新人教版初中数学教案:实数(1)

合集下载

(人教版)七年级下册数学配套教案:6.3 第1课时 《实数》

(人教版)七年级下册数学配套教案:6.3 第1课时 《实数》

(人教版)七年级下册数学配套教案:6.3 第1课时《实数》一. 教材分析人教版七年级下册数学第6.3节《实数》是学生在掌握了有理数的相关知识后,进一步扩大知识面,认识实数的概念。

本节内容主要包括实数的定义、实数的分类和实数的性质。

通过本节课的学习,学生能够理解实数的概念,掌握实数的分类和性质,为后续的函数、方程等知识的学习打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了有理数的相关知识,具备了一定的数学基础。

但是,对于实数的定义和性质,可能还比较陌生。

因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握实数的概念和性质。

三. 教学目标1.理解实数的概念,掌握实数的分类和性质。

2.能够运用实数的概念和性质解决一些简单的实际问题。

3.培养学生的逻辑思维能力和数学表达能力。

四. 教学重难点1.实数的定义和性质。

2.实数的分类。

五. 教学方法采用讲授法、引导法、讨论法等教学方法。

通过教师的讲解和引导,学生的思考和讨论,使学生理解和掌握实数的概念和性质。

六. 教学准备1.教师准备教案、PPT等教学资料。

2.学生准备笔记本、文具等学习用品。

七. 教学过程1.导入(5分钟)教师通过复习有理数的相关知识,引导学生思考有理数的局限性,引出实数的概念。

2.呈现(15分钟)教师通过PPT或者黑板,呈现实数的定义、性质和分类。

引导学生理解和记忆实数的概念和性质,掌握实数的分类。

3.操练(15分钟)教师布置一些有关实数的练习题,让学生独立完成。

通过练习,巩固学生对实数的理解和掌握。

4.巩固(10分钟)教师选取一些典型的练习题,进行讲解和分析,帮助学生巩固对实数的理解和掌握。

5.拓展(10分钟)教师引导学生思考实数在实际生活中的应用,让学生举例说明实数在生活中的作用。

6.小结(5分钟)教师对本节课的内容进行小结,强调实数的概念、性质和分类,提醒学生注意实数的应用。

7.家庭作业(5分钟)教师布置一些有关实数的家庭作业,让学生进一步巩固和理解实数的概念和性质。

新人教版七年级下册数学《实数》表格式教案

新人教版七年级下册数学《实数》表格式教案

课题:实数学习目标1.知识目标(1)知道实数与数轴上的点是一一对应的(2)会用有理数预计一个无理数的大概范围 .(3)对实数进行大小比较 .2.能力目标知道实数与数轴上的点是一一对应的, 能够对实数进行大小比较.3.感情目标浸透数形联合及分类的思想,体验数系的扩展源于实质,又服务于实质的辩证关系。

学习要点、难点要点:实数与数轴上的点是一一对应的, 对实数进行大小比较 .难点:对实数进行大小比较.节前预习教材 P106 页图 17— 2,商讨以下问题:OA=AB=BC=CD=DE=EF=FG=GH=1计算各直角三角形斜边的长.OB=, OC=,OD=,OE=,OF=,OG=,OH=此中,是无理数,是有理数。

概括:有理数能够表示线段的长度,无理数也能够表示线段的长度。

学习过程备注合作研究新知研究一教材 P106 页图 17— 3,商讨以下问题:在△ OAB中,∠ OAB=90°,OA=OB=1且 OC=OB=OD由勾股定理得, OB=,则点A表示的数是,点 C 表示的数是,点D表示的数是.在数轴上, A、C、O、D由左到右的次序是,他们表示的数字由小到大是。

概括:1. 数轴上的点与实数是的。

也就是说,数轴上的任一点必然表示一个数(包含数和数);反过来,每一个实数(数和数)也都能够用数轴上的点来表示。

2. 数轴上表示的两个实数,右侧的数总比左侧的数大.自我展现 :比较以下各组数的大小提示:(1)正数都大于 0,负数都小于 0,正数都大于负数 .(2)数轴上右侧的数大于左侧的数 .(3)比较两个正数的大小还能够用平方法、作差法 .( 4) 比较两个负数的大小,先比较它们的绝对值,绝对值大的反而小 .A 组(平方法) (1) 22和 7(2)10和32解 :77222 28 64 3396364799 7223(3) 2 3和3 2 (4) 34和 43B 组(作差法) (1)51和 0.5( 2)3-2和-3225 1 0.5= 5 2 , 2 2 而 5 2 5 40 因此5 22即5 1 0.5 02因此5 1 0.52(3) 3和1+3(4)5 2 7和32 4基础练习1. 在数轴上分别画出表示10 和20 的点-4-3-2-1012342.分别写出全部合适以下条件的数(1)5和- 5之间的整数:(2)小于26的正整数:(3)绝对值小于21的整数 :(4)大于 3 小于 4 的一个无理数 :3.比较以下各组数中两个实数的大小:( 1) -1.4和 2(2)7和23能力创新数 a、b 在数轴上的地点如下图,化简:( a 1) 2(b 1) 2(a b)2讲堂小结1.比较两个数大小的方法(1)正数都大于 0,负数都小于 0,正数都大于负数 .(2)数轴上右侧的数大于左侧的数 .(3)比较两个正数的大小还能够用平方法、作差法 .(4)比较两个负数的大小,先比较它们的绝对值,绝对值大的反而小课后作业课本 108 页 2 题、3题.。

初中数学概念实数教案模板

初中数学概念实数教案模板

---一、教学目标1. 知识与技能:- 了解实数的概念,掌握实数的分类。

- 理解有理数和无理数的定义,能区分和识别它们。

- 掌握实数与数轴的关系,能够利用数轴表示实数。

2. 过程与方法:- 通过实例分析和小组讨论,培养学生的逻辑思维和归纳能力。

- 通过实际问题解决,提高学生的应用意识和解决实际问题的能力。

3. 情感态度与价值观:- 培养学生对数学学习的兴趣和好奇心。

- 增强学生的数学思维和科学探究精神。

---二、教学重难点1. 教学重点:- 实数的概念和分类。

- 有理数和无理数的区分。

- 实数与数轴的关系。

2. 教学难点:- 理解无理数的概念和性质。

- 实数与数轴的对应关系。

---三、教学准备1. 教学材料:数轴图、实物教具(如直尺、圆规等)、多媒体课件。

2. 学生准备:复习有理数的相关知识,预习实数的概念。

---四、教学过程(一)导入新课1. 复习提问:提问学生有关有理数的基础知识,如整数、分数、正负数等。

2. 提出问题:引导学生思考数的概念的发展,引出实数的概念。

(二)新课讲授1. 实数的概念:- 讲解实数的定义,即实数包括有理数和无理数。

- 通过实例讲解有理数和无理数的区别。

2. 实数的分类:- 有理数:整数和分数。

- 无理数:不能表示为分数的数,如π、√2等。

3. 实数与数轴的关系:- 讲解实数与数轴上的点一一对应的关系。

- 通过实例展示如何利用数轴表示实数。

(三)巩固练习1. 练习题目:让学生完成一些关于实数的分类、比较大小和表示实数的练习题。

2. 小组讨论:让学生分组讨论实数的性质和应用。

(四)总结归纳1. 总结本节课所学内容,强调实数的概念、分类和与数轴的关系。

2. 引导学生思考实数在数学和生活中的应用。

---五、作业布置1. 完成课后练习题,巩固实数的概念和分类。

2. 查阅资料,了解实数在数学史上的地位和应用。

---六、教学反思1. 教学过程中,关注学生的理解和掌握程度,及时调整教学策略。

人教版数学七年级下册教案6.3《 实数》

人教版数学七年级下册教案6.3《 实数》

人教版数学七年级下册教案6.3《实数》一. 教材分析《实数》是人教版数学七年级下册的一章内容,主要介绍了实数的概念、性质和运算。

本章内容包括有理数、无理数和实数的分类,以及实数的运算规则。

通过本章的学习,学生能够理解实数的概念,掌握实数的性质和运算规则,为后续的数学学习打下基础。

二. 学情分析学生在学习本章内容前,已经学习了有理数的概念和运算规则,对数学运算有一定的基础。

但是,学生可能对无理数的概念和性质较为陌生,需要通过实例和讲解来加深理解。

此外,学生可能对实数的分类和运算规则有一定的困惑,需要通过具体的例题和练习来进行巩固。

三. 教学目标1.了解实数的概念和性质,能够对实数进行分类。

2.掌握实数的运算规则,能够进行实数的加减乘除运算。

3.能够运用实数的概念和运算规则解决实际问题。

四. 教学重难点1.实数的分类:有理数、无理数和实数的区别和联系。

2.实数的运算规则:实数的加减乘除运算规则。

五. 教学方法采用问题驱动法和案例教学法,通过提问和举例引导学生思考和探索实数的概念和性质,通过具体的例题和练习来讲解和巩固实数的运算规则。

六. 教学准备1.PPT课件:实数的概念、性质和运算规则的讲解和例题。

2.练习题:针对实数的分类和运算的练习题。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数的概念和运算规则,为新课的学习做好铺垫。

2.呈现(15分钟)讲解实数的概念和性质,通过具体的例子来阐述实数的分类,如有理数、无理数和实数的区别和联系。

3.操练(20分钟)讲解实数的运算规则,通过具体的例题来演示和解释实数的加减乘除运算,引导学生进行思考和提问。

4.巩固(10分钟)学生进行实数的分类和运算的练习,教师进行个别指导和讲解,确保学生能够掌握实数的分类和运算规则。

5.拓展(10分钟)通过实际问题引导学生运用实数的概念和运算规则进行解决问题,培养学生的应用能力和创新思维。

6.小结(5分钟)对本节课的内容进行总结和回顾,强调实数的概念、性质和运算规则的重点和难点。

人教版七年级数学下册6.3实数(第1课时)一等奖优秀教学设计

人教版七年级数学下册6.3实数(第1课时)一等奖优秀教学设计

人教版义务教育课程标准实验教科书七年级下册6.3.1实数(第1课时)教学设计一、教材分析1、地位作用:本章内容相当于旧教材《数的开方》一章,但编排顺序有所差别,旧教材先学习平方根,再将算术平方根作为其中的一种特例进行学习,而本套教材先联系实际学习认识算术平方根后,再进一步认识平方根。

这样可以引发学生的疑惑,激发学生学习兴趣,从而使学生积极主动地投入到数学活动中去。

本节篇幅不长,内容也不多,但知识比较抽象,而且与学生以前接触的数学知识差异较大,根据以前的教学经验,我感觉学生学习起来不会很顺手,而且它又是以后学习二次根式、一元二次方程的基础,需要老师在教学中精心构思,认真落实。

2、教学目标:(1)了解无理数和实数的概念.(2)知道实数与数轴上的点具有一一对应关系,初步体会“数形结合”的数学思想。

3、教学重、难点:重点:了解无理数和实数的概念,知道实数与数轴上的点的一一对应关系。

难点:理解实数的概念突破重难点的方法:观察与动手作图实践,让学生知道实数和数轴上的点是一一对应的,从而理解学习实数的必要性。

二、教学准备:多媒体课件、导学案三、教学过程.圆周率及一些含有3、下列结论正确的是( )A.无限小数是无理数B.实数不是正数就是负数合起来就是:数轴上的点。

C.无理数都是带根号的数D.无理数都是无限不循环小数 4、判断:(1).实数不是有理数就是无理数。

( ) (2).无理数都是无限不循环小数。

( ) (3).无理数都是无限小数。

( ) (4).带根号的数都是无理数。

( ) 2、下列说法中,正确的是()、都是无理数234、、A 、B 、无理数都是带根号的数C 、实数分为正实数和负实数D 、实数和数轴上的点是一一对应的D。

九年级数学上册(人教版)教案

九年级数学上册(人教版)教案

九年级数学上册(人教版)教案第一章:实数1.1 有理数教学目标:理解有理数的定义及其分类;掌握有理数的运算方法,包括加、减、乘、除、乘方和开方;能够运用有理数解决实际问题。

教学内容:有理数的定义及分类;有理数的运算方法及运算律;有理数在实际问题中的应用。

教学步骤:1. 引入有理数的概念,引导学生理解有理数的定义及分类;2. 通过示例讲解有理数的运算方法,让学生进行练习;3. 引导学生运用有理数解决实际问题,巩固所学知识。

作业布置:完成课后练习题,巩固有理数的运算方法;选取一些实际问题,让学生运用有理数解决。

1.2 实数教学目标:理解实数的定义及其与有理数的关系;掌握实数的运算方法,包括加、减、乘、除、乘方和开方;能够运用实数解决实际问题。

教学内容:实数的定义及其与有理数的关系;实数的运算方法及运算律;实数在实际问题中的应用。

教学步骤:1. 引入实数的概念,引导学生理解实数的定义及其与有理数的关系;2. 通过示例讲解实数的运算方法,让学生进行练习;3. 引导学生运用实数解决实际问题,巩固所学知识。

作业布置:完成课后练习题,巩固实数的运算方法;选取一些实际问题,让学生运用实数解决。

第二章:方程2.1 一元一次方程教学目标:理解一元一次方程的定义及其解法;能够运用一元一次方程解决实际问题。

教学内容:一元一次方程的定义及解法;一元一次方程在实际问题中的应用。

教学步骤:1. 引入一元一次方程的概念,引导学生理解一元一次方程的定义;2. 通过示例讲解一元一次方程的解法,让学生进行练习;3. 引导学生运用一元一次方程解决实际问题,巩固所学知识。

作业布置:完成课后练习题,巩固一元一次方程的解法;选取一些实际问题,让学生运用一元一次方程解决。

2.2 二元一次方程教学目标:理解二元一次方程的定义及其解法;能够运用二元一次方程解决实际问题。

教学内容:二元一次方程的定义及解法;二元一次方程在实际问题中的应用。

教学步骤:1. 引入二元一次方程的概念,引导学生理解二元一次方程的定义;2. 通过示例讲解二元一次方程的解法,让学生进行练习;3. 引导学生运用二元一次方程解决实际问题,巩固所学知识。

6.3.1实数的概念-人教版七年级数学下册教案

6.3.1实数的概念-人教版七年级数学下册教案
2.在举例说明时,尽量选择与学生们生活密切相关的例子,提高他们对实数学习的兴趣。
3.加强对讨论环节的引导,确保学生们围绕主题展开讨论,提高讨论效果。
4.关注沉默的学生,鼓励他们积极参与讨论,提高他们的自信心。
5.在教学过程中,注意观察学生的反应,及时调整教学方法,以提高教学效果。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“实数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
6.3.1实数的概念-人教版七年级数学下册教案
一、教学内容
本节课选自人教版七年级数学下册第六章第三节,标题为“6.3.1实数的概念”。教学内容主要包括以下三个方面:
1.实数的定义:介绍实数的概念,让学生了解实数是包含有理数和无理数的全体数,是数轴上的所有点对应的数。
2.实数的分类:将有理数和无理数进行分类,并举例说明。有理数包括整数、分数等,无理数如π、√2等。
-实数的精确表示:学生在表示无理数时可能会遇到困难,如何用有限的小数或分数精确表示无理数。
-实数运算的规则:尤其是无理数参与运算时,如何进行合理化简和计算。
-实数在数轴上的定位:在数轴上准确地找到无理数的位置,以及理解无理数与有理数之间的关系。
举例解释:
-对于无理数的理解,可通过π的近似值3.14的由来,说明π是无限不循环的小数,从而引出无理数的概念。
3.增强学生的空间观念:结合数轴,让学生在实际操作中感受实数与数轴的关系,提高空间想象力和直观感知能力。

初中数学(人教版)教案

初中数学(人教版)教案

初中数学(人教版)精选教案第一章:实数的认识1.1 有理数【教学目标】理解有理数的概念,掌握有理数的分类。

学会有理数的加减乘除运算。

【教学内容】有理数的定义及分类。

有理数的加减乘除运算规则。

【教学步骤】1. 引入有理数的概念,通过实际例子让学生感受有理数的存在。

2. 讲解有理数的分类,包括整数、分数、正数、负数等。

3. 通过示例演示有理数的加减乘除运算,让学生进行练习。

【作业布置】完成教材上的练习题,加深对有理数运算的理解。

1.2 实数【教学目标】理解实数的概念,掌握实数的分类。

学会实数的加减乘除运算。

【教学内容】实数的定义及分类。

实数的加减乘除运算规则。

1. 引入实数的概念,通过实际例子让学生感受实数的存在。

2. 讲解实数的分类,包括有理数、无理数、正数、负数等。

3. 通过示例演示实数的加减乘除运算,让学生进行练习。

【作业布置】完成教材上的练习题,加深对实数运算的理解。

第二章:方程与不等式2.1 一元一次方程【教学目标】理解一元一次方程的概念,掌握一元一次方程的解法。

【教学内容】一元一次方程的定义及解法。

【教学步骤】1. 引入一元一次方程的概念,通过实际例子让学生感受一元一次方程的存在。

2. 讲解一元一次方程的解法,包括代入法、消元法等。

【作业布置】完成教材上的练习题,加深对一元一次方程的理解。

2.2 不等式【教学目标】理解不等式的概念,掌握不等式的解法。

【教学内容】不等式的定义及解法。

1. 引入不等式的概念,通过实际例子让学生感受不等式的存在。

2. 讲解不等式的解法,包括比较法、图像法等。

【作业布置】完成教材上的练习题,加深对不等式的理解。

第三章:函数3.1 一次函数【教学目标】理解一次函数的概念,掌握一次函数的图像和性质。

【教学内容】一次函数的定义及图像和性质。

【教学步骤】1. 引入一次函数的概念,通过实际例子让学生感受一次函数的存在。

2. 讲解一次函数的图像和性质,包括斜率、截距等。

【作业布置】完成教材上的练习题,加深对一次函数的理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则②-①得9x-3,即x=
即0. =0.3 ,0. 化成分数吗?且想一想是不是任何无限循环小数都可以化成分数?
在此基础上与学生一起得到结论:任何一个有限小数或无限循环小数都能化成分数,所以任何一个有限小数或无限循环小数都是有理数。
二、引入新知
1、在前面两节的学习中,我们知道,许多数的平方根和立方根都是无限不循环小数,它们不能化成分数.我们给无限不循环小数起个名,叫“无理数”.有理数和无理数统称为实数.
初中教学设计
课题
6.3实数(1)
教学
目标
知识与技能
1、了解无理数和实数的概念;会对实数按照一定的标准进行分类,培养分类能力;
2、了解分类的标准与分类结果的相关性,进一步了解体会“集合”的含义;
3、了解实数范围内相反数和绝对值的意义。
过程与方法
在按不同的标准给实数发类的过程中,培养学生的分类的能力
情感态度与价值观
动手试一试,说说你的发现并与同学交流.
(结论:上面的有理数都可以写成有限小数或无限循环小数的形式)
可以在此基础上启发学生得到结论:任何一个有理数都可以写成有限小数或无限循环小数的形式.
2、追问:任何一个有限小数或无限循环小数都能化成分数吗?
(课件展示)
阅读下列材料:
设x=0. =0.333…①
则10x=3.333…②
掌握实数的相关概念,增强学生应用数学的意识,提高学生应用数学的能力
教学重点
理解实数的概念。
教学难点
正确理解实数的概念。
教学资源
教育网
教学过程:
一、试一试
学生以前学过有理数,可以请学生简单地说一说有理数的基本概念、分类.
试一试
1、使用计算器计算,把下列有理数写成小数的形式,你有什么发现?
, , , ,
正数集合{…}
负数集合{…}
有理数集合{…}
无理数集合{…}
三、探一探
我们知道,在有理数中只有符号不同的两个数叫做互为相反数,例如3和-3, 和- 等,实数的相反数的意义与有理数一样。
请学生回忆在有理数中绝对值的意义.例如,|-3|=3,|0|=0,| |= 等等.实数绝对值的意义和有理数的绝对值的意义相同.
例2求下列各式的实数x:
(1)|x|=|- |;
(2)求满足x≤4 的整数x
五、布置作业
课本第56页习题10.3第1、2、3题
备注
例1(1)你能尝试着找出三个无理数来吗?
(2)下列各数中,哪些是有理数?哪些是无理数?
解决问题后,可以再问同学:“用根号形式表示的数一定是无理数吗?”
2、实数的分类
(1)画一画
学生自己回忆并画出有理数的分类图.
(2)挑战自己
请学生尝试画出实数的分类图.
例2把下列各数填人相应的集合内:
整数集合{…}
负分数集合{…}
试一试完成课本第54页思考题.
引导学生类比地归纳出下列结论:
数a的相反数是-a
一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数;0的绝对值是0.
四、练一练
例1求下列各数的相反数和绝对值:
1.分别写出- , -3.14的相反数
2.指出- ,1- 分别是什么数的相反数
3.求 的绝对值
4.一个数的绝对值是 ,求这个数。
相关文档
最新文档