山西省怀仁县20162017学年高一上学期期中考试数学试题
山西省怀仁县2016-2017学年高一数学下学期期中试题(普通班)

2016-2017学年第二学期高一年级期中考试数学Ⅱ试题时长:120分 分值:150分一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.sin 150°的值等于( ). A .21B .-21 C .232.已知=(3,0),那么等于( ). A .2B .3CD .53.在0到234πA .6πB .3πC D .34π 4.若cos >0,sin <0,则角 的终边在( ). A .第一象限 B .第二象限.第四象限°的值等于( ). C .21D .43 ( ).D .AD +=7.已知向量a =(4,-2),向量b =(x ,5),且a ∥b ,那么x 等于( ). A .10B .5C .-25 D .-108.若tan =3,tan =34,则tan(-)等于( ). (第6题A .-3B .3C .-31D .319.已知△ABC 三个顶点的坐标分别为A (-1,0),B (1,2),C (0,c ),若AB ⊥BC ,那么c 的值是( ).A .-1B .1C .-3D .310.函数)sin(ϕω+=x A y 在一个周期内的图象如下图所示,此函数的解析式为A .)(322sin 2π+=x y B .)(32sin π+=x y C .)(32sinπ-=x yD .)(654sin2π+=x y 11.已知0<A <2π,且cos A =53,那么sin 2A 等于( ). A .254B .257.12 D .2524 12.已知53)tan(=+βα,tan(-β)3πα+的值为.1775分,共20分,把正确答案填在题中横线上)的终边经过点4),则cos的值为 . tan =-∈),那么的值等于 ..已知向量a =(3=(0,-1),那么向量3b -a 的坐标是 .||=a ,则||b= 。
三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)已知0<<2π,sin =54. (1)求tan的值;(2)求cos 2+sin⎪⎭⎫ ⎝⎛2π + α的值.18.(本小题满分12分)已知非零向量a ,b 满足|a |=1,且(a -b )·(a +b )=21. (1)求|b |; (2)当a ·b =21时,求向量a 与b 的夹角 的值.19.(本小题满分12分)已知函数f (x)=sin(2x-3π)+2,求: (Ⅰ)函数f (x)的最小正周期和最大值;(Ⅱ)函数f (x)的单调递增区间。
山西省朔州市怀仁一中2016-2017学年高一上学期第二次月考数学试卷 含解析

2016-2017学年山西省朔州市怀仁一中高一(上)第二次月考数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知x5=﹣243,那么x=()A.3 B.﹣3 C.﹣3或3 D.不存在2.函数y=lg(﹣1)的图象关于()A.y轴对称B.x轴对称C.原点对称 D.直线y=x对称3.若2lg(x﹣2y)=lgx+lgy(x,y∈R),则的值为()A.4 B.1或C.1或4 D.4.函数y=log5x+2(x≥1)的值域是()A.R B.[2,+∞)C.[3,+∞]D.(﹣∞,2)5.下列函数中是奇函数的有几个()①;②;③y=ln|x﹣1|;④.A.1 B.2 C.3 D.46.函数的单调递减区间是()A.(﹣∞,﹣6]B.[﹣6,+∞)C.(﹣∞,﹣1]D.[﹣1,+∞)7.若f(lnx)=3x+4,则f(x)的表达式是()A.3e x+4 B.3lnx+4 C.3lnx D.3e x8.设函数f(x)=,则f(﹣2)+f(log212)=()A.3 B.6 C.9 D.129.如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是()A.{x|﹣1<x≤0}B.{x|﹣1≤x≤1}C.{x|﹣1<x≤1}D.{x|﹣1<x≤2} 10.设函数f(x)=ln(1+x)﹣ln(1﹣x),则f(x)是()A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数11.已知定义在R上的函数f(x)=2|x﹣m|﹣1(m为实数)为偶函数,记a=f(log0.53),b=f (log25),c=f(2m),则a,b,c的大小关系为()A.a<b<c B.a<c<b C.c<a<b D.c<b<a12.设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x﹣1)成立的取值范围是()A.(﹣∞,)∪(1,+∞)B.(,1)C.() D.(﹣∞,﹣,)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.函数的定义域是.14.已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[﹣1,0],则a+b=.15.若函数f(x)=2|x﹣a|(a∈R)满足f(1+x)=f(1﹣x),且f(x)在[m,+∞)单调递增,则实数m的取值范围是.16.若函数f(x)=(a>0且a≠1)的值域是[4,+∞),则实数a的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.函数f(x)=ax2﹣x﹣1仅有一个零点,则实数a的取值范围.18.设函数f(x)在R上是偶函数,在区间(﹣∞,0)上递增,且f(2a2+a+1)<f(2a2﹣2a+3),求a的取值范围.19.已知定义域为R的函数是奇函数.(Ⅰ)求a、b的值;(Ⅱ)解关于t的不等式f(t2﹣2t)+f(2t2﹣1)<0.20.某军工企业生产一种精密电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)=其中x是仪器的月产量.(1)将利润表示为月产量的函数;(2)当月产量为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润.)21.已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x﹣1)=f(3﹣x)且方程f(x)=2x有等根.(1)求f(x)的解析式;(2)是否存在实数m,n(m<n),使f(x)的定义域和值域分别为[m,n]和[4m,4n],如果存在,求出m,n的值;如果不存在,说明理由.22.定义:若函数f(x)对于其定义域内的某一数x0,有f(x0)=x0,则称x0是f(x)的一个不动点.已知函数f(x)=ax2+(b+1)x+b﹣1(a≠0).(1)当a=1,b=﹣2时,求函数f(x)的不动点;(2)若对任意的实数b,函数f(x)恒有两个不动点,求a的取值范围;(3)在(2)的条件下,若y=f(x)图象上两个点A、B的横坐标是函数f(x)的不动点,且A、B的中点C在函数的图象上,求b的最小值.(参考公式:A(x1,y1),B(x2,y2)的中点坐标为)2016—2017学年山西省朔州市怀仁一中高一(上)第二次月考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分。
2017届高三上学期期中考试(文)数学考卷-答案

山西省怀仁县第一中学2017届高三上学期期中考试(文)数学试卷答 案1~5.CBCCB 6~10.BACAA 11~12.CD 13.1 14.(1,)-+∞ 1516.(3)(4)17.(1)因为3,1,1()|21||1|2,1,213,,2x x f x x x x x x x ⎧⎪-≤-⎪⎪=-++=-+-<<⎨⎪⎪≥⎪⎩且(1)(1)3f f =-=,所以()3f x <的解集为{|11}x x -<<.………………5分(2)|2||1||||1||||1|0|1|2222a a a ax a x x x x -++=-+++-≥++=+, 当且仅当(1)()02a x x +-≤且02ax -=时,取等号.所以|1|12a+=,解得4a =-或0.………………10分18.(1)如题图,在△ABC 中,由余弦定理,得222cos 2AC AD CD CAD AC AD+-∠=⋅故由题设知,cos CAD ∠==.………………4分(2)如题图,设BAC a ∠=,则a BAD CAD =∠-∠.因为cos 7CAD ∠=,cos 14BAD ∠=所以sin CAD ∠=sin BAD ∠===. 于是sin sin()a BAD CAD =∠-∠sin cos cos sin BAD CAD BAD CAD =∠∠-∠∠()1471472=--⨯=. 在ABC ∆中,由正弦定理,得sin sin BC ACa CBA=∠.故sin 3sin AC a BC CBA ==∠.………………12分 19.(1)∵2112333+3,3…①n n na a a a -+++=∴113a =.212311333(2),3②n n n a a a a n -+-+++=≥L-1113(2),333①②,得n n n n a n --=-=≥化简得1(2)3n n a n =≥.显然113a =也满足上式,故1()3*N n n a n =∈.………………………6分(2)由(1)得3nn b n =⋅,于是231323333nn S n =⨯+⨯+⨯++⋅L ,③234131323333n n S n +=⨯+⨯+⨯++⋅L ,④③-④得231233333n n n S n +-=+++++⋅L ,即11332313n n n S n ++--=-⋅-,∴1213344n n n S +-=⋅+.………………12分 20.(1)由题意得2()2sin cos sin 22sin(2)3f x x x x x x x πωωωωωω=+==-,由最小正周期为π,得1ω=,所以()2sin(2)3f x x π=-.函数的单调增区间为222,232-≤-≤+∈Z k x k k πππππ,整理得5,1212-≤≤+∈Z k x k k ππππ, 所以函数()f x 的单调增区间是5[,],1212-+∈Z k k k ππππ.………………6分 (2)将函数()f x 的图像向左平移6π个单位,再向上平移1个单位, 得到2sin 21y x =+的图像,所以()2sin 21g x x =+.令()0g x =,得712x k ππ=+或11()12=+∈Z x k k ππ. 所以在[0,]π上恰好有两个零点,若()y g x =在[0,]b 上有10个零点,则b 不小于第10个零点的横坐标即可,即b 的最小值为115941212πππ+=.………………12分 21.(1)当1a =时,2()ln 1,f x x x x=++- 此时21212()1,(2)1124f x f x x ''=+-=+-=.又因为2(2)ln 221ln 22,2f =++-=+所以切线方程为2(ln 2)2,y x -+=-整理得ln 20.x y -+=…………………4分(2)2222111(1)(1)'()a ax x a ax x x f x a x x x x++--++-=+-==, 当0a =时,21'()x f x x-=.此时,在(0,1)上,'()0f x <,()f x 单调递减;在(1,)+∞上,'()0f x >,()f x 单调递增.当102a -≤<时,21()(1)'()a ax x a f x x++-=. 当11a a +-=,即12a =-时,22(1)'()2x f x x -=-在(0,)+∞上恒成立,所以()f x 在(0,)+∞上单调递减. 当102a -<<时,11a a +->,此时在(0,1)或1(,)aa +-+∞上,'()0f x <,()f x 单调递减; 在1(1,)aa+-上,'()0f x >,()f x 单调递增. 综上,当0a =时,()f x 在(0,1)上单调递减,在(1,)+∞上单调递增;当102a -<<时,()f x 在(0,1)或1(,)a a +-+∞上单调递减,在1(1,)aa+-上单调递增; 当12a =-时,()f x 在(0,)+∞上单调递减.………………12分22.(1)由题意,得2()ln 20g x x x x ax =+++=在(0,)+∞上有实根,即2ln a x x x -=++在(0,)+∞上有实根. 令2()ln x x x xφ=++,则22221221'()1(2)(1)x x x x x x x x xφ+-=+-==+-.易知,()x φ在(0,1)上单调递减,在(1,)+∞上单调递增,所以min ()(1)3a x φφ-≥==,3a ≤-.故a 的最大值为3-.………………6分(2)∵0x ∀>,2()1f x x kx x≤--恒成立, ∴2ln 1x x kx ≤--,即21(1ln )k x x x≤--.令()1ln g x x x =--,0x >.11'()1x g x x x-=-=. 令'()0g x >,解得1x >,∴()g x 在区间(1,)+∞上单调递增; 令'()0g x <,解得01x <<,∴()g x 在区间(0,1)上单调递减. ∴当1x =时,()g x 取得极小值,即最小值,∴()(1)0g x g ≥=, ∴0k ≤,即实数k 的取值范围是(,0]-∞.山西省怀仁县第一中学2017届高三上学期期中考试(文)数学试卷解 析1.2.试题分析:220x a a x -≤⇔≥,因为2[1,4)x ∈得4a ≥,故4a >是其的一个充分不必要条件.选B . 考点:充分条件;必要条件.3.试题分析:由3544(1)a a a =-得23444421114(1),2,8,2,2a a a a q q a a q a =-∴=∴==∴=∴==.故选C . 考点:等比数列的性质.4.试题分析:000sin35cos55sin35,sin35cos35b c ===>,所以a b c <<,故选C . 考点:正弦函数的单调性.5.6.试题分析:因为2221cos212sin ,12sin ,sin ,sin 2a x x a x x x -=-∴=-∴=∴=故选B . 考点:二倍角公式.7.试题分析:''()cos sin ,(0)1,4x x f x e x e x k f πα=-∴==∴=,故选A .8.9.试题分析:由22211sin ,21,2cos 25,522S ac B c b a c ac B b =∴=⨯∴==+-=∴=,故选A . 10.试题分析:|3||3|11y x x y y ≥-⎧-≤≤⇔⎨≤⎩其图形如图所示,221x y z z y x x y z +-=⇒=+-,由图形知2150,2123z z z -≤≤∴≥≥-,故选A .11.12.13.试题分析:由题知函数恒过点(1,1),可得1140m n +-=,114m n∴+=. 111111()4()()(2)(22)14444n m m n m n m n m n m n +=+⨯⨯=++=++≥⨯+=.14.试题分析:令''()()24,()()20g x f x x g x f x =--∴=->,所以()g x 在R 上增函数,且(1)(1)2(1)40g f -=--⨯--=,由()(1)g x g >-得1x >-,故不等式的解集为(1,)-+∞.考点:函数的单调性与导数;构造函数.15.16.17.考点:绝对值不等式的性质;分段函数解不等式. 18.19.20.21.考点:导数的几何意义;函数的单调性与导数.22.。
怀仁县第一中学2017届高三上学期期中考试数学(理)试题 含答案

(理科)数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项 是符合题目要求的。
1.若集合{2016,3,4}M =,集合{|}N x x M =∈,则集合M 与N 的关系是( ) A .M N = B .M N ≠ C .M N =∅ D .N 是M 的真子集2.在ABC ∆中,“C B >”是“22cos cos C B <”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3。
已知函数3()tan 4(,)f x a x bx a b R =+∈且3(lglog 10)5f =,则(lglg3)f =()A .—5B .—3C .3D .随,a b 的值而定 4.正项等比数列{}na 中的14031a a 、是函数321()4633f x xx x =-+-的极值点,则20166log a =()A .1B .2C 。
2D .-15。
若非零向量,a b 满足22||3a =,||1b =,且()(32)a b a b -⊥+,则a 与b 的夹角为( )A .4π B .2π C 。
34π D .π6.若函数()sin 3cos ()f x x x x R ωω=∈,又()2f α=-,()0f β=,且||αβ-的最小值为34π,则正数ω的值是( )A .13B .32C. 43D .237.设曲线1*()n y xn N -=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,令lg n n a x =,则1299a a a +++=()A .100B .2 C. —100 D .-2 8.已知分段函数21,0,(),0,x x x f x e x -⎧+≤⎪=⎨>⎪⎩,则31(2)f x dx -⎰等于()A .13e+ B .2e - C 。
713e - D .12e- 9。
山西省怀仁县高一数学下学期期中试题(普通班)

2016-2017学年第二学期高一年级期中考试数学Ⅱ试题时长:120分 分值:150分一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.sin 150°的值等于( ). A .21B .-21 C .23 D .-23 2.已知=(3,0),那么等于( ). A .2B .3C .4D .53.在0到234π终边相同的角是( ). A .6πB .3πC .32π D .34π 4.若cos >0,sin <0,则角 的终边在( ). A .第一象限 B .第二象限C .第三象限D .第四象限5.sin 20°cos 40°+cos 20°sin 40°的值等于( ). A .41B .23 C .21D .43 6.如图,在平行四边形ABCD 中,下列结论中正确的是( ). A .=CDB .AB -=BDC .+AB =ACD .AD +=7.已知向量a =(4,-2),向量b =(x ,5),且a ∥b ,那么x 等于( ). A .10B .5C .-25 D .-108.若tan =3,tan =34,则tan(-)等于( ).(第6题A .-3B .3C .-31D .319.已知△ABC 三个顶点的坐标分别为A (-1,0),B (1,2),C (0,c ),若AB ⊥,那么c 的值是( ).A .-1B .1C .-3D .310.函数)sin(ϕω+=x A y 在一个周期内的图象如下图所示,此函数的解析式为A .)(322sin 2π+=x y B .)(32sin π+=x y C .)(32sinπ-=x yD .)(654sin2π+=x y 11.已知0<A <2π,且cos A =53,那么sin 2A 等于( ). A .254B .257 C .2512 D .2524 12.已知53)tan(=+βα,41)3tan(=-πβ,那么)3tan(πα+的值为 A .183 B .2313C .237D .177二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知角的终边经过点P (3,4),则cos的值为 . 14.已知tan =-1,且 ∈[0,),那么的值等于 .15.已知向量a =(3,2),b =(0,-1),那么向量3b -a 的坐标是 .16.若1||||||=-==b a b a ,则||b a+= 。
2016-2017年第一学期高一数学上册期中试题(有答案)

2016-2017年第一学期高一数学上册期中试题(有答案)高一第一学期期中考试数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分共1 0分,考试时间120分钟。
注意事项:答题前考生务必将考场、姓名、班级、学号写在答题纸的密封线内。
选择题每题答案涂在答题卡上,非选择题每题答案写在答题纸上对应题目的答案空格里,答案不写在试卷上。
考试结束,将答题卡和答题纸交回。
第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合A={-1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值的集合为()A.{-1} B.{1} .{-1,1} D.{-1,0,1}2.函数=1lnx-1的定义域为()A.(1,+∞)B.[1,+∞).(1,2)∪(2,+∞) D.(1,2)∪[3,+∞)3.已知f(x)=fx-,x≥0,lg2-x,x<0,则f(2 016)等于()A.-1 B.0 .1 D.24、若α与β的终边关于x轴对称,则有()A.α+β=90° B.α+β=90°+•360°,∈Z.α+β=2•180°,∈Z D.α+β=180°+•360°,∈Z、设1=409,2=8048,3=(12)-1,则()A.3>1>2B.2>1>3.1>2>3D.1>3>26.在一次数学试验中,运用图形计算器采集到如下一组数据:x-20-100100新标x b1 200300024011202398802则x,的函数关系与下列哪类函数最接近?(其中a,b为待定系数)()A.=a+bxB.=a+bx.=ax2+bD.=a+bx7.定义运算a⊕b=a,a≤b,b,a>b则函数f(x)=1⊕2x的图象是()8、设偶函数f(x)满足f(x)=2x-4(x≥0),则不等式f(x-2)>0的解集为()A.{x|x<-2,或x>4}B.{x|x<0,或x>4}.{x|x<0,或x>6} D.{x|x<-2,或x>2}9.函数=lg12(x2-x+3)在[1,2]上的值恒为正数,则的取值范围是()A.22<<23B.22<<72.3<<72D.3<<2310 已知1+sinxsx=-12,那么sxsinx-1的值是()A12 B.-12 .2 D.-211.设∈R,f(x)=x2 -x+a(a>0),且f()<0,则f(+1)的值() A.大于0 B.小于0 .等于0D.不确定12、已知函数f(x)=1lnx+1-x,则=f(x)的图象大致为()第Ⅱ卷(非选择题共90分)二、填空题:本大题4小题,每小题分,共20分13.已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-)(x-2)<0},且A∩B=(-1,n),则+n=________14 函数f(x)=x+2x在区间[0,4]上的最大值与最小值N的和为__ 1.若一系列函数解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,那么函数解析式为=x2,值域为{1,4}的“同族函数”共有________个.16 已知f(x)=ax2+bx+3a+b是偶函数,且其定义域为[a-1,2a],则=f(x)的值域为________.三、解答题:本大题共6小题,共70分,解答应写出字说明,证明过程或演算步骤17.(本小题10分)已知集合A={x|x2-3x+2=0},B={x|x2-ax+a-1=0},若A∪B =A,求实数a的值.18.(本小题满分12分)已知扇形的圆心角是α,半径为R,弧长为l(1)若α=60°,R=10 ,求扇形的弧长l(2)若扇形的周长是20 ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?(3)若α=π3,R=2 ,求扇形的弧所在的弓形的面积.19.(本小题满分12分)已知定义域为R的函数f(x)=-2x+b2x+1+a是奇函数.(1)求a,b的值;(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-)<0恒成立,求的取值范围.20、(本小题满分12分)已知函数f(x)=4x+•2x+1有且仅有一个零点,求的取值范围,并求出该零点.21.(本小题满分12分)如图,建立平面直角坐标系x,x轴在地平面上,轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程=x-120(1+2)x2(>0)表示的曲线上,其中与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为32千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.22.(本小题满分12分)设函数f(x)=ax-a-x(a>0且a≠1)是定义域为R的奇函数.(1 )若f(1)>0,试求不等式f(x2+2x)+f(x-4)>0的解集;(2)若f(1)=32,且g(x)=a2x+a-2x-4f(x),求g(x)在[1,+∞)上的最小值.高一数学期中测试卷参考答案1.解析:由题意知集合B的元素为1或-1或者B为空集,故a=0或1或-1,选D答案:D2 解析由ln(x-1)≠0,得x-1>0且x-1≠1由此解得x>1且x≠2,即函数=1lnx-1的定义域是(1,2)∪(2,+∞).答案3 解析f(2 016)=f(1)=f(1-)=f(-4)=lg24=2答案 D4 解析:根据终边对称,将一个角用另一个角表示,然后再找两角关系.因为α与β的终边关于x轴对称,所以β=2•180°-α,∈Z,故选答案:解析:1=409=218,2=8048=2144,3=(12)-1=21由于指数函数f(x)=2x在R上是增函数,且18>1>144,所以1>3>2,选D 答案:D6 解析:在坐标系中将点(-2,024),(-1,01),(0,1),(1,202),(2,398),(3,802)画出,观察可以发现这些点大约在一个指数型函数的图象上,因此x与的函数关系与=a+bx最接近.答案:B7 解析:f(x)=1⊕2x=1,x≥0,2x,x<0故选A答案:A8 解析:当x≥0时,令f(x)=2x-4>0,所以x>2又因为函数f(x)为偶函数,所以函数f(x)>0的解集为{x|x<-2,或x>2}.将函数=f(x)的图象向右平移2个单位即得函数=f(x-2)的图象,故f(x -2)>0的解集为{x|x<0,或x>4}.答案:B9 解析:∵lg12(x2-x+3)>0在[1,2]上恒成立,∴0<x2-x+3<1在[1, 2]上恒成立,∴<x+3x>x+2x在[1,2]上恒成立又当1≤x≤2时,=x+3x∈[23,4],=x+2x∈[22,3].∴3<<23答案:D10 解析:设sxsinx-1=t,则1+sinxsx•1t=1+sinxsx•sinx-1sx=sin2x-1s2x=-1,而1+sinxsx=-12,所以t=12故选A答案:A11 解析:函数f(x)=x2-x+a的对称轴为x=12,f(0)=a,∵a>0,∴f(0)>0,由二次函数的对称性可知f(1)=f(0)>0∵抛物线的开口向上,∴由图象可知当x>1时,恒有f(x)>0∵f()<0,∴0<<1∴>0,∴+1>1,∴f(+1)>0答案:A12 解析:(特殊值检验法)当x=0时,函数无意义,排除选项D中的图象,当x=1e-1时,f(1e-1)=1ln1e-1+1-1e-1=-e<0,排除选项A、中的图象,故只能是选项B中的图象.(注:这里选取特殊值x=(1e-1)∈(-1,0),这个值可以直接排除选项A、,这种取特值的技巧在解题中很有用处)答案:B13 答案0 解析由|x+2|< 3,得-3<x+2<3,即-<x<1又A∩B=(-1,n),则(x-)(x-2)<0时必有<x<2,从而A∩B=(-1,1),∴=-1,n=1,∴+n=014 解析:令t=x,则t∈[0,2],于是=t2+2t=(t+1)2-1,显然它在t∈[0,2]上是增函数,故t=2时,=8;t=0时N=0,∴+N=8答案:81 解析:值域为{1,4},则定义域中必须至少含有1,-1中的一个且至少含有2,-2中的一个.当定义域含有两个元素时,可以为{-1,-2},或{-1,2},或{1,-2},或{1,2};当定义域中含有三个元素时,可以为{-1,1,-2},或{-1,1,2},或{1,-2,2},或{-1,-2,2};当定义域含有四个元素时,为{-1,1,-2,2}.所以同族函数共有9个.答案:916 解析:∵f(x)=ax2+bx+3a+b是偶函数,∴其定义域[a-1,2a]关于原点对称,即a-1=-2a,∴a=13∵f(x)=ax2+bx+3a+b是偶函数,即f(-x)=f(x),∴b=0,∴f(x)=13x2+1,x∈[-23,23],其值域为{|1≤≤3127}.答案:{|1≤≤3127}17 答案a=2或a=3解析A={1,2},∵A∪B=A,∴B⊆A,∴B=∅或{1}或{2}或{1,2}.当B=∅时,无解;当B={1}时,1+1=a,1×1=a-1,得a=2;当B={2}时,2+2=a,2×2=a-1,无解;当B={1,2}时,1+2=a,1×2=a-1,得a=3综上:a=2或a=318 【解析】(1)α=60°=π3,l=10×π3=10π3(2)由已知得,l+2R=20,所以S=12lR=12(20-2R)R=10R-R2=-(R-)2+2所以当R=时,S取得最大值2,此时l=10,α=2(3)设弓形面积为S弓.由题知l=2π3S弓=S扇形-S三角形=12×2π3×2-12×22×sin π3=(2π3-3) 2 【答案】(1)10π3 (2)α=2时,S最大为2(3)2π3-3 219 解:(1)因为f(x)是定义在R上的奇函数,所以f(0)=0,即b-1a+2=0ͤb=1,所以f(x)=1-2xa+2x+1,又由f(1)=-f(-1)知1-2a+4=-1-12a+1ͤa=2(2)由(1)知f(x)=1-2x2+2x+1=-12+12x+1,易知f(x)在(-∞,+∞)上为减函数.又因f(x)是奇函数,从而不等式:f(t2-2t)+f(2t2-)<0等价于f(t2-2t)<-f(2t2-)=f(-2t2),因f(x)为减函数,由上式推得:t2-2t>-2t2,即对t∈R有:3t2-2t->0,从而Δ=4+12<0ͤ<-1320 解:∵f(x)=4x+•2x+1有且仅有一个零点,即方程(2x)2+•2x+1=0仅有一个实根.设2x=t(t>0),则t2+t+1=0当Δ=0时,即2-4=0∴=-2时,t=1;=2时,t=-1(不合题意,舍去),∴2x=1,x=0符合题意.当Δ>0时,即>2或<-2时,t2+t+1=0有两正或两负根,即f(x)有两个零点或没有零点.∴这种情况不符合题意.综上可知:=-2时,f(x)有唯一零点,该零点为x=021 解:(1)令=0,得x-120(1+2)x2=0,由实际意义和题设条知x>0,>0,故x=201+2=20+1≤202=10,当且仅当=1时取等号.所以炮的最大射程为10千米.(2)因为a>0,所以炮弹可击中目标⇔存在>0,使32=a-120(1+2)a2成立⇔关于的方程a22-20a+a2+64=0有正根⇔判别式Δ=(-20a)2-4a2(a2+64)≥0⇔a≤6所以当a不超过6(千米)时,可击中目标.22 答案(1) {x|x>1或x<-4}(2)-2解析∵f(x)是定义域为R的奇函数,∴f(0)=0,∴-1=0,∴=1(1)∵f(1)>0,∴a-1a>0又a>0且a≠1,∴a>1∵=1,∴f(x)=ax-a-x当a>1时,=ax和=-a-x在R上均为增函数,∴f(x)在R上为增函数.原不等式可化为f (x2+2x)>f(4-x),∴x2+2x>4-x,即x2+3x-4>0∴x>1或x<-4∴不等式的解集为{x|x>1或x<-4}.(2)∵f(1)=32,∴a-1a=32,即2a2-3a-2=0∴a=2或a=-12(舍去).∴g(x)=22x+2-2x-4(2x-2-x)=(2x-2-x)2-4(2x-2-x)+2令t=h(x)=2x-2-x(x≥1),则g(t)=t2-4t+2∵t=h(x)在[1,+∞)上为增函数(由(1)可知),∴h(x)≥h(1)=32,即t≥32∵g(t)=t2-4t+2=(t-2)2-2,t∈[32,+∞),∴当t=2时,g(t)取得最小值-2,即g(x)取得最小值-2,此时x=lg2(1+2).故当x=lg2(1+2)时,g(x)有最小值-2。
2016届山西省怀仁县一中高三上学期期中考试数学(理)试题(解析版)

2016届山西省怀仁县一中高三上学期期中考试数学(理)试题及解析一、选择题1.已知集合{}2120x x x A =-->,{}x x m B =≥.若{}4x x A B => ,则实数m 的取值范围是( )A .()4,3-B .[]3,4-C .()3,4-D .(],4-∞ 【答案】B【解析】试题分析:集合{}34x x x A =<->或, {}4x x A B => ,∴34m -≤≤,故选B .【考点】集合的运算.2.设向量()6,a x = ,()2,2b =- ,且()a b b -⊥,则x 的值是( )A .4B .4-C .2D .2- 【答案】C【解析】试题分析:由()a b b -⊥ 得()0a b b -⋅=,即420x -=,解得2x =,故选C .【考点】向量垂直的条件,向量数量积坐标运算公式.3.已知在等差数列{}n a 中,11a =-,公差2d =,115n a -=,则n 的值为( ) A .7 B .8 C .9 D .10 【答案】D【解析】试题分析:()1122515n a a n d n -=+-=-=,得10n =,故选D . 【考点】等差数列的通项公式.4.已知()cos 3mπθ-=(0m <),且2cos 12cos 022πθθ⎛⎫⎛⎫+-<⎪⎪⎝⎭⎝⎭,则θ是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角【答案】B【解析】试题分析: ()cos 3mπθ-=(0m <),∴1co s 0θ-<<,由2c o s 12c o s 022πθθ⎛⎫⎛⎫+-< ⎪⎪⎝⎭⎝⎭得sincos 0θθ<,∴sin 0θ>,则θ是第二象限角,故选B .【考点】诱导公式,倍角公式,根据角的三角函数值的符号判断角所属的象限. 5.若()3241cos 2x a dx xdx π-=⎰⎰,则a 等于( )A .1-B .1C .2D .4 【答案】C【解析】试题分析:由()222111322x a dx x ax a ⎛⎫-=-=- ⎪⎝⎭⎰,3344011cos 2sin 222xdx x ππ==-⎰,所以3122a -=-,解得2a =,故选C .【考点】定积分.6.在C ∆AB 中,内角A ,B ,C 的对边分别是a ,b ,c ,若2c a =,1sin sin sin C 2b a a B -A =,则sin B 等于( ) A.34 C.13【答案】A【解析】试题分析:若2c a =,1sin sin sin C 2b a a B -A =,则222122b a ac a =+=, ∴2222233cos 244a c b a ac a +-B ===,又()0,πB∈,则sin 4B =,故选A . 【考点】正弦定理,余弦定理,已知三角函数值求角. 7.已知函数()2sin sin 3f x x x πϕ⎛⎫=++ ⎪⎝⎭是奇函数,其中()0,ϕπ∈,则函数()()cos 2g x x ϕ=-的图象( )A .关于点,012π⎛⎫⎪⎝⎭对称 B .可由函数()f x 的图象向右平移3π个单位得到 C .可由函数()f x 的图象向左平移6π个单位得到D .可由函数()f x 的图象向左平移12π个单位得到【答案】C【解析】试题分析:由已知得函数()f x 为奇函数,又由()0,ϕπ∈得6πϕ=,∴()sin 2f x x =,()cos 26g x x π⎛⎫=- ⎪⎝⎭,则将函数()f x 的图象向左平移6π个单位可得函数()g x 的图象,故选C .【考点】诱导公式,函数的奇偶性,函数图像的平移变换.8.已知命题:p []1,2x ∀∈-,函数()2f x x x =-的值大于0.若p q ∨是真命题,则命题q 可以是( ) A .()1,1x ∃∈-,使得1cos 2x <B .“30m -<<”是“函数()2log f x x x m =++在区间1,22⎛⎫⎪⎝⎭上有零点”的必要不充分条件 C .6x π=是曲线()2cos2f x x x =+的一条对称轴D .若()0,2x ∈,则在曲线()()2xf x ex =-上任意一点处的切线的斜率不小于1e -【答案】C 【解析】试题分析:可判断命题p 是假命题,若p q ∨是真命题,则命题q 为真命题.A ,B ,D 均不正确.()2cos 22sin 26f x x x x π⎛⎫=+=+⎪⎝⎭,则6x π=是曲线()f x 的一条对称轴,故选C .【考点】复合命题真值表,函数的综合问题.【方法点睛】该题考查的知识点比较多,首先根据题中所给的条件,判断出命题p 是假命题,再结合p q ∨是真命题从而断定命题q 是真命题,下边关于命题q 所涉及的知识点比较多,需要逐个去分析,A 项需要对余弦函数的性质要熟练掌握,B 项利用函数零点存在性定理即可解决,C 项将函数解析式化简,利用其性质求得,D 项利用导数的几何意义,求导函数的值域即可,所以对学生的要求标准比较高.9.设函数()11,1121,1x x f x x x ⎧+-≥⎪=+⎨⎪<⎩,则不等式()()26f x f x ->的解集为( ) A .()3,1- B .()3,2- C.(- D.()2 【答案】D【解析】试题分析:易证得函数()f x 在[)1,+∞上单调递增.当1x <时,得261x ->⇒x <则1x <<;当1x ≥时,得26x x ->⇒32x -<<,则12x ≤<.综上得不等式的解集为()2,故选D . 【考点】分段函数的有关问题.10.公差不为0的等差数列{}n a 的部分项1k a ,2k a ,3k a ⋅⋅⋅构成等比数列{}n k a ,且11k =,22k =,36k =,则下列项中是数列{}n k a 中的项是( )A .86aB .84aC .24aD .20a 【答案】A【解析】试题分析:设数列{}n a 的公差为d (0d ≠), 1a ,2a ,6a 成等比数列,∴()()21115a a d a d +=+,得13d a =,∴11k a a =,214k a a =,则()11141n n k n a a a k d -=⋅=+-,即1324n n k --=.当4n =时,22n k =;当5n =时,86n k =.故选A .【考点】等差等比数列.11.若非零向量a 与向量b 的夹角为钝角,2b = ,且当12t =-时,b ta - (R t ∈)c 满足()()c b c a -⊥- ,则当()c a b ⋅+ 取最大值时,c b - 等于( )A...52【答案】A【解析】试题分析: 向量a ,b 的夹角为钝角,∴当a 与b ta -垂直时,b ta -12a b a ⎛⎫⊥+ ⎪⎝⎭ . 2b =,12b a += ∴2a = ,a与b 夹角为120. ()()c a c b -⊥- ,∴c 的终点在如图所示的圆O 上,c =AO +OB,2a b +=AO ,∴当OB 与AO 共线时, ()c a b ⋅+取最大值,此时c b -==A .【考点】数形结合思想的应用,向量垂直的条件,向量的模.【易错点睛】该题考查的是求向量模的大小的问题,属于高档题目,做起来较难,在解题的过程中,注意对题的条件的活用,一是两个向量垂直的条件的转换,注意其数量积等于零的应用,二是要注意什么情况下模取最值,取最小值时对应的是有关向量垂直,关于向量数量积在什么情况下取得最大值,从而得到相应的结果,注意对题中条件的等价转化.12.已知函数()()2ln x x b f x x +-=(R b ∈).若存在1,22x ⎡⎤∈⎢⎥⎣⎦,使得()()0f x x f x'+>,则实数b 的取值范围是( ) A .3,2⎛⎫-∞ ⎪⎝⎭B .9,4⎛⎫-∞ ⎪⎝⎭C .(),3-∞ D.(-∞ 【答案】B【解析】试题分析:()()0f x xf x '+>⇒()0xf x '>⎡⎤⎣⎦,设()()()2ln g x xf x x x b ==+-,若存在1,22x ⎡⎤∈⎢⎥⎣⎦,使得()()0f x xf x '+>,则函数()g x 在区间1,22⎡⎤⎢⎥⎣⎦上存在子区间使得()0g x '>成立,()()212212x bx g x x b x x -+'=+-=,设()2221h x x b x=-+,则()20h >或102h ⎛⎫> ⎪⎝⎭,即8410b -+>或1102b -+>,得94b <,故选B .【考点】导数的应用.【思路点睛】该题考查的是与构造新函数有关的问题,属于较难题目,在解题的过程中,需要紧紧抓住导数的应用,相当于()0f x '>在区间1,22⎡⎤⎢⎥⎣⎦上有解,最后将问题转化为不等式22210x bx -+>在区间1,22⎡⎤⎢⎥⎣⎦上有解,设()2221h x x bx =-+,结合二次函数的性质,可知只要()20h >或102h ⎛⎫> ⎪⎝⎭即可,将2和12分别代入,求得结果,取并集得答案. 二、填空题13.若5,412x ππ⎡⎤∈⎢⎥⎣⎦,则()22sin 2cos sin cos x x f x x x -=的最小值为 . 【答案】1-【解析】试题分析: ()222sin 2cos tan 22tan sin cos tan tan x x x f x x x x x x--===-在5,412ππ⎡⎤⎢⎥⎣⎦上单调递增,∴当4x π=时,函数()f x 取最小值1-. 【考点】同角三角函数关系式,函数的单调性,函数的最值.14.在C ∆AB 中,点O 在线段C B 的延长线上,且3C BO =O ,当Cx y AO =AB+A时,则x y -= . 【答案】2-【解析】试题分析: 点O 在线段C B 的延长线上,且3C BO =O ,∴1C C 2O =B ,则C C AO =A +O()1113C C C C C 2222=A +B =A +A -AB =-AB +A,∴2x y -=-.【考点】平面向量基本定理.15.若不等式32l o g 0a x x x -≤在0,2x ⎛∈ ⎝⎦恒成立,则实数a 的最小值为 . 【答案】14【解析】试题分析:32log 0a x x x -≤,即()22l o ga x x x -≤,由题意得22log a x x ≤在0,2x ⎛∈ ⎝⎦恒成立,即当0,2x ⎛∈ ⎝⎦时,函数2y x =的图象不在2log a y x =图象的上方,由图知01a <<且12log 2a≥,解得114a ≤<.【考点】数形结合思想的应用,恒成立问题的转化.【方法点睛】该题目考查的是有关恒成立问题,属于中档题目,在解题的过程中,首先将不等式32log 0a x x x -≤做等价变形,等价于22log a x x ≤在x ⎛∈ ⎝⎦恒成立,结合函数的图像,从而将参数的大体上的范围先确定,之后再找某个对应的边界值即可,最后找到结果12log 22a≥,结合大前提,从而求得答案. 16.数列{}log k n a 是首项为4,公差为2的等差数列,其中0k >,且1k ≠.设lg n n n c a a =,若{}n c 中的每一项恒小于它后面的项,则实数k 的取值范围为 .【答案】()1,⎛+∞ ⎝⎭【解析】试题分析:由题意得log 22k n a n =+,则22n n a k+=,∴()2122122n n n n a k k a k++++==,即数列{}n a 是以4k 为首项,2k 为公比的等比数列.()22lg 22lg n n n n c a a n kk +==+⋅,要使1n n c c +<对一切n *∈N 恒成立,即()()21lg 2lg n k n k k +<+⋅⋅对一切n *∈N 恒成立.当1k >时,lg 0k >()212n n k +<+对一切n *∈N 恒成立;当01k <<时,lg 0k <,()212n n k +>+对一切n *∈N 恒成立,只需2min12n k n +⎛⎫< ⎪+⎝⎭,11122n n n +=-++单调递增,∴当1n =时,min 1223n n +⎛⎫= ⎪+⎝⎭,∴223k <,且01k <<,∴0k <<.综上,()1,k ⎛∈+∞ ⎝⎭. 【考点】数列与函数的综合问题.【思路点睛】该题是以数列为载体,考查求参数的取值范围的问题,属于较难题目,在解题的过程中,首先需要根据题意,将数列{}log k n a 的通项公式求出,结合指对式的互化,求得22n n a k +=,进一步求得数列{}n c 的通项,由题意可知数列{}n c 是递减数列即可,即()()21lg 2lg n k n k k +<+⋅⋅对一切n *∈N 恒成立,下一步需要分1k >和01k <<两种情况,从而求得最后的结果.三、解答题17.在C ∆AB 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足sin C c = (1)若24sin C sin c =B ,求C ∆AB 的面积;(2)若2C 4AB⋅B +AB = ,求a 的最小值.【答案】(1(2)【解析】试题分析:该题考查的是有关解三角形的问题,属于简单的题目,在解题的过程中,首先根据已知条件,利用正弦定理求得3πA =,第一问根据题中所给的条件,利用正弦定理,求得4bc =,利用三角形的面积公式,求得三角形的面积,第二问根据题中所给的条件,利用向量数量积的定义式,求得8bc =,结合余弦定理,利用基本不等式求得结果.试题解析:由条件结合正弦定理得:sin C sin c a==A,从而sin A =A ,tan A , 0π<A <,∴3πA =.(1)由正弦定理得:24sin C sin c =B ⇒4bc =,∴C 1sin 2S bc ∆AB =A =(2)2C C cos604cb AB⋅B +AB =AB⋅A ==⇒8bc =.又2222cos6028a b c bc bc bc =+-≥-=,当且仅当b c ==∴min a =【考点】正弦定理,余弦定理,三角形的面积,向量数量积的定义式,基本不等式. 【思路点睛】该题属于三角和向量的综合题,属于较简单的题目,在解题的过程中,注意从大前提所给的条件中,利用正弦定理得出3πA =,第一问中根据正弦定理求得4bc =,结合三角形的面积公式,求得三角形的面积,第二问应用向量的数量积的定义式,求得8bc =,再结合3πA =利用余弦定理,再利用基本不等式求得结果,注意基本不等式中等号成立的条件就行.18.已知数列{}n a 的前n 项和为n S ,且312n n S a =-(n *∈N ). (1)求数列{}n a 的通项公式;(2)在数列{}n b 中,15b =,1n n n b b a +=+,求数列(){}9log 4n b -的前n 项和n T . 【答案】(1)123n n a -=⋅ (2)()()1112124n n n n -T =++⋅⋅⋅+-=. 【解析】试题分析:该题考查的是有关等比数列的问题,属于中档题目,在解题的过程中,第一问根据数列的项与和的关系,整理得出当2n ≥时,13n n a a -=, 从而得到数列是{}n a 等比数列,令1n =,求得数列的首项,从而得到数列的通项公式,第二问将第一问所求的通项公式代入,得到数列{}n b 的递推公式,利用累加法求得数列{}n b 的通项公式,得到134n n b -=+,从而有()91log 42n n b --=,利用等差数列的求和公式得到所求的结果.试题解析:(1)当1n =时,11312a a =-,∴12a =, 当2n ≥时, 312n n S a =-①,11312n n S a --=-②①-②得:1331122n n n a a a -⎛⎫⎛⎫=---⎪ ⎪⎝⎭⎝⎭,即13n n a a -=, ∴数列{}n a 是首项为2,公比为3的等比数列,∴123n n a -=⋅.(2) 1n n n b b a +=+,∴当2n ≥时,2123n n n b b --=+⋅,则13223b b =+⋅,02123b b =+⋅,相加得()12111132333523413n n n n b b ----=+⋅+⋅⋅⋅++=+⋅=+-,当1n =时,111345b -+==,∴134n n b -=+.()91log 42n n b --=,∴()()1112124n n n n -T =++⋅⋅⋅+-=. 【考点】数列的项与和的关系,等比数列的通项公式,累加法求数列的通项公式,等差数列的求和公式. 19.某市政府欲在如图所示的矩形CD AB 的非农业用地中规划出一个休闲娱乐公园(如图中阴影部分),形状为直角梯形R OP E (线段EO 和R P 为两条底边),已知2AB =km ,C 6B =km ,F 4AE =B =km ,其中曲线F A 是以A 为顶点、D A 为对称轴的抛物线的一部分.(1)求曲线F A 与AB ,F B 所围成区域的面积; (2)求该公园的最大面积.【答案】(1)283km(2)10427【解析】试题分析:第一问根据图形以及题中所给的条件,判断出抛物线是开口向上的抛物线,设出相应的方程2y ax =(0a >),由已知可知()F 2,4在抛物线上,将其代入抛物线方程,求得1a =,从而确定出抛物线的方程,再利用定积分求得对应图形的面积;第二问根据题意,确定好点E 和C 的坐标,从而确定出C E 所在直线的方程为4y x =+,设()2,x x P (02x <<),将公园的面积应用梯形的面积公式转化为关于x 的关系式,应用导数确定出其最值点,从而求得结果.试题解析:(1)以A 为原点,AB 所在的直线为x 轴建立平面直角坐标系,设曲线FA 所在抛物线的方程为2y ax =(0a >),抛物线过()F 2,4,∴242a =⨯,得1a =,∴F A 所在抛物线的方程为2y x =,∴曲线F A 与AB ,F B 所围成区域的面积2223001833S x dx x ===⎰2km .(2)又()0,4E ,()C 2,6,则C E 所在直线的方程为4y x =+,设()2,x x P (02x <<),则x PO =,24x OE =-,2R 4x x P =+-,∴公园的面积()22321144422S x x x x x x x =-++-⋅=-++(02x <<),∴234S x x '=-++,令0S '=,得43x =或1x =-(舍去负值),'当43x =时,S 取得最大值10427.故该公园的最大面积为10427. 【考点】抛物线的方程的求解,定积分求面积,导数的应用.【方法点睛】该题考查的是函数的应用题,属于中档题目,在解题的过程中,重点工作是确定抛物线的方程,根据所建立的坐标系,结合曲线上点的坐标,代入求得抛物线的方程,利用定积分求得对应的图形的面积,第二问将图形的面积表示为关于x 的函数,利用导数求得函数的单调区间,从而确定出函数在哪个点取得最大值,从而代入解析式,求得结果.20.已知数列{}n a ,12a =,当2n ≥时,11232n n n a a --=+⋅. (1)求数列2n n a ⎧⎫⎨⎬⎩⎭及数列{}n a 的通项公式; (2)令232n n n c a =-⋅,设n T 为数列{}n c 的前n 项和,求n T . 【答案】(1)()12231nn n n a b n -==-(2)()()()11212321242371412n n n n n n ++-⎡⎤T =⨯-+-⋅=-+⎣⎦-【解析】试题分析:第一问将题中所给的式子变形可以得到当2n ≥时,113222n n n n a a --=+,从而得到数列2n n a ⎧⎫⎨⎬⎩⎭是等差数列,利用等差数列的通项公式,求得结果,进一步求得数列{}n a 的通项公式,第二问将第一问的结果代入,求得数列{}n c 的通项公式,求得2322n n n c n +=⨯⨯-,利用分组求和法,结合等比数列的求和公式以及错位相减法,将结果求出.试题解析:(1) 当2n ≥时,113222n n n n a a --=+; 令2n n n a b =,则数列{}nb 是以首项11b =,公差为32的等差数列,312n n b -=; ∴()12231n n n n a b n -==-.(2) 2322n n n c n +=⨯⨯-∴()()223212224222n n n n T =⨯+⨯+⋅⋅⋅+⨯-++⋅⋅⋅+,记221222n n S n =⨯+⨯+⋅⋅⋅+⨯①,则231221222n n S n +=⨯+⨯+⋅⋅⋅+⨯②, ①-②得:()21121222212n n n n S n n ++-=⨯++⋅⋅⋅+-⨯=--,∴()1212n n S n +=-+.故()()()11212321242371412n n n n n n ++-⎡⎤T =⨯-+-⋅=-+⎣⎦-.【考点】数列的递推公式,通项公式,求和方法.21.已知函数()()2sin 2f x x x=+-. (1)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的单调递增区间; (2)若,63x ππ⎡⎤∈-⎢⎥⎣⎦,求函数()()21124g x f x f x π⎛⎫=-+- ⎪⎝⎭的值域. 【答案】(1)0,6π⎡⎤⎢⎥⎣⎦ (2)33,2⎡⎤-⎢⎥⎣⎦【解析】试题分析:先将函数解析式展开,用倍角公式和辅助角公式化简函数解析式得()2sin(2)6f x x π=+,再求出函数本身的单调增区间,再给k 赋上相应的值,结合题中所给的研究的区间,从而求得函数的增区间是0,6π⎡⎤⎢⎥⎣⎦,第二问将函数解析式确定,利用公式化简得213()2[cos(2)]622g x x π=-+++,根据,63x ππ⎡⎤∈-⎢⎥⎣⎦求得整体角52[,]666x πππ+∈-,根据余弦函数的性质,求得cos(2)[6x π+∈,利用二次函数的性质求得函数()g x 的值域为33,2⎡⎤-⎢⎥⎣⎦. 试题解析:()22sin cos 3cos 2f x x x x x =++-2cos 22sin 26x x x π⎛⎫=+=+ ⎪⎝⎭ (1)令222262k x k πππππ-+≤+≤+,k ∈Z ,解得222233k x k ππππ-≤≤+,k ∈Z ,即36k x k ππππ-≤≤+,k ∈Z , 0,2x π⎡⎤∈⎢⎥⎣⎦,∴()f x 的递增区间为0,6π⎡⎤⎢⎥⎣⎦. (2)()()22112sin 22cos 212466g x f x f x x x πππ⎛⎫⎛⎫⎛⎫=-+-=+-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 22cos 22cos 2166x x ππ⎛⎫⎛⎫=-+-++ ⎪ ⎪⎝⎭⎝⎭ 2132cos 2622x π⎡⎤⎛⎫=-+++ ⎪⎢⎥⎝⎭⎣⎦,63x ππ⎡⎤∈-⎢⎥⎣⎦,∴52,666x πππ⎡⎤+∈-⎢⎥⎣⎦,则cos 26x π⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦, 当1cos 262x π⎛⎫+=- ⎪⎝⎭时,()g x 取最大值32;当c o s 216x π⎛⎫+= ⎪⎝⎭时,()g x 取最小值3-.∴函数()g x 的值域为33,2⎡⎤-⎢⎥⎣⎦. 【考点】倍角公式,辅助角公式,函数在某个区间上的单调性,函数在某个区间上的值域.22.设函数()()ln 1f x m x m x =+-.(1)若()f x 存在最大值M ,且0M >,求m 的取值范围;(2)当1m =时,试问方程()2x x xf x e e -=-是否有实数根,若有,求出所有实数根;若没有,请说明理由.【答案】(1),11e e ⎛⎫ ⎪+⎝⎭(2)方程()2x x xf x e e -=-没有实数根,理由见解析. 【解析】试题分析:第一问先确定函数的定义域,对函数求导,对参数m 的取值进行讨论,当函数在定义域上是单调函数时,函数没有最大值,当01m <<时,求得函数的单调增区间和减区间,从而确定好函数的最值点,将自变量代入函数解析式,求得函数值,令其大于零,解得1e m e>+,结合大前提,从而求得结果,第二问将1m =代入上式,变形可得2ln x x x x e e =-,利用导数研究函数的性质,可知1(ln )x x e≥-,21x x e e e -≤-恒成立,但是最值点不是同一个,从而得到相应的方程没有实根.试题解析:(1)()()ln 1f x m x m x =+-的定义域为()0,+∞,()()11m x m m f x m x x-+'=+-=. 当0m ≤或1m ≥时,()f x 在区间()0,+∞上单调,此时函数()f x 无最大值. 当01m <<时,()f x 在区间0,1m m ⎛⎫ ⎪-⎝⎭内单调递增,在区间,1m m ⎛⎫+∞ ⎪-⎝⎭内单调递减, 所以当01m <<时,函数()f x 有最大值. 最大值ln 11m m f m m m m ⎛⎫M ==- ⎪--⎝⎭. 因为0M >,所以有ln01m m m m ->-,解之得1e m e >+. 所以m 的取值范围是,11e e ⎛⎫ ⎪+⎝⎭. (2)当1m =时,方程可化为2ln x x x x e e -=-,即2ln x x x x e e =-, 设()ln h x x x =,则()1ln h x x '=+, ∴10,x e ⎛⎫∈ ⎪⎝⎭时,()0h x '<,∴()h x 在10,e ⎛⎫ ⎪⎝⎭上是减函数,当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0h x '>,∴()h x 在1,e ⎛⎫+∞ ⎪⎝⎭上是增函数, ∴()min 11h x h e e ⎛⎫==- ⎪⎝⎭. 设()2x x g x e e =-,则()1x x g x e-'=, ∴当()0,1x ∈时,()0g x '>,即()g x 在()0,1上单调递增;当()1,x ∈+∞时,()0g x '<,即()g x 在()1,+∞上单调递减;∴()()max 11g x g e ==-. 11e≠,∴数形结合可得()()h x g x >在区间()1,+∞上恒成立, ∴方程()2x x xf x e e-=-没有实数根. 【考点】导数的综合应用.。
2016-2017年山西省朔州市怀仁一中高三(上)期中数学试卷及参考答案(文科)

2016-2017学年山西省朔州市怀仁一中高三(上)期中数学试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集A={x∈N|x2+2x﹣3≤0},B={y|y⊆A},则集合B中元素的个数为()A.2 B.3 C.4 D.52.(5分)命题“对任意x∈[1,2],x2﹣a≤0”为真命题的一个充分不必要条件可以是()A.a≥4 B.a>4 C.a≥1 D.a>13.(5分)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2 B.1 C.D.4.(5分)设a=sin33°,b=cos55°,c=tan35°,则()A.a>b>c B.b>c>a C.c>b>a D.c>a>b5.(5分)下列四个函数中,图象如图所示的只能是()A.y=x+lgx B.y=x﹣lgx C.y=﹣x+lgx D.y=﹣x﹣lgx6.(5分)已知,cos2x=a,则sinx=()A.B.C.D.7.(5分)函数f(x)=e x cosx的图象在点(0,f(0))处的切线的倾斜角为()A.0 B.1 C.D.8.(5分)要得到函数的图象,只需将函数的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度9.(5分)在△ABC中,角A,B,C所对的边分别为a,b,c,且a=1,B=45°,S△ABC=2,则b等于()A.B.5 C.41 D.10.(5分)若实数x,y满足|x﹣3|≤y≤1,则z=的最小值为()A.B.2 C.D.11.(5分)对于实数x,规定[x]表示不大于x的最大整数,那么不等式4[x]2﹣36[x]+45<0成立的x的范围是()A.()B.[2,8]C.[2,8) D.[2,7]12.(5分)已知函数f(x)=x2﹣2x,g(x)=ax+2(a>0),若∀x1∈[﹣1,2],∃x2∈[﹣1,2],使得f(x1)=g(x2),则实数a的取值范围是()A. B. C.(0,3]D.[3,+∞)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)函数y=log a x+1(a>0且a≠1)的图象恒过定点A,若点A在直线+﹣4=0(m>0,n>0)上,则+=;m+n的最小值为.14.(5分)函数f(x)的定义域为R,f(﹣1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为.15.(5分)已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则∠A的值为,△ABC面积的最大值为.16.(5分)对于函数f(x)=,给出下列四个命题:①该函数是以π为最小正周期的周期函数;②当且仅当x=π+kπ(k∈Z)时,该函数取得最小值﹣1;③该函数的图象关于x=+2kπ(k∈Z)对称;④当且仅当2kπ<x<+2kπ(k∈Z)时,0<f(x)≤.其中正确命题的序号是.(请将所有正确命题的序号都填上)三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知函数f(x)=|2x﹣a|+|x+1|.(Ⅰ)当a=1时,解不等式f(x)<3;(Ⅱ)若f(x)的最小值为1,求a的值.18.(12分)如图,在平面四边形ABCD中,AD=1,CD=2,AC=.(Ⅰ)求cos∠CAD的值;(Ⅱ)若cos∠BAD=﹣,sin∠CBA=,求BC的长.19.(12分)设数列{a n}满足a1+3a2+32a3+…+3n﹣1a n=(n∈N*).(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和S n.20.(12分)已知函数f(x)=2sinωxcosωx+2sin2ωx﹣(ω>0)的最小正周期为π.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)将函数f(x)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象.若y=g(x)在[0,b](b>0)上至少含有10个零点,求b 的最小值.21.(12分)已知函数.(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)当时,讨论f(x)的单调性.22.(12分)已知函数f(x)=xlnx.(I)若函数g(x)=f(x)+x2+ax+2有零点,求实数a的最大值;(II)若∀x>0,≤x﹣kx2﹣1恒成立,求实数k的取值范围.2016-2017学年山西省朔州市怀仁一中高三(上)期中数学试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集A={x∈N|x2+2x﹣3≤0},B={y|y⊆A},则集合B中元素的个数为()A.2 B.3 C.4 D.5【解答】解:全集A={x∈N|x2+2x﹣3≤0}={0,1},B={y|y⊆A}中的元素为集合A的子集,故集合B中元素的个数为22=4;故选:C.2.(5分)命题“对任意x∈[1,2],x2﹣a≤0”为真命题的一个充分不必要条件可以是()A.a≥4 B.a>4 C.a≥1 D.a>1【解答】解:对任意x∈[1,2],x2﹣a≤0”为真命题,则对任意x∈[1,2],x2≤a”,∵当x∈[1,2],x2∈[1,4],∴a≥4,则命题“对任意x∈[1,2],x2﹣a≤0”为真命题的一个充分不必要条件可以是a >4,故选:B.3.(5分)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2 B.1 C.D.【解答】解:设等比数列{a n}的公比为q,∵,a3a5=4(a4﹣1),∴=4,化为q3=8,解得q=2则a2==.故选:C.4.(5分)设a=sin33°,b=cos55°,c=tan35°,则()A.a>b>c B.b>c>a C.c>b>a D.c>a>b【解答】解:由诱导公式可得b=cos55°=cos(90°﹣35°)=sin35°,由正弦函数的单调性可知b>a,而c=tan35°=>sin35°=b,∴c>b>a故选:C.5.(5分)下列四个函数中,图象如图所示的只能是()A.y=x+lgx B.y=x﹣lgx C.y=﹣x+lgx D.y=﹣x﹣lgx【解答】解:在y=x+lgx中,>0,∴y=x+lgx是(0,+∞)上单调递增函数,∴A不成立;在y=x﹣lgx中,,当0<x<lge时,<0,当x>lge 时,>0.∴y=x﹣lgx的增区间是(lge,+∞),减区间是(0,lge),∴B成立;在y=﹣x+lgx中,.当0<x<lge时,>0,当x>lge 时,<0.∴y=﹣x+lgx的减区间是(lge,+∞),增区间是(0,lge),∴C不成立;在y=﹣x﹣lgx中,<0,∴y=﹣x﹣lgx是(0,+∞)上单调递减函数,∴D不成立.故选:B.6.(5分)已知,cos2x=a,则sinx=()A.B.C.D.【解答】解:∵cos2x=a,∴1﹣2sin2x=a,可得sin2x=,又∵,可得sinx<0,∴sinx=﹣.故选:B.7.(5分)函数f(x)=e x cosx的图象在点(0,f(0))处的切线的倾斜角为()A.0 B.1 C.D.【解答】解:由题意得,f′(x)=e x cosx﹣e x sinx,则f′(0)=e0(cos0﹣sin0)=1,所以在点(0,f(0))处的切线的斜率k=1,又k=tanθ,则切线的倾斜角θ=,故选:C.8.(5分)要得到函数的图象,只需将函数的图象()A .向左平移个单位长度B .向右平移个单位长度C .向左平移个单位长度D .向右平移个单位长度【解答】解:=,故把的图象向左平移个单位,即得函数的图象,即得到函数的图象.故选:C .9.(5分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a=1,B=45°,S △ABC =2,则 b 等于( ) A .B .5C .41D .【解答】解:在△ABC 中,a=1,B=45°,S △ABC =2, 可得2=,解得c=4. 由余弦定理可得:b===5.故选:B .10.(5分)若实数x ,y 满足|x ﹣3|≤y ≤1,则z=的最小值为( )A .B .2C .D .【解答】解:依题意,得实数x ,y 满足,画出可行域如图所示,其中A (3,0),C (2,1),z===1+,设k=,则k的几何意义为区域内的点与原点的斜率,则OC的斜率最大为k=,OA的斜率最小为k=0,则0≤k≤,则1≤k+1≤,≤≤1,故≤1+≤2,故z=的最小值为,故选:A.11.(5分)对于实数x,规定[x]表示不大于x的最大整数,那么不等式4[x]2﹣36[x]+45<0成立的x的范围是()A.()B.[2,8]C.[2,8) D.[2,7]【解答】解:由4[x]2﹣36[x]+45<0,得,又[x]表示不大于x的最大整数,所以2≤x<8.故选:C.12.(5分)已知函数f(x)=x2﹣2x,g(x)=ax+2(a>0),若∀x1∈[﹣1,2],∃x2∈[﹣1,2],使得f(x1)=g(x2),则实数a的取值范围是()A. B. C.(0,3]D.[3,+∞)【解答】解:∵函数f(x)=x2﹣2x的图象是开口向上的抛物线,且关于直线x=1对称∴x1∈[﹣1,2]时,f(x)的最小值为f(1)=﹣1,最大值为f(﹣1)=3,可得f(x1)值域为[﹣1,3]又∵g(x)=ax+2(a>0),x2∈[﹣1,2],∴g(x)为单调增函数,g(x2)值域为[g(﹣1),g(2)]即g(x2)∈[2﹣a,2a+2]∵∀x1∈[﹣1,2],∃x2∈[﹣1,2],使得f(x1)=g(x2),∴⇒a≥3故选:D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)函数y=log a x+1(a>0且a≠1)的图象恒过定点A,若点A在直线+﹣4=0(m>0,n>0)上,则+=4;m+n的最小值为1.【解答】解:当x=1时,y=log a1+1=1,∴函数y=log a x+1(a>0且a≠1)的图象恒过定点A(1,1),∵点A在直线+﹣4=0(m>0,n>0)上,∴+=4.∴m+n=(+)(m+n)=(2+m+n),≥(2+2)=1,当且仅当m=n=时取等号.故答案是:4;1.14.(5分)函数f(x)的定义域为R,f(﹣1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为(﹣1,+∞).【解答】解:设F(x)=f(x)﹣(2x+4),则F(﹣1)=f(﹣1)﹣(﹣2+4)=2﹣2=0,又对任意x∈R,f′(x)>2,所以F′(x)=f′(x)﹣2>0,即F(x)在R上单调递增,则F(x)>0的解集为(﹣1,+∞),即f(x)>2x+4的解集为(﹣1,+∞).故答案为:(﹣1,+∞)15.(5分)已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则∠A的值为,△ABC面积的最大值为.【解答】解:由已知可得等式:(a+b)(sinA﹣sinB)=(c﹣b)sinC,利用正弦定理化简得:(a+b)(a﹣b)=c(c﹣b),即b2+c2﹣a2=bc,∴cosA==,则A=;在△ABC中,∵a=2,且(2+b)(sinA﹣sinB)=(c﹣b)sinC,∴利用正弦定理可得(2+b)(a﹣b)=(c﹣b)c,即b2+c2﹣bc=4.再利用基本不等式可得:4+bc=b2+c2≥2bc,∴bc≤4,当且仅当b=c=2时,取等号,此时,△ABC为等边三角形,它的面积为bc•sinA=×=,故答案为:,.16.(5分)对于函数f(x)=,给出下列四个命题:①该函数是以π为最小正周期的周期函数;②当且仅当x=π+kπ(k∈Z)时,该函数取得最小值﹣1;③该函数的图象关于x=+2kπ(k∈Z)对称;④当且仅当2kπ<x<+2kπ(k∈Z)时,0<f(x)≤.其中正确命题的序号是③④.(请将所有正确命题的序号都填上)【解答】解:由题意函数f(x)=,画出f(x)在x∈[0,2π]上的图象.由图象知,函数f(x)的最小正周期为2π,在x=π+2kπ(k∈Z)和x=+2kπ(k∈Z)时,该函数都取得最小值﹣1,故①②错误,由图象知,函数图象关于直线x=+2kπ(k∈Z)对称,在2kπ<x<+2kπ(k∈Z)时,0<f(x)≤,故③④正确.故答案为③④三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知函数f(x)=|2x﹣a|+|x+1|.(Ⅰ)当a=1时,解不等式f(x)<3;(Ⅱ)若f(x)的最小值为1,求a的值.【解答】解:(Ⅰ)因为f(x)=|2x﹣1|+|x+1|=;且f(1)=f(﹣1)=3,所以,f(x)<3的解集为{x|﹣1<x<1};…(4分)(Ⅱ)|2x﹣a|+|x+1|=|x﹣|+|x+1|+|x﹣|≥|1+|+0=|1+|当且仅当(x+1)(x﹣)≤0且x﹣=0时,取等号.所以|1+|=1,解得a=﹣4或0.…(10分)18.(12分)如图,在平面四边形ABCD中,AD=1,CD=2,AC=.(Ⅰ)求cos∠CAD的值;(Ⅱ)若cos∠BAD=﹣,sin∠CBA=,求BC的长.【解答】解:(Ⅰ)cos∠CAD===.(Ⅱ)∵cos∠BAD=﹣,∴sin∠BAD==,∵cos∠CAD=,∴sin∠CAD==∴sin∠BAC=sin(∠BAD﹣∠CAD)=sin∠BADcos∠CAD﹣cos∠BADsin∠CAD=×+×=,∴由正弦定理知=,∴BC=•sin∠BAC=×=319.(12分)设数列{a n}满足a1+3a2+32a3+…+3n﹣1a n=(n∈N*).(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和S n.【解答】解:(1)∵a1+3a2+32a3+…+3n﹣1a n=,①∴当n≥2时,a1+3a2+32a3+…+3n﹣2a n﹣1=.②①﹣②,得3n﹣1a n=,所以(n≥2),在①中,令n=1,得也满足上式.∴.(2)∵,∴b n=n•3n.∴S n=3+2×32+3×33+…+n•3n.③∴3S n=32+2×33+3×34+…+n•3n+1.④④﹣③,得2S n=n•3n+1﹣(3+32+33+…+3n),即2S n=n•3n+1﹣.∴.20.(12分)已知函数f(x)=2sinωxcosωx+2sin2ωx﹣(ω>0)的最小正周期为π.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)将函数f(x)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象.若y=g(x)在[0,b](b>0)上至少含有10个零点,求b 的最小值.【解答】解:(Ⅰ)由题意,可得f(x)==.∵函数的最小正周期为π,∴=π,解之得ω=1.由此可得函数的解析式为.令,解之得∴函数f(x)的单调增区间是.(Ⅱ)将函数f(x)的图象向左平移个单位,再向上平移1个单位,可得函数y=f(x+)+1的图象,∵∴g(x)=+1=2sin2x+1,可得y=g(x)的解析式为g(x)=2sin2x+1.令g(x)=0,得sin2x=﹣,可得2x=或2x=解之得或.∴函数g(x)在每个周期上恰有两个零点,若y=g(x)在[0,b]上至少含有10个零点,则b不小于第10个零点的横坐标即可,即b的最小值为.21.(12分)已知函数.(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)当时,讨论f(x)的单调性.【解答】解:(1)当a=1时,,此时,又,∴切线方程为:y﹣(ln2+2)=x﹣2,整理得:x﹣y+ln2=0;(2),当a=0时,,此时,当x∈(0,1)时,f′(x)<0,f(x)单调递减,当x∈(1,+∞)时,f′(x)>0,f(x)单调递增;当时,,当,即时,在(0,+∞)恒成立,∴f(x)在(0,+∞)单调递减;当时,,此时在(0,1),,f′(x)<0,f(x)单调递减,f(x)在,f′(x)>0单调递增;综上所述:当a=0时,f(x)在(0,1)单调递减,f(x)在(1,+∞)单调递增;当时,f(x)在单调递减,f(x)在单调递增;当时f(x)在(0,+∞)单调递减.22.(12分)已知函数f(x)=xlnx.(I)若函数g(x)=f(x)+x2+ax+2有零点,求实数a的最大值;(II)若∀x>0,≤x﹣kx2﹣1恒成立,求实数k的取值范围.【解答】解:(I)∵函数g(x)=f(x)+x2+ax+2有零点,∴g(x)=xlnx+x2+ax+2在(0,+∞)上有实数根.即﹣a=lnx+x+在(0,+∞)上有实数根.令h(x)=,(x>0),则=.解h′(x)<0,得0<x<1;解h′(x)>0,得x>1.∴h(x)在(0,1)上单调递减;在(1,+∞)上单调递增.∴h(x)在x=1时取得极小值,即最小值h(1)=3.∴﹣a≥3,解得a≤﹣3.∴实数a的最大值为﹣3.(II)∵∀x>0,≤x﹣kx2﹣1恒成立,∴lnx≤x﹣1﹣kx2,即.令g(x)=x﹣1﹣lnx,x>0.=,令g′(x)>0,解得x>1,∴g(x)在区间(1,+∞)上单调递增;令g′(x)<0,解得0<x<1,∴g(x)在区间(0,1)上单调递减.∴当x=1时,g(x)取得极小值,即最小值,∴g(x)≥g(1)=0,∴k≤0,即实数k的取值范围是(﹣∞,0].。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1. 已知集合}5,4,3,2,1{=U ,集合}2,1{=A ,}4,3,2{=B ,则=A C B U ( ) A .}2{ B .}4,3{ C .}5,4,1{ D .}5,4,3,2{2. 函数)2lg(x xy -=的定义域是( )A .)2,0[B .)2,1(C .)2,1()1,0[D .)1,0[3. 函数12-=x y 的定义域是)5,2[)1,( -∞,则其值域是( ) A .]2,21(]0,( -∞ B .]2,(-∞ C .),2[)21,(+∞-∞ D .),0(+∞4. 下列函数中,在其定义域上既是奇函数又是增函数的为( ) A .1+=x y B .3x y -= C .xy 1-= D .||x x y = 5. 已知函数⎩⎨⎧≤>=0,20,log )(3x x x x f x ,则))91((f f 等于( )A .4B .41 C .4- D .41- 6. 已知y x ,为正实数,则( ) A .y x yx lg lg lg lg 222+=+ B .y x y x lg lg )lg(222⋅=+ C .y x yx lg lg lg lg 222+=⋅ D .y x xy lg lg )lg(222⋅=7. 已知实数0≠a ,⎩⎨⎧≥--<+=1,21,2)(x a x x a x x f ,若)1()1(a f a f +=-,则实数a 的值是( ) A .43-B .23-C .43-和23-D .238. 已知函数54)(2+-=mx x x f 在区间),2[+∞-上是增函数,则)1(f 的取值范围是( )A.25)1(≥f B.25)1(=f C.25)1(≤f D.25)1(>f9. 设奇函数)(xf在),0(+∞上是增函数,且0)1(=f,则不等式0)()(<--xxfxf的解集为()A.),1()0,1(+∞- B.)1,0()1,(--∞ C.),1()1,(+∞--∞D.)1,0()0,1(-10.若⎪⎩⎪⎨⎧≤+->=1,2)24(1,)(xxaxaxfx是R上的单调递增函数,则实数a的取值范围为() A.),1(+∞ B.)8,4(C.)8,4[ D.)8,1(11. 若)(),(xgxϕ都是奇函数,2)()()(++=xbgxaxfϕ在),0(+∞上有最大值5,则)(xf在)0,(-∞上有()A.最小值5- B.最大值5-C.最小值1- D.最大值3-12. 已知函数)(xfy=和)(xgy=在]2,2[-的图象如下所示:给出下列四个命题:(1)方程0)]([=xgf有且仅有6个根(2)方程0)]([=xfg有且仅有3个根(3)方程0)]([=xff有且仅有5个根(4)方程0)]([=xgg有且仅有4个根其中正确命题的个数是()A.4个 B.3个C.2个 D.1个二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 若13log2=x,则xx93+的值为 .14. 设m b a ==52,且211=+b a ,则m 等于 . 15. 设x x x f -+=22lg )(,则)2()2(xf x f +的定义域为 .16. 已知函数)1(13)(≠--=a a axx f ,若)(x f 在区间]1.0(上是减函数,则实数a 的取值范围为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.计算:(1)8lg 3136.0lg 2113lg 2lg 2+++;(2)36231232⨯⨯. 18.已知函数1)(2++=x b ax x f 是定义在)1,1(-上是奇函数,且52)21(=f . (1)求函数)(x f 的解析式;(2)判断函数)(x f 的单调性,并用定义证明; (3)解关于x 的不等式0)()12(<+-x f x f . 19. 设函数122)(-+=xx ax f (a 为实数). (1)当0=a 时,若函数)(x g y =为定义在R 上的奇函数,且在0>x 时,)()(x f x g =,求函数)(x g y =的解析式;(2)当0<a 时,求关于x 的方程0)(=x f 在实数集R 上的解.20. 某商品在近30天内每件的销售价格p (元)与时间t (天)的函数关系是⎩⎨⎧∈≤≤+-∈<<+=Nt t t Nt t t p ,3025,100,250,20,该商品的日销售量Q (件)与时间t (天)的函数关系是),300(40N t t Q ∈<≤+-=.(1)求这种商品的日销售金额的解析式;(2)求日销售金额的最大值,并指出日销售金额最大的一天是30天的第几天? 21.已知函数2244)(22+-+-=a a ax x x f .(1)若2=a ,求函数)(x f 在区间)2,1(-上的值域; (2)若函数)(x f 在区间]2,0[上有最小值3,求a 的值. 22.已知函数xtx y +=有如下性质:如果常数0>t ,那么该函数在],0(t 上是减函数,在),[+∞t 上是增函数.(1)已知123124)(2+--=x x x x f ,]1,0[∈x ,利用上述性质,求函数)(x f 的单调区间和值域;(2)对于(1)中的函数)(x f 和函数a x x g 2)(--=,若对任意]1,0[1∈x ,总存在]1,0[2∈x ,使得)()(12x f x g =成立,求实数a 的取值范围.参考答案一、选择题:本大题共12小题,每小题5分,共60分.题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BCADBDAADCCB二、填空题:本大题共4小题,每小题5分,共20分.13.6; 14.10; 15.)4,1()1,4( --; 16.]3,1()0,( -∞ 三、解答题:本大题共6个题,共70分. 17.解:(1)原式12.1lg 10lg 12lg 2.1lg 112lg 2lg 6.0lg 1)34lg(=+=+=++⨯=.(2)原式6323227272491227249122726666666=⨯==⨯=⨯⨯=⨯⨯=. 18.解:(1)由题意可知)()(x f x f -=-,∴2211x bax x b ax ++-=++-,∴0=b . ∴21)(x ax x f +=,∵52)21(=f ,∴1=a ,∴21)(x xx f +=.∴021<-x x ,∴0121>-x x ,01,012221>+>+x x ,∴01)1)((212121<+--x x x x x ,所以0)()(21<-x f x f ,即)()(21x f x f <.∴)(x f 在)1,1(-上是增函数.(3)∵0)()12(<+-x f x f ,∴)()12(x f x f -<-,又)(x f 是定义在)1,1(-上的奇函数,∴)()12(x f x f -<-,∴⎪⎩⎪⎨⎧-<-<-<-<-<-xx x x 12111121,∴310<<x ,∴不等式0)()12(<+-x f x f 的解集为)31,0(.19. 解:(1)当0=a 时,12)(-=xx f ,由已知)()(x g x g -=-,则当0<x 时,1)21()12()()()(+-=--=--=--=-x x x f x g x g ,由于)(x g 为奇函数,故知0=x 时,0)(=x g ,∴⎪⎩⎪⎨⎧<+-≥-=0,1)21(0,12)(x x x g xx .(2)0)(=x f ,即0122=-+xx a ,整理,得:02)2(2=+-a x x ,所以24112a x-±=,又0<a ,所以141>-a ,所以24112a x-+=,从而2411log 2ax -+=. 20.解:(1)设日销售金额为y (元),则Q p y ⋅=,∴⎪⎩⎪⎨⎧∈≤≤+-∈<<++-=⎩⎨⎧+-+-+-+=Nt t t t Nt t t t t t t t y ,3025,4000140,250,80020)40)(100()40)(20(22. (2)由(1)知⎪⎩⎪⎨⎧∈≤≤--∈<<+--=⎪⎩⎪⎨⎧+-++-=Nt t t Nt t t t t t t y ,3025,900)70(,250,900)10(4000140800202222,当N t t ∈<<,250,10=t 时,900max =y (元);当N t t ∈≤≤,3025,25=t 时,1125max =y (元),由1125>900,知1125max =y ,且第25天日销售额最大.21.解:(1))14,2[-.(2)∵22)2(4)(2+--=a a x x f , ①当02≤a,即0≤a 时,函数)(x f 在]2,0[上是增函数. ∴22)0()(2min +-==a a f x f . 由3222=+-a a ,得21±=a .∵0≤a ,∴21-=a .②当220<<a ,即40<<a 时,22)2()(min +-==a af x f . 由322=+-a ,得)4,0(21∉-=a ,舍去.③当22≥a,即4≥a 时,函数)(x f 在]2,0[上是减函数.1810)2()(2min +-==a a f x f .由318102=+-a a ,得105±=a . ∵4≥a ,∴105+=a .综上所述,21-=a 或105+=a .22.解:(1)812412123124)(2-+++=+--==x x x x x x f y , 设12+=x u ,]1,0[∈x ,31≤≤u ,则84-+=uu y ,]3,1[∈u . 由已知性质得,当21≤≤u ,即210≤≤x 时,)(x f 单调递减,所以减区间为]21,0[;当32≤≤u ,即121≤≤x 时,)(x f 单调递增,所以增区间为]1,21[;由3)0(-=f ,4)21(-=f ,311)1(-=f ,得)(x f 的值域为]3,4[--.(2)a x x g 2)(--=为减函数,故]2,21[)(a a x g ---∈,]1,0[∈x , 由题意)(x f 的值域是)(x g 值域的子集,∴⎩⎨⎧-≥--≤--32421a a ,∴23=a .。