实数教学教案(1)

合集下载

实数的教案

实数的教案

实数的教案教案一:引导学生学习实数的基本概念和性质教学目标:1. 理解实数的定义和性质;2. 能够在数轴上表示实数;3. 能够进行实数的加减乘除运算。

教学重点:1. 实数的定义和性质;2. 实数的表示和比较。

教学难点:实数与有理数的关系。

教学资源:1. 教师准备的课件;2. 数轴模型。

教学过程:Step 1:导入与激发兴趣(5分钟)教师通过提问判断学生对实数的理解程度,如“你们觉得实数是什么?有哪些特点?”Step 2:学习实数的定义和性质(15分钟)教师呈现实数的定义和性质,如“实数是包括有理数和无理数的数的集合”、“实数可以无限制地进行加减乘除运算”等。

Step 3:实数的表示和比较(15分钟)教师通过数轴模型展示实数的表示和比较方法,教学过程中引导学生思考,如“如何表示和比较两个实数?”、“怎样在数轴上找到实数的位置?”等。

Step 4:实数的加减乘除运算(20分钟)教师通过例题演示实数的加减乘除运算过程,并解释其中的规律,如“两个正数相加得到正数,两个负数相加也得到负数”,“正数与负数相乘得到负数”,等。

Step 5:练习与巩固(15分钟)教师根据学生的学习情况设计一些实数加减乘除的练习题,让学生在课堂上进行解答,并及时给予指导。

Step 6:拓展与应用(10分钟)教师设计一些拓展问题,让学生进行思考和讨论,如“实数有哪些应用场景?”、“无理数的定义和性质是什么?”等。

Step 7:总结与反思(5分钟)教师引导学生总结本节课所学的知识点,并反思学习过程中的困难和收获。

Step 8:布置作业(5分钟)教师布置课后作业,要求学生巩固所学知识,并提醒学生参考教材和相关资料复习实数的内容。

教学延伸:学生可以通过阅读相关书籍和资料,进一步深入了解实数的定义、性质和应用,拓宽知识面。

还可以进行实际问题的应用实践,探究实数在日常生活中的应用场景。

教学反思:通过本节课的教学,学生对实数的基本概念有了初步了解,并掌握了实数的表示和比较方法,以及加减乘除运算的规律。

实数(一)教案

实数(一)教案

第二章实数6.实数(一)一、学生起点分析实数是在有理数和勾股定理等知识基础上进行的第二次数系扩张,在教学中注意运用类比方法,使学生明确新旧知识之间的联系,如实数的相反数、倒数、绝对值等概念可完全类比有理数建立,并通过例题和习题来巩固,适当加深对它们的认识。

二、教学任务分析●教材地位及作用在本节之前学生已学习了平方根、立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入。

中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程、函数的基础。

三、教学目标分析教学目标●知识与技能目标1.了解实数的意义,能对实数按要求进行分类;2.了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。

3.了解实数和数轴上的点一一对应,能根据实数在数轴上的位置比较大小。

●过程与方法目标1.通过对实数分类的探究,增强学生的分类意识;2.在利用数轴上的点来表示实数的过程中,将数和图形结合在一起,让学生进一步体会数形结合的思想。

●情感与态度目标1.通过对实数进行分类的练习、进一步领会分类的思想方法;2.在探究利用数轴上的点表示实数的过程中,训练学生多角度思维,培养和发展学生的合作意识。

教学重点2.在实数范围求相反数、倒数和绝对值;3.明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。

教学难点建立实数概念及分类四、教法学法1.教学方法:自主探究—交流—发现2.课前准备:多媒体课件、投影仪、电脑五、教学过程:本节课设计了八个教学环节:第一环节:复习引入新课;第二环节:实数概念;第三环节:实数分类;第四环节:实数相关概念;第五环节:探究——实数与数轴上点之间的对应关系;第六环节:课堂练习;第七环节:课堂小节;第八环节:作业布置。

内容:问题:(1)什么是有理数?有理数怎样分类?(2)什么是无理数?带根号的数都是无理数吗?意图:回顾以前学习过的内容,为进一步学习引入无理数后数的范围的扩充作准备。

实数教案(精选3则)

实数教案(精选3则)

实数教案(精选3则)实数教案实数教案(一):初中数学教案----实数一、资料特点在知识与方法上类似于数系的第一次扩张。

也是后继资料学习的基础。

资料定位:了解无理数、实数概念,了解(算术)平方根的概念;会用根号表示数的(算术)平方根,会求平方根、立方根,用有理数估计一个无理数的大致范围,实数简单的四则运算(不要求分母有理化)。

二、设计思路[]整体设计思路:无理数的引入----无理数的表示----实数及其相关概念(包括实数运算),实数的应用贯穿于资料的始终。

学习对象----实数概念及其运算;学习过程----透过拼图活动引进无理数,透过具体问题的解决说明如何表示无理数,进而建立实数概念;以类比,归纳探索的方式,寻求实数的运算法则;学习方式----操作、猜测、抽象、验证、类比、推理等。

具体过程:首先透过拼图活动和计算器探索活动,给出无理数的概念,然后透过具体问题的解决,引入平方根和立方根的概念和开方运算。

最后教科书总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。

第一节:数怎样又不够用了:透过拼图活动,让学生感受无理数产生的实际背景和引入的必要性;借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想;会决定一个数是有理数还是无理数。

第二、三节:平方根、立方根:如何表示正方形的边长?它的值到底是多少?并引入算术平方根、平方根、立方根等概念和开方运算。

第四节:公园有多宽:在实际生活和生产实际中,对于无理数我们常常透过估算来求它的近似值,为此这一节资料介绍估算的方法,包括透过估算比较大小,检验计算结果的合理性等,其目的是发展学生的数感。

第五节:用计算器开方:会用计算器求平方根和立方根。

经历运用计算器探求数学规律的活动,发展合情推理的潜力。

第六节:实数。

总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。

三、一些推荐1.注重概念的构成过程,让学生在概念的构成的过程中,逐步理解所学的概念;关注学生对无理数和实数概念的好处理解。

北师大版八年级数学上册第二章《实数》教案

北师大版八年级数学上册第二章《实数》教案

八年级数学第二章《实数》教案(1)北师大版教学过程一、创设情境,导入新课师:用课件出示下列内容:你能独立完成吗?1. _________和_________统称为有理数,如__________________,_________等都是有理数。

2.无理数是_________的小数,如_________,_________,_________等都是无理数。

3.把下列各数分别填入相应的集合内:,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)生:独立思考并完成。

二、师生互动探究互动一、在实数概念基础上对实数进行不同分类师:上面的一系列数,它们都可以填进这两个圆中,你认为我们学过的数字,有没有不属于上面两种类型的呢?生:没有。

师:那么这节课的课题是实数,那么我们就把这两种类型就叫实数。

即有理数和无理数统称为实数。

生:也就是说实数可分为有理数和无理数。

师:对!你说的太对啦!实数从定义可分为有理数和无理数。

无理数和有理数一样,也有正负之分,那么按正负分实数还可以怎样分类?生:实数按正负分还可以分为正实数和负实数。

师:正数和负数能构成实数吗?还有别的数吗?生:还有0.师:所以实数还可以怎么分?生:实数可以分为正实数、0、负实数。

师:很好,在这里要特别提示大家分类可以有不同的方法,但要按同一标准不重不漏。

互动二、了解实数范围内相反数、倒数、绝对值的意义:师:-2的相反数是什么?生:(齐声)2师:的相反数是什么?生: 是-师:实数a的相反数是什么?生:思考并讨论后回答是-a。

师:同学们回答的非常好,-2的倒数是什么?生:是-。

师:的倒数是什么?生:思考回答。

师:实数a的倒数是什么?生:是。

师:-2的绝对值是什么?生:是2师:的绝对值是什么?生:是师:实数a的绝对值是什么?生:思考、交流,然后回答。

是|a|师:通过以上问题我们可以得哪些结论?生:在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。

七年级数学上册《实数》教案、教学设计

七年级数学上册《实数》教案、教学设计
2.讲解无理数的定义,以及如何判断一个数是否为无理数。通过具体例子,让学生理解无理数的性质和特点。
3.介绍实数的四则运算,特别是乘除运算的化简方法。通过讲解和举例,让学生掌握实数运算的规则。
4.引导学生探究实数在数轴上的表示方法,让学生通过实际操作,体验实数与数轴的关系,培养数形结合的思维方式。
(三)学生小组讨论
8.课后辅导和拓展,针对学生在课堂上遗留的问题,进行个别辅导;同时,提供丰富的拓展资源,满足学有余力学生的需求。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示一个正方形和一条对角线,提出问题:“同学们,你们知道这个正方形的对角线有多长吗?”引导学生回顾勾股定理,计算出对角线的长度为$\sqrt{2}$。
1.将学生分成小组,讨论以下问题:
a.举例说明无理数在实际生活中的应用。
b.如何判断一个数是否为无理数?
c.实数在数轴上如何表示?
2.各小组汇报讨论成果,教师点评并总结。
(四)课堂练习
1.设计不同难度的练习题,让学生独立完成。题目包括:
a.判断以下数是否为无理数:$\sqrt{5}$、$\pi$、$\frac{22}{7}$。
在教学过程中,教师应以学生为主体,关注学生的个体差异,充分调动学生的积极性、主动性和创造性。通过本章节的学习,使学生全面掌握实数的知识与技能,形成良好的学习方法和情感态度,为今后的数学学习打下坚实的基础。
二、学情分析
七年级的学生正处于青春期,思维活跃,好奇心强,但注意力容易分散。在数学学习方面,他们已经掌握了有理数的概念和运算,具备了一定的数学基础。然而,对于实数的认识尚处于模糊阶段,特别是对无理数的理解和运用存在一定难度。因此,在教学过程中,应关注以下几点:
2.提问:“$\sqrt{2}$是一个什么类型的数?”让学生回顾有理数的概念,进而引出无理数的概念,为新课的学习做好铺垫。

《实数》精品教案

《实数》精品教案

《实数》精品教案一、教学内容本节课选自人教版数学教材八年级下册第十六章《实数》的第一节,内容包括实数的定义、分类及性质。

详细内容如下:1. 实数的定义:有理数和无理数的统称,表示为R。

2. 实数的分类:整数、分数、无理数。

3. 实数的性质:实数具有有序性、稠密性和完备性。

二、教学目标1. 知识与技能:理解实数的定义和分类,掌握实数的性质。

2. 过程与方法:通过例题讲解和随堂练习,提高学生的实数运算能力和解决问题的能力。

3. 情感态度与价值观:培养学生对实数概念的理解,激发学生学习数学的兴趣。

三、教学难点与重点1. 教学难点:实数的定义和性质,尤其是无理数的理解。

2. 教学重点:实数的分类和实数运算。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:练习本、铅笔、橡皮。

五、教学过程1. 引入:通过生活实例,如测量物体长度、计算面积等,引导学生体会实数的必要性。

2. 新课导入:讲解实数的定义、分类及性质,结合多媒体课件进行演示。

3. 例题讲解:选取具有代表性的例题,如实数运算、比较大小等,详细讲解解题思路和方法。

4. 随堂练习:设计具有梯度的问题,让学生独立完成,巩固所学知识。

六、板书设计1. 实数的定义2. 实数的分类1. 整数2. 分数3. 无理数3. 实数的性质4. 实数运算5. 例题及解题方法七、作业设计1. 作业题目:(3)计算:2/3 + √5,(√3 √2)²。

2. 答案:(1)实数:0,3/4,√2,5.6,π,e,…(2)从大到小:e,π,√5,3/2,√3,2(3)2/3 + √5 = 2/3 + √5;(√3 √2)² = 5 2√6。

八、课后反思及拓展延伸1. 课后反思:本节课学生对实数的定义和性质掌握较好,但在实数运算方面还需加强练习。

2. 拓展延伸:引导学生研究实数与数轴的关系,了解实数在数轴上的表示方法,为后续学习函数打下基础。

同时,鼓励学生探索实数在实际问题中的应用,提高学生的数学素养。

冀教版数学八年级上册14.3《实数》教学设计1

冀教版数学八年级上册14.3《实数》教学设计1

冀教版数学八年级上册14.3《实数》教学设计1一. 教材分析冀教版数学八年级上册14.3《实数》是学生在学习了有理数、无理数相关知识的基础上,进一步对实数进行系统地认识和理解。

本节内容主要包括实数的定义、实数的分类、实数的性质等。

通过本节课的学习,使学生掌握实数的概念,了解实数的分类,理解实数的性质,为学生进一步学习函数、几何等知识打下基础。

二. 学情分析八年级的学生已经学习了有理数、无理数的相关知识,对数的运算、性质有一定的了解。

但是,学生对实数的认识还比较模糊,对实数的分类和性质的理解还有待提高。

此外,学生的数学思维能力、逻辑表达能力等方面也有待提高。

三. 教学目标1.了解实数的概念,掌握实数的分类,理解实数的性质。

2.培养学生运用数学知识解决实际问题的能力。

3.培养学生的数学思维能力、逻辑表达能力。

四. 教学重难点1.实数的定义、分类和性质。

2.实数与实际问题的结合。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究、积极思考,提高学生的数学思维能力和逻辑表达能力。

六. 教学准备1.教材、教案、课件。

2.相关实数的学习资料。

3.投影仪、白板等教学设备。

七. 教学过程导入(5分钟)教师通过引入生活中实际问题,如身高、体重等,引导学生认识到实数在生活中的重要性。

然后,教师提问:“你们已经学习了有理数和无理数,那么,实数与有理数、无理数有什么关系呢?”从而引出本节课的主题——实数。

呈现(15分钟)教师通过课件展示实数的定义、分类和性质,让学生初步了解实数的概念。

接着,教师通过举例说明实数的性质,如实数的大小比较、实数的加减乘除运算等。

在此过程中,教师引导学生积极参与,提问解答,确保学生对实数的理解。

操练(15分钟)教师布置一些有关实数的练习题,让学生独立完成。

题目包括实数的分类、实数的性质等。

完成后,教师选取部分学生的作业进行讲评,指出其中的错误和不足,帮助学生巩固实数知识。

北师大版数学八年级上册6《实数》教学设计1

北师大版数学八年级上册6《实数》教学设计1

北师大版数学八年级上册6《实数》教学设计1一. 教材分析北师大版数学八年级上册6《实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统学习。

本节课的主要内容是实数的定义、性质以及实数与数轴的关系。

教材通过丰富的例题和练习题,帮助学生巩固实数的概念,提高学生解决实际问题的能力。

二. 学情分析八年级的学生已经掌握了有理数和无理数的基本概念,对数轴有一定的了解。

但是,学生对实数的认识还停留在表面,对实数的内在联系和性质还不够清楚。

因此,在教学过程中,教师需要引导学生深入理解实数的含义,并通过实例让学生感受实数在生活中的应用。

三. 教学目标1.理解实数的定义,掌握实数的性质。

2.能够运用实数的概念解决实际问题。

3.培养学生的逻辑思维能力和数学表达能力。

四. 教学重难点1.实数的定义和性质。

2.实数与数轴的关系。

五. 教学方法采用讲授法、案例分析法、讨论法等多种教学方法,引导学生通过自主学习、合作交流,深入理解实数的概念和性质。

六. 教学准备1.教材、教案、PPT。

2.练习题。

3.数轴教具。

七. 教学过程1.导入(5分钟)利用数轴教具,引导学生回顾有理数和无理数的概念,提问:有理数和无理数能否包含所有的数呢?由此引出实数的概念。

2.呈现(10分钟)讲解实数的定义,引导学生通过实例理解实数的性质,如:实数具有加法、减法、乘法、除法等运算性质。

3.操练(10分钟)让学生在练习纸上完成教材中的相关练习题,教师巡回指导,帮助学生巩固实数的概念和性质。

4.巩固(5分钟)邀请学生上黑板演示实数的运算,并解释运算过程中实数的性质如何体现。

5.拓展(5分钟)讨论实数在生活中的应用,如:购物、测量等,让学生感受实数的重要性。

6.小结(5分钟)回顾本节课所学内容,强调实数的定义、性质以及实数与数轴的关系。

7.家庭作业(5分钟)布置教材后的练习题,要求学生独立完成,巩固实数的概念和性质。

8.板书(5分钟)板书实数的定义、性质以及实数与数轴的关系,方便学生复习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实数教学教案
一、学习目标:
明确什么是平方根,什么是算术平方根,能正确地求出一个数的平方根。

二、新课学习
用数学式子表述为:若x 2 = a ,则x 是a 的平方根。

在以上式子中,
)2=16,二16的平方根是
平方根的特点
探索二
()2=0
探索一
什么数的平方等于 9
?(
)2=9,( )2=9 什么数的平方等于 16?( )2=16,( )2=16, 什么数的平方等于 49?( )2 =49,( )2=49 什么数的平方等于 121?
( )2=121,
()2
总结:
(一)什么叫做平方根?
一般地,如果一个数的平方等于a,那么这个数叫做a 的 =121
(八上数学)第十三章 实数(一)
平方根
班别
姓名
学号
)2=9,二9的平方根是
和.
)2=7,.・.7的平方根是 和. )2=3,二3的平方根是
和.
结论一:一个正数的平方根有
个,它们互为 数。

结论二:0的平方根有个,是
探索三
( )2 = -4,( )2 = —9,( )2 = —16,
结论三:负数平方根(填“有”或“没有”)
诵读一次:一个正数的平方根有个,它们互为数;
0的平方根有个,是平方根
(二)算术平方根:
一个正数有两个平方根,一正一负,其中叫做算术平方根。

如:81的算术平方根是规定:0的算术平方根是0
思考:算术平方根可能为负吗?
一个数的算术平方根一定是正数,对吗?
(三)如何表示一个数的平方根,算数平方根,负的平方根
(1) “ 25的平方根”可以表示为±7-,
“25的算数平方根”可以表示为,丁
“25的负的平方根”可以表示为一+厂。

(2) 小结:
正数a的平方根可以用.表示;正数a的算术平方根可以用
示;正数a的负的平方根可以用表示。

(3) 思考:梟如果有意义,a可以是什么数?
如:9的平方根可以表示为±J9或±3
2的算术平方根可以表示为:
16的负的平方根可以表示为:
(2)
V (
)2 =0.09, ( )2 =0.09
(3)v

)2
=25
三、练习:
(四)如何求一个数的平方根,算数平方根,负的平方根 例:求下列各数的平方根,算数平方根,负的平方根
25, 0,8
)2=4,( )2=4
4, 0.09,
解:1) V (
± 44= ± + 44 =
(4的平方根)
(4的算数平方根)
(4的负的平方根)
± j 0.09 = ±
+ JO.09 =
—寸 0.09 =
2、填表
数平方根算数平方根负的平方根100
0.09
10
1、填空:
(1) 4的平方根是,4的算术平方根是
(2) 81的平方根是,81的算术平方根是
(3) 49的平方根是,49的算术平方根是
(4) 0.36的平方根是,0.36的算术平方根是
2、计算:
(1)屁_ (2)716 =
(3)±725 =(4)+781 =
(5)-后=(6)±^/016 =
(7) J0.25 =
(8)厝
(9) 士唇—(10)士隱-----------------------
C组
1、求下列各式中的x
(1) X2=49
2 (2) 4x =25
1 16
解:解:
2
(4) (x ^1) =4
解:
2、已知 |x+y — 4|+7x-y+10 =0,求 x , y 的值。

解:
2
(3) x 2
—1=35
解:。

相关文档
最新文档