个无理数与0相乘等于0,∴⑥的说法错误.综上,说法正确的有:④.故选:A.二.填空题(共5小题)18.若一个数的平方等于6,则这个数等于.【解答】解:∵(±)2=6,∴这个数等于±,故答案为:±.19.若=3,求2x+5的平方根.【解答】解:∵=3,∴x+2=9,即x=7,∴2x+5=19,19的平方根是±,故答案为:±.20.9的算术平方根是3;的立方根是2;=﹣.【解答】解:9的算术平方根是3,∵=8,∴的立方根是2,=﹣,故答案为:3、2、.21.若的算术平方根是a,则a的相反数为﹣3.【解答】解:∵=9,9的算术平方根3,∴的算术平方根a=3,∴a的相反数为﹣3,故答案为:﹣3.22.已知的小数部分是a,的整数部分是b,则a+b=.【解答】解:∵4<5<9,∴2<<3,∴a=﹣2,∵4<8<9,∴2<<3,∴b=2,∴a+b=,故答案为:.三.解答题(共8小题)23.解方程:(1)4x2=16;(2)9x2﹣121=0.【解答】解:(1)4x2=16,x2=4,x=±2;(2)9x2﹣121=0,9x2=121,x2=,x=±.24.求出下列x的值:(1)4x2﹣9=0;(2)8(x+1)3=125.【解答】解:(1)4x2﹣9=0,4x2=9,x2=,x1=,x2=﹣;(2)8(x+1)3=125,(x+1)3=,x+1=,x=1.5.25.求下列各式中的x:(1)(x+2)2=25;(2)(x﹣3)3+27=0.【解答】解:(1)(x+2)2=25,x+2=±5,x1=﹣7,x2=3;(2)(x﹣3)3+27=0,x﹣3=﹣3,x=0.26.求下列各式中的x:(1)(x﹣1)2=4;(2)8(x+1)3=27.【解答】解:(1)(x﹣1)2=16x﹣1=4,x﹣1=﹣4,∴x=5或﹣3;(2)(x+1)3=()3,∴x+1=,∴x =.第11 页27.计算:+++.【解答】解:+++=﹣2+5+2﹣3=+2.28.计算|﹣3|﹣++(﹣2)2.【解答】解:原式=3﹣4﹣2+4=1.29.已知某正数的两个不同的平方根是3a﹣14和a﹣2;b﹣15的立方根为﹣3.(1)求a、b的值;(2)求4a+b的平方根.【解答】解:(1)∵正数的两个不同的平方根是3a﹣14和a﹣2,∴3a﹣14+a﹣2=0,解得a=4,∵b﹣15的立方根为﹣3,∴b﹣15=﹣27,解得b=﹣12∴a=4、b=﹣12;(2)a=4、b=﹣12代入4a+b得4×4+(﹣12)=4,∴4a+b的平方根是±2.30.已知2x+3的算术平方根是3,5x+y+2的立方根是2,求x﹣y+4的平方根.【解答】解:因为2x+3的算术平方根是3,5x+y+2的立方根是2,所以,解得,所以x﹣y+4=16,所以x﹣y+4的平方根为±=±4.第12 页。
新人教版七年级数学下册第六章实数测试卷及答案

第六章 实数〔一〕一、选择题〔第小题3分,共30分〕1.25的平方根是〔 〕A.5B .-5C. ± 5D. ±52.以下说法错误的选项是〔 〕A.1的平方根是1B .-1的立方根是-1C. 2是2的平方根D .-3是()23-的平方根3.以下各组数中互为相反数的是〔 〕A .-2与()22-B .-2与38- C.2与()22- D. 2-与2 4.数8.032032032是〔 〕A.有限小数B.有理数C.无理数D.不能确定5.在以下各数:0.51525354…,10049,0.2,π1,7,11131,327,中,无理数的个数是〔 〕 A.2个B.3个C.4个D.5个6.立方根等于3的数是〔 〕A.9B. ± 9C.27D. ±277.在数轴上表示5和-3的两点间的距离是〔 〕 A. 5+3B. 5-3C .-〔5+3〕D. 3-58.满足-3<x <5的整数是〔 〕A .-2,-1,0,1,2,3B .-1,0,1,2,3C .-2,-1,0,1,2,D .-1,0,1,29.当14+a 的值为最小时,a 的取值为〔 〕A .-1 B.0 C. 41- D.1 10. ()29-的平方根是x ,64的立方根是y ,则x +y 的值为〔 〕A.3B.7C.3或7D.1或7二、填空题11.算术平方根等于本身的实数是 .12.化简:()23π-= .13. 94的平方根是 ;125的立方根是 . 14.一正方形的边长变为原来的m 倍,则面积变为原来的 倍;一个立方体的体积变为原来的n 倍,则棱长变为原来的 倍.15.估量60的大小约等于 或 .〔误差小于1〕16.假设()03212=-+-+-z y x ,则x +y +z = .17.我们了解53422=+,黄老师又用计算器求得:55334422=+,55533344422=+,55553333444422=+,则计算:22333444 +〔202X 个3,202X 个4〕= .18.比拟以下实数的大小〔填上>、<或=〕.;②215- 21;③53. 19.假设实数a 、b 中意足0=+b b a a ,则ab ab = . 20.实a 、b 在数轴上的位置如下图,则化简()2a b b a -++= .三、解答题〔共40分〕 21.〔4分〕求以下各数的平方根和算术平方根:〔1〕1; 〔2〕410-;22.〔4分〕求以下各数的立方根:〔1〕21627 ; 〔2〕610--; 23.〔8分〕化简:〔1〕5312-⨯; 〔2〕236⨯; 〔3〕()()27575+⨯-; 〔4〕8145032-- 24. 〔1〕42x =25 〔2〕()027.07.03=-x .25.〔4分〕已知,a 、b 互为倒数,c 、d 互为相反数,求13+++-d c ab 的值.26.〔5分〕请在同一个数轴上用尺规作出2-和5的对应的点.27.〔5分〕已知:字母a 、b 满足021=-+-b a .求()()()()()()2001201112211111++++++++++b a b a b a ab 的值. 28.〔6分〕〔1〕做一做:画四个宽为1,长分别为2、3、4、5的矩形;〔2〕算一算:它们的对角线有多长?〔3〕试一试:平方等于5,平方等于10,平方等于17,平方等于26的数各有几个?〔4〕依据上面的探究过程,你能得出哪些结论?〔5〕利用其中的某些结论解决下面的问题:如果a >b ,那么a 与b 有何关系?参考答案1. C ;2.A ;3.A ;4.B ;5.B ;6.C ;7.A ;8.D ;9.C ;10.D11.0.1;12. π-3;13. ±32,5;14. 2m ,3n ;15.7或8;16.6;17.202X 个5;18. <,>,<; 19.-1;20. a 2-;21.〔1〕 ±1,1;〔2〕±210-,210-;22. 〔1〕21,〔2〕210--;23.〔1〕1,〔2〕3;〔3〕0,〔4〕22-; 24.〔1〕±25,〔2〕1; 25.0; 26.如下图:27.解:a =1,b =2原式=20132012143132121⨯++⨯+⨯+=1-21+21-31+31-41+…+2013120121-=1-20131=20132012。
七年级数学下册《实数》练习题与答案(人教版)

七年级数学下册《实数》练习题与答案(人教版)一、选择题 1.2的相反数是( ) A.- 2 B. 2 C.12 D.2 2.81的算术平方根是( )A.9B.±9C.3D.±33.一个自然数的算术平方根是x ,则它后面一个数的算术平方根是( )A.x +1B.x 2+1C.x +1D.1+x 24.下列说法正确的是( )A.一个有理数的平方根有两个,它们互为相反数B.负数没有立方根C.无理数都是开不尽的方根数D.无理数都是无限小数5.在实数 5,227,0,π2,36,-1.414中,有理数有( )A.1个B.2个C.3个D.4个6.已知x ,y 是实数,且34x +(y ﹣3)2=0,则xy 的值是( )A.4B.﹣4C. 94 D.﹣947.下列说法正确的是( )A.等于﹣B.﹣18没有立方根C.立方根等于本身的数是0D.﹣8的立方根是±28.估计20的算术平方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间9.实数-7,-2,-3的大小关系是( )A.-7<-3<-2B.-3<-2<-7C.-2<-7<-3D.-3<-7<-210.实数a ,b ,c 在数轴上的对应点如图所示,化简a +︱a +b ︱-2c 的值是( )A.-b -cB.c -bC.2(a -b +c)D.2a +b +c11.分别取9和4的一个平方根相加,其可能结果为( )A.1个B.2个C.3个D.4个12.规定用符号[m]表示一个实数m 的整数部分,例如:[23]=0,[3.14]=3.按此规定[-10+1]的值为( )A.-4B.-3C.-2D.1二、填空题13.若3a=-7,则a= .14.写出两个无理数,使它们的和为5:____________.15化简:|3-10|+(2-10)=______.16.如果一个数的平方根是a +3和2a ﹣15,则a 的值为_____,这个数为_____.17.如图,数轴上与1,2对应的点分别为A ,B ,点B 关于点A 的对称点为C ,设点C 表示的数为x ,则|x -2|的值是__________.18.我们用符号[x]表示一个不大于实数x 的最大整数,如:[3.69]=3,[﹣0.56]=﹣1则按这个规律[﹣5-1]=三、解答题19.计算:9-(-6)2-3-27.20.计算:|-2|+3-8-(-1)2027;21.计算:23)3(332716--+-+.22.计算:.23.已知|2a+b|与3b+12互为相反数.(1)求2a-3b的平方根;(2)解关于x的方程ax2+4b-2=0.24.先阅读下面实例,再回答问题:∵12+1=2且1<2<2∴12+1的整数部分是1.∵22+2=6且2<6<3∴22+2的整数部分是2.∵32+3=12且3<12<4∴32+3的整数部分是3.回答:(1)20172+2017的整数部分是多少?(2)n2+n(n为正整数)的整数部分是多少?25.跳伞运动员跳离飞机,在未打开降落伞前,下降的高度d(m)与下降的时间t(s)之间有关系式t=d5 (不计空气阻力,结果精确到0.01s).(1)请完成下表:(2)如果共下降1000m,那么前一个500m与后一个500m所用的时间分别是多少?26.你能找出规律吗?(1)计算:4×9=________,4×9=________; 16×25=________,16×25=________;(2)请按找到的规律计算: ①5×125; ②123×935; (3)已知a=2,b=10,用含a ,b 的式子表示40.参考答案1.A2.A3.D4.D.5.D6.B7.A.8.C9.D10.B11.D12.C13.答案为:-343.14.答案为:如-2和2+515.答案为:-1.16.答案为:4,49.17.答案为:22-218.答案为:﹣4.19.解:原式=3-6+3=0.20.解:原式=2-2+1=1.21.解:原式=33-2.22.解:原式=-36;23.解:由题意得3b+12+|2a+b|=0∴3b+12=0,2a+b=0解得b=-4,a=2.(1)2a-3b=2×2-3×(-4)=16∴2a-3b的平方根为±4.(2)把b=-4,a=2代入方程得2x2+4×(-4)-2=0,即x2=9解得x=±3.24.解:(1)2017;(2)n.理由:∵n2+n=n(n+1)(n为正整数)而n2<n(n+1)<(n+1)2∴n<n2+n<n+1.∴n2+n的整数部分为n.25.解:(1)4.47 6.32 10.00 14.14 (2)10.00s 4.14s26.解:(1)6,6,20,20.(2)①原式=5×125=25.②原式=53×485=4.(3)40=2×2×10=2×2×10=a2b.。
(新人教版)数学七年级下册:《实数》习题及答案

实数一、填空:1.若无理数a 满足:1<a<4,请写出两个你熟悉的无理数:•_____,•______.2._________.的相反数是________.π|=________.5.比较大小:3______,1636.大于_______.7.设a 是最小的自然数数,b 是最大负整数,c 是绝对值最小的实数,则a+b+c=______.二、选择:8.(2003年上海市)下列命题中正确的是( )A.有限小数不是有理数B.无限小数是无理数C.数轴上的点与有理数一一对应D.数轴上的点与实数一一对应9.(2004年安徽省)下列四个实数中是无理数的是( ) A.2.5 B.103C.πD.1.414 10.(2004年杭州市)有下列说法:①带根号的数是无理数;•②不带根号的数一定是有理数;③负数没有立方根;④是17的平方根,其中正确的有( )A.0个B.1个C.2个D.3个11.-53、、-2π四个数中,最大的数是( )A.53D.-2π12.在实数范围内,下列各式一定不成立的有( )(1)=0;(2)+a=0;(3)+=0;(4)12a-=0.A.1个B.2个C.3个D.4个三、解答:13.把下列各数分别填在相应的集合中:-1112.4π,..0.23,3.14有理数集合无理数集合14.根据右图拼图的启示:(1)面积为8(2)(3)15.已知坐标平面内一点A(-2,3),将点A个单位,再向个单位,得到A′,则A′的坐标为________.16.阅读下面的文字,解答问题.是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,-1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,的整数部分是1,•将这个数减去其整数部分,差就是小数部分.请解答:已知=x+y,其中x是整数,且0<y<1,求x-y的相反数.答案:1.答案不唯一,如:12.±3.- ,-π-3 5.<,>,>,= 6.-4 7.-18.D 9.C 10.B 11.B 12.C13.有理数集合: -1112..0.23,3.14 .无理数集合4π..-1, x-y 。
(完整版)七年级数学《实数》经典例题及习题新人教版

山东省肥城市湖屯镇初级中学七年级数学《实数》经典例题及习题新人教版经典例题1.下面几个数:0.23,1.010010001…,,3π,,,其中,无理数的个数有()A、1B、2C、3D、4解析:本题主要考察对无理数概念的理解和应用,其中,1.010010001…,3π,是无理数故选C举一反三:【变式1】下列说法中正确的是()A、的平方根是±3B、1的立方根是±1C、=±1D、是5的平方根的相反数【答案】本题主要考察平方根、算术平方根、立方根的概念,∵=9,9的平方根是±3,∴A正确.∵1的立方根是1,=1,是5的平方根,∴B、C、D都不正确.【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A、1B、1.4C、D、【答案】本题考察了数轴上的点与全体实数的一一对应的关系.∵正方形的边长为1,对角线为,由圆的定义知|AO|=,∴A表示数为,故选C.【变式3】【答案】∵π= 3.1415…,∴9<3π<10因此3π-9>0,3π-10<0∴类型二.计算类型题2.设,则下列结论正确的是( )A. B.C. D.解析:(估算)因为,所以选B举一反三:【变式1】1)1。
25的算术平方根是__________;平方根是__________。
2) —27立方根是__________.3)___________,___________,___________。
【答案】1);.2)—3。
3),,【变式2】求下列各式中的(1)(2)(3)【答案】(1)(2)x=4或x=-2(3)x=-4类型三.数形结合3。
点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______解析:在数轴上找到A、B两点,举一反三:【变式1】如图,数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C表示的数是( ).A.-1 B.1- C.2- D.-2【答案】选C[变式2]已知实数、、在数轴上的位置如图所示:化简【答案】:类型四.实数绝对值的应用4.化简下列各式:(1) |—1。
新人教版七年级数学下册第六章实数测试题及答案

实用文档 第六章实数(2) 一、选择题(每小题3分,共30分) 1.下列各式中无意义的是( )A. 61- B. 21-)( C.12+a D.222-+-x x 2.在下列说法中:10的平方根是±10;-2是4的一个平方根; 94的平方根是32 ④0.01的算术平方根是0.1;⑤ 24a a ±=,其中正确的有( )A.1个B.2个C.3个D.4个5.现有四个无理数5,6,7,8,其中在实数2+1 与 3+1 之间的有( ) A.1个 B.2个 C.3个 D.4个6.实数7- ,-2,-3的大小关系是( )A. 237---B. 273---C. 372---D.723---7.已知351.1 =1.147,31.15 =2.472,3151.0 =0.532 5,则31510的值是( )A.24.72B.53.25C.11.47D.114.78.若33)2(,2,3--=--=-=c b a ,则 c b a ,,的大小关系是( )A.c b aB.b a cC.c a bD.a b c实用文档9.已知x 是169的平方根,且232x y x =+,则y 的值是( )A.11B.±11C. ±15D.65或3143 10.大于52-且小于23的整数有( )A.9个B.8个 C .7个 D.5个二、填空题(每小题3分,共30分)11. 3-绝对值是 ,3- 的相反数是 .15.已知212+++b a =0,则 ab = .16.最大的负整数是 ,最小的正整数是 ,绝对值最小的实数是 ,不超过380-的最大整数是 .17.已知 ,3,312==b a 且0 ab ,则 b a +的值为 。
18.已知一个正数x 的两个平方根是1+a 和3-a ,则a = ,x = .实用文档19.设a 是大于1的实数,若 312,32,++a a a 在数轴上对应的点分别记作A 、B 、C ,则A 、B 、C 三点在数轴上从左至右的顺序是 .20.若无理数m 满足14 m ,请写出两个符合条件的无理数 . 三、解答题(共40分)21.(8分)计算:(1) )(25.08-⨯-; (2)4002254-+ ;(3)32333111)()(-+-+- ; (4)33332734312512581---+-- ;22.(12分)求下列各式中的x 的值:(1) ()9-242=x ; (2)()25122=-x ; (3)()375433-=-x ; (4)()08123=+-x ;猜想 2655-等于什么,并通过计算验证你的猜想.实用文档实用文档参考答案1.D ;2.C ;3.B ;4.C ;5.B ;6.B ;7.C ;8.D ;9.D ;10.A ; 11. 3,3;12. ±3,±2,-7,±4;13. >,>,>,<;14.-2≤x ≤23; 15.4;16.-1,1,0,-5;17. ±310;18.1,4;19.B <C <A ;20. 3,2; 21.1,-3,-1,-3;22. 21或27,3或者2,-1,-21;23.- a ;24.0;262552655=-如有侵权请联系告知删除,感谢你们的配合!32559 7F2F 缯20142 4EAE 亮39341 99AD 馭hGa36493 8E8D 躍38895 97EF 韯36662 8F36 輶37471 925F 鉟28094 6DBE 涾37109 90F5 郵20588 506C 偬22459 57BB 垻r21285 5325 匥p28067 6DA3 涣21731 54E3 哣20561 5051 偑27982 6D4E 济340846 9F8E 龎25388 632C 挬 37721 9359 鍙39060 9894 颔30215 7607 瘇。
人教版数学七年级下册:《实数》单元测试卷(含答案)

人教版数学七年级下册:《实数》单元测试卷(含答案)实数单元测试卷一、选择题:1、下列数中,是无理数的有()A.0个B.1个C.2个D.3个2、下列说法正确的是()A.任何数都有算术平方根;B.只有正数有算术平方根;C.0和正数都有算术平方根;D.负数有算术平方根。
3、下列语句正确的是()A.9的平方根是-3;B.-7是-49的平方根;C.-15是225的平方根;D.(-4)2的平方根是±4,的立方根是±1.4、下列数中是有理数的是()A.-√2;B.π;C.0.5;D.√9.5、下列各数中,与数3最接近的数是()A.4.99;B.2.4;C.2.5;D.2.3.6、有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④√17是无理数;其中正确的有()A.3个;B.2个;C.1个;D.0个。
7、∛8的值是()A.2;B.4;C.8;D.-8.8、若a2=4,b2=9,且ab<0,则a-b的值为()A.-2;B.±5;C.5;D.-5.9、已知实数a,满足a2-3a+2=0,则a=()A.3;B.-1;C.1;D.-2.10、如图,数轴上的点A、B、C、D分别表示数-1、1、2、3,则表示2-√的点P应在()A.线段AO上;B.线段OB 上;C.线段BC上;D.线段CD上。
二、填空题:13、√64=8.14、一个数的平方根和它的立方根相等,则这个数是1.15、已知√(a+1)+√(a-1)=2,则a=2.16、若某数的平方根为a+3和2a-15,则这个数是25.17、已知|a+1|=0,则a-b=a+1-b=1-b。
18、定义运算“@”的运算法则为:x@y=xy-1,下面给出关于这种运算的几种结论:①(2@3)@(4)=19;②x@y=y@x;③若x@x=0,则x-1=0;④若x@y=0,则(xy)@(xy)=0,其中正确结论的序号是2、3、4.三、解答题:19、计算:(2-√3)(√3-1)=1.20、计算:(√3+1)(√3-1)=2.21、计算:(√2+1)2-(√2-1)2=4√2.22、求y的值:(2y-3)2-64=0,解得y=5或-5.23、64(x+1)3=27,解得x=-7/8.24、实数a、b在数轴上的位置如图所示,请化简:|a-b|+|b-a|=0,化简后得到0=0,XXX成立。
人教版初中数学七年级下册《实数》测试题(含答案)

第六章《题 一、单选题(每小题只有一个 1.25 的平方根是( ) A .±5 B .﹣5 C .5 D .25 2.下列式子中,正确的是( ) A . 3 8 3 8 B . 3.6 0.6 C . ( 3) 3 D . 36 62 3.要使代数式x2有意x 的取是 ( )A .x ≠2B .x ≥ 2C .x>2D .x ≤ 2 4.下列说法正确的是 ( )A .一个数的平方根有两个 , 它们互为相反数B .一个数的立方根不是正数就是负数C .负数没有立方根D.如果一个数的立方根是这个, 那么这个数一定是 -1 或 0 或 1 5.在下列各数 3 22 2, 3, 8, , , 36,0.10100100013(两个 1 之间, 依次增 加 1 个 0),其中无理数有( )A .6 个B .5 个C .4 个D .3 个 6.下列说法正确的是( )A .正有理数和负有理数统称为有理数B .符号不同的两个数互为相反数C .绝对值等于它的相反数的正数D .两数相加,和一定大于任何一个加数7.下列各组数中互为相反数的是( )A .- 2 与 (-2) 2B .- 2 与 3 8C .2 与( - 2 )2 D .|- 2 | 与 2 8.估计5 6﹣24的值应在( )A .5 和 6 之间B .6 和 7 之间C .7 和 8 之间D .8 和 9 之间 9.如A是实数a在数轴上对应的正确的是( )A . a 1 aB . a a 1C .1 a aD . 1 a a10.一个正数的两个平方根分别是2a 1与 a 2,则a 的值为 ( ) A .-1 B .1 C .-2 D .211.比较2,5,3 7 的大小,正确的是 ( )A . 3 72 5 B . 2 53 7 C . 2 3 7 5 D . 5 3 7 212.正方形 ABCD 在数轴上的位置如图所示,点 D 、A 对应的数分别为 0 和 1,若正方形 ABCD 绕顶点顺时针方向在数轴上连续翻转,翻转 1 次后,点 B 所对应的数为 2;按此规律继续翻转下数轴上数 2020 所对应的点是( ) A .点 A B .点 B C .点 C D .点 D二、填空题13.计算:( 3) 2 =________; 3 64 125=________.14. 5 2 的相反数是 __________,- 315若 x + x x+1 ___________.16.已知 a 、 b 为两个连续的整a 11 a b __________.17.已知 9 13 与 9 13 的小数部分分别是 a 三、解答题18.把下列各数分别填在相应的:1 ﹣2.4 ,3,﹣1 3 ,22 7,0.333⋯ , 0,﹣(﹣2.28 ),3.14 ,﹣|﹣2| ,1.010010001⋯ ,﹣ 2015正有理数集合 {_____⋯ }整数集合 {_____ ⋯ }负分数集合 {_____⋯ }无理数集合 {_____⋯ } .19.计算下列各题:(1) 3 27 + 2( 3) -31(2) 3 27 0 1 3 0.125 3 1 634 64.20.已知 a 是10 的整数部分, b 是它的小数部分,求( -a) 3 +(b +3) 2 的值. 21.已知2m 2 的平方根是4, 3m n 1的平方根是5, 求m3n 的平方根.22.已知, a 、b 互为倒数,c 、d 互为相反数,求 3 ab c d 1的值.23.如图,数轴的正半轴上有A,B,C三点,表示 1 和 2 的对应点分别为A,B,点B 到点A的距离与点C到原点的距离相等,设点C所表示的数为x.(1) 请你直接写出x 的值;(2) 求(x 2)2 的平方根.24.阅读下列解题过程:(1)1 1 ( 5 4) 5 42 25 4 ( 5 4)( 5 4) ( 5) ( 4)5 4 5 2 ;(2)1 1 ( 6 5)6 5 ( 6 5)( 6 5)6 5 ;请回答下列问题:(1)观察上面解题过程, 请直接写出1n n 1的结果为__________________.(2)利用上面所提供的解法,请化简:1 1 1 1 1......1 2 2 3 3 4 98 99 99 100参考答案1.A 2 .A 3.B 4 .D 5.D 6 .C 7 .A 8 .C 9.A 10 .A 11 .A 12.D13.3 4 514.2- 5 , 3 6 15.116.717.118.略19.(1)1 (2)11 420.-17.21.±4.22.0.23.(1) x= 2 -1 ;(2)1. 24.(1)n n 1;(2)9。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课标人教版七年级数学《实数》练习题
一、判断题(1分×10=10分)
1. 0的平方根是0,0的算术平方根也是0 ( ) 2. (-2)2
的平方根是2- ( ) 3. 64的立方根是4± ( ) 4. -7是-343的立方根 ( ) 5. 无理数也可以用数轴上的点表示出来 ( ) 10.有理数和无理数统称实数 ( ) 二、选择题(3分×6=18分)
11.列说法正确的是()
A 、
4
1
是5.0的一个平方根 B 、 正数有两个平方根,且这两个平方根之和等于0 C 、 72
的平方根是7 D 、负数有一个平方根 12.如果
25.0=y ,那么y 的值是()
A 、 0625.0
B 、 5.0-
C 、 5.0
D 、5.0± 13.如果x 是a 的立方根,则下列说法正确的是()
A 、x -也是a 的立方根
B 、x -是a -的立方根
C 、x 是a -的立方根
D 、等于3
a 14.π、
7
22、3-、3343、1416.3、3.0&可,无理数的个数是() A 、1个 B 、 2个 C 、 3个 D 、 4个 15.与数轴上的点建立一一对应的是()(
A 、全体有理数
B 、全体无理数
C 、 全体实数
D 、全体整数 16.果一个实数的平方根与它的立方根相等,则这个数是()
A 、0
B 、正实数
C 、0和1
D 、1
三、填空题(1分×30=30分)
2.100的平方根是 ,10的算术平方根是 。
3.3±是 的平方根3-是 的平方根;2
)2(-的算术平方根
是 。
4.正数有 个平方根,它们 ;0的平方根是 ;负数 平方根。
5.125-的立方根是 ,8±的立方根是 ,0的立方根是 。
6.正数的立方根是 数;负数的立方根是 数;0的立方根是 。
7.2的相反数是 ,π-= ,3
64-=
8.比较下列各组数大小:
⑴⑵
2
1
5- 5.0 ⑶π 14.3 2 四、解下列各题。
1. 求下列各数的算术平方根与平方根(3分×4=12分)
⑴225 ⑵
144
121 ⑶ 81.0 ⑷ 2
)4(-
2. 求下列各式值(3分×6=18分) ⑴225 ⑵16.0-
⑶289
144
±
3. ⑷ 364 ⑸ 3125- ⑹3
27
125
-
4. 求下列各式中的x :(3分×4=12分)
⑴ 2x 49= (2)81
252
=x (3)8
333
=-x ⑷125)2(3
=+x
B卷·能力训练一、选择题(3分×8=24分)
1. 实数38 2
π 34
3
10
25 其中无理数有() A 、 1个 B 、 2个 C 、 3个 D 、 4个
2.
91
的平方根是() A 、31 B 、 31- C 、 31± D 、81
1±
3.如果162
=x ,则的值是()
A 、 4
B 、 -4
C 、 4±
D 、 2±
4.下列说法正确的是()
A 、 25的平方根是5
B 、22-的算术平方根是2
C 、 8.0的立方根是2.0
D 、
65是36
25的一个平方根 5.下列说法
⑴无限小数都是无理数 ⑵无理数都是无限小数 ⑶带根号的数都是无理数⑷两个无理数的和还是无理数 其中错误的有( )个
A 、 3
B 、 1
C 、 4
D 、 2 6.如果x x -=2成立的条件是()
A 、x ≥0
B 、x ≤0
C 、x >0
D 、x <0
7.设面积为3的正方形的边长为x ,那么关于x 的说法正确的是() A 、x 是有理数 B 、3±=x C 、x 不存在 D 、x 取1和2之间的实数 8.下列说法错误的是()
A 、2
a 与2)(a -相等 B 、a 与a -互为相反数
C 、3a 与3a -是互为相反数
D 、a 与a -互为相反数 二、填空题(1分×14=14分)
9.9 的算术平方根是 ;2
)3(-的算术平方根 ;3的平方根是 10.0的立方根是 ;-8的立方根是 ;4的立方根是 11.一个数的平方等于它本身,这个数是 ;一个数的平方根等于它本身,这
个数是 ,一个数的算术平方根等于它本身,这个数是
12.若x x =3
,则=x ;若x x =3,则=x
13.比较下列各组数的大小:
⑴ .1-5.1&
⑵
215- 2
1
⑶ π 14.3 三、解下列各题
14.求下列各式的值(2分×8=16分) ⑴169
49
-
⑵ 3008.0-
⑶2
)13
4(-- ⑷ 23)1(1-+-
⑸)33(3- ⑹)2
12(2-
⑺22322+- ⑻3
32)52()25(--
15.用计算计算(精确到01.0)(3分×2=6分)
⑴ 154.053+- ⑵22103+-π
16.求符合下列各条件中的x 的值。
(3分×6=18分) ⑴02122
=-x ⑵018
1
3=+x
⑶ 4)4(2
=-x ⑷ 09)3(3
1
3
=-+x
⑸满足x <π的整数x ⑹ 满足2-<x <5
17.估算下列各数的大小。
⑴ 44(误差小于1.0) ⑵ 390(误差小于1)
A 卷 1对2对3错4错5错6错7错8对9对10对 11
B 12A 13B 14B 15
C 16A
17 。
11,12,13,15,16,17,19,20;18. 10,10± 19. 3,9,2; 20. 2 互为相反数,0,没有; 21. -5,0,2±;22 .正,负 0;23. ,2-π,4;
24. <、>、>、>;25. ①15,15± ②
12
1
,1211± ③ 9.0,9.0± ④ 4,4±;
26. ⑴15 ⑵–0.4 ⑶1712± ⑷ 4 ⑸ -5 ⑹ 3
5-; 27. 7±=x 95=x 23
=x
3=x 附加题:28。
将同样大的正方形对折剪开,拼成一个面积为2的正方
形,设该对角线长为x 则x 2
=2 所以 )0(2φx x = 29 梯形,它的面积为22
5
(1,0) (3,0) )2,4(- )2,1(-
B 卷:1
C 2C 3C 4
D 5A 6B 7D 8C :9 . 3,3,3± ; 10 . 32,2,0-; 11 .0
或1 ,0, 0或1 ;12 . 10±或,0或1± ;13. <、>、>;14 . 13
7
- ,-0.2 , 0 , 33- ,1,32 10 ;15 . 0.35, 2.85; 16 .①2
1
±
=x ,②-2,③ 6或2 ,④0 ,⑤3,2,1,0±±± ⑥-1,0,1,2, 17.略 18. 设正方形的边
长为厘米,根据题意,2
21⋅=πx 所以π=x ㎝,由题意得
=33
4
rr π9850,r ≈13.3 附加题:因为R
u P 2
=,所以R U 1500= 当R=18.4时,U ≈166.1 当
R=20.8时,U ≈176.6 因为166.1<170,所以用第一个用电器。