3-1点的复合运动解析

合集下载

点的复合运动

点的复合运动
例1、沿直线轨道作纯滚动的车轮轮缘上点的运动
点的合成运动
y’
o’
x’
例2、直升飞机在匀速前进的军舰上降落
y
y’
o’
x’
x
o
点的合成运动
y’ x’
o’
物体的运动的描述结果与所选定的参考系有关。同一物体的运动,在不同的 参考系中看来,可以具有极为不同的运动学特征(具有不同的轨迹、速度、 加速度等)。
相对运动:未知
3、
va ve vr
大小 v1 v2
?
方向 √ √
?
vr va2 ve2 2vave cos60 3.6 m s
arcsin(ve sin 60o ) 46o12
点的合成运动
vr
求解合成运动的速度问题的一般步骤为(P180):
① 选取动点,动系和静系。
B
曲柄-滑块机构
点的合成运动
思考题 动 点:杆上A点。 动系:固连于滑块B。 定系:固连于墙面。 绝对运动? 相对运动? 牵连运动?
点的合成运动
A Bv
点的合成运动
动 点? 动参考系? 绝对运动? 相对运动? 牵连运动?
练习题1
点的合成运动
点的合成运动
点的合成运动
动 点? 动参考系? 绝对运动? 相对运动? 牵连运动?
定系的速度。
点的合成运动
基本概 念
牵连点的概念
(1)、定 义 动参考系给动点直接影响的是该动系上与动点相重合的一点,
这点称为瞬时重合点或动点的牵连点。 (2)、进一步说明
牵连运动一方面是动系的绝对运动,另一方面对动点来说起 着“牵连”作用。但是带动动点运动的只是动系上在所考察的瞬 时与动点相重合的那一点,该点称为瞬时重合点或牵连点。 (3)、注 意

理论力学答案第5章点的复合运动分析

理论力学答案第5章点的复合运动分析

第5章 点的复合运动分析5-1 曲柄OA 在图示瞬时以ω0绕轴O 转动,并带动直角曲杆O 1BC 在图示平面内运动。

若d 为已知,试求曲杆O 1BC 的角速度。

解:1、运动分析:动点:A ,动系:曲杆O 1BC ,牵连运动:定轴转动,相对运动:直线,绝对运动:圆周运动。

2、速度分析:r e a v v v += 0a 2ωl v =;0e a 2ωl v v == 01e 1ωω==AO v BC O (顺时针)5-2 图示曲柄滑杆机构中、滑杆上有圆弧滑道,其半径cm 10=R ,圆心O 1在导杆BC 上。

曲柄长cm 10=OA ,以匀角速rad/s 4πω=绕O 轴转动。

当机构在图示位置时,曲柄与水平线交角 30=φ。

求此时滑杆CB 的速度。

解:1、运动分析:动点:A ,动系:BC ,牵连运动:平移,相对运动:圆周运动,绝对运动:圆周运动。

2、速度分析:r e a v v v +=πω401a =⋅=A O v cm/s ; 12640a e ====πv v v BC cm/s5-3 图示刨床的加速机构由两平行轴O 和O 1、曲柄OA 和滑道摇杆O 1B 组成。

曲柄OA 的末端与滑块铰接,滑块可沿摇杆O 1B 上的滑道滑动。

已知曲柄OA 长r 并以等角速度ω转动,两轴间的距离是OO 1 = d 。

试求滑块滑道中的相对运动方程,以及摇杆的转动方程。

解:分析几何关系:A 点坐标 d t r x +=ωϕcos cos 1 (1) t r x ωϕsin sin 1= (2) (1)、(2)两式求平方,相加,再开方,得: 1.相对运动方程trd r d t r d t rd t r x ωωωωcos 2sin cos 2cos 22222221++=+++=将(1)、(2)式相除,得: 2.摇杆转动方程: dt r tr +=ωωϕcos sin tandt r t r +=ωωϕcos sin arctan5-4 曲柄摇杆机构如图所示。

带电粒子在复合场中的运动整理

带电粒子在复合场中的运动整理

专题:带电粒子在复合场中的运动一、复合场及其特点这里所说的复合场是指电场、磁场、重力场并存,或其中某两种场并存的场.带电粒子在这些复合场中运动时,必须同时考虑电场力、洛仑兹力和重力的作用或其中某两种力的作用,因此对粒子的运动形式的分析就显得极为重要.二、带电粒子在复合场电运动的基本分析1.当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止.2.当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动.3.当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动.4.当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理.三、电场力和洛仑兹力的比较1.在电场中的电荷,不管其运动与否,均受到电场力的作用;而磁场仅仅对运动着的、且速度与磁场方向不平行的电荷有洛仑兹力的作用.2.电场力的大小F=Eq,与电荷的运动的速度无关;而洛仑兹力的大小f=Bqvsinα,与电荷运动的速度大小和方向均有关.3.电场力的方向与电场的方向或相同、或相反;而洛仑兹力的方向始终既和磁场垂直,又和速度方向垂直.4.电场力既可以改变电荷运动的速度大小,也可以改变电荷运动的方向,而洛仑兹力只能改变电荷运动的速度方向,不能改变速度大小5.电场力可以对电荷做功,能改变电荷的动能;洛仑兹力不能对电荷做功,不能改变电荷的动能.6.匀强电场中在电场力的作用下,运动电荷的偏转轨迹为抛物线;匀强磁场中在洛仑兹力的作用下,垂直于磁场方向运动的电荷的偏转轨迹为圆弧.四、对于重力的考虑重力考虑与否分三种情况.1对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应当考虑其重力.2在题目中有明确交待的是否要考虑重力的,这种情况比较正规,也比较简单.3对未知名的带电粒子其重力是否忽略又没有明确时,可采用假设法判断,假设重力计或者不计,结合题给条件得出的结论若与题意相符则假设正确,否则假设错误.五、复合场中的特殊物理模型1.粒子速度选择器2.磁流体发电机3.电磁流量计.4.质谱仪5.回旋加速器1.如图所示,在x轴上方有匀强电场,场强为E;在x轴下方有匀强磁场,磁感应强度为B,方向如图,在x轴上有一点M,离O点距离为L.现有一带电量为十q的粒子,使其从静止开始释放后能经过M点.如果把此粒子放在y轴上,其坐标应满足什么关系重力忽略不计2.如图所示,在宽l的范围内有方向如图的匀强电场,场强为E,一带电粒子以速度v垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射入磁场,它从场区的另一侧射出时,也偏转了θ角,求此磁场的磁感强度B.3.初速为零的离子经过电势差为U的电场加速后,从离子枪T中水平射出,经过一段路程后进入水平放置的两平行金属板MN和PQ之间.离子所经空间存在一磁感强度为B的匀强磁场,如图所示.不考虑重力作用,离子荷质比q/mq、m分别是离子的电量与质量在什么范围内,离子才能打在金属板上4.如图所示,M、N为两块带等量异种电荷的平行金属板,S1、S2为板上正对的小孔,N板右侧有两个宽度均为d的匀强磁场区域,磁感应强度大小均为B,方向分别垂直于纸面向里和向外,磁场区域右侧有一个荧光屏,取屏上与S1、S2共线的O点为原点,向下为正方向建立x轴.板左侧电子枪发射出的热电子经小孔S1进入两板间,电子的质量为m,电荷量为e,初速度可以忽略.求:1当两板间电势差为U0时,求从小孔S2射出的电子的速度v0;2两金属板间电势差U在什么范围内,电子不能穿过磁场区域而打到荧光屏上;3电子打到荧光屏上的位置坐标x和金属板间电势差U的函数关系.5.如图所示为一种获得高能粒子的装置,环形区域内存在垂直纸面向外.大小可调节的均匀磁场,质量为m,电量+q的粒子在环中作半径为R的圆周运动,A、B为两块中心开有小孔的极板,原来电势都为零,每当粒子飞经A板时,A板电势升高为U,B板电势仍保持为零,粒子在两板间电场中得到加速,每当粒子离开B板时,A板电势又降为零,动能不断增大,而绕行半径不变.l设t=0时粒子静止在A板小孔处,在电场作用下加速,并绕行第一圈,求粒子绕行n圈回到A板时获得的总动能E n.2为使粒子始终保持在半径为R的圆轨道上运动,磁场必须周期性递增,求粒子绕行第n圈时的磁感应强度B n.3求粒子绕行n圈所需的总时间t n设极板间距远小于R.4在2图中画出A板电势U与时间t的关系从t=0起画到粒子第四次离开B板时即可. 5在粒子绕行的整个过程中,A板电势是否可始终保持为+U为什么RAB6.如图所示,在直角坐标系的第Ⅱ象限和第Ⅳ象限中的直角三角形区域内,分布着磁感应强度均为B=×10-3T的匀强磁场,方向分别垂直纸面向外和向里.质量为m=×10-27㎏、电荷量为q =+×10-19C的α粒子不计α粒子重力,由静止开始经加速电压为U=1205V的电场图中未画出加速后,从坐标点M-4,2处平行于x轴向右运动,并先后通过两个匀强磁场区域.1请你求出α粒子在磁场中的运动半径;2你在图中画出α粒子从直线x=-4到直线x=4之间的运动轨迹,并在图中标明轨迹与直线x=4交点的坐标;3求出α粒子在两个磁场区域偏转所用的总时间.7.如图所示,竖直平面xOy内存在水平向右的匀强电场,场强大小E=10N/c,在y≥0的区域内q=+、质量还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=一带电量0.2Cm=的小球由长0.4m0.4kgl=的细线悬挂于P点小球可视为质点,现将小球拉至水平位置A无初速释放,小球运动到悬点P正下方的坐标原点O时,悬线突然断裂,此后小球又恰好能通过O点正下方的N点.g=10m/s2,求:1小球运动到O点时的速度大小;2悬线断裂前瞬间拉力的大小;3ON间的距离8.两块平行金属板MN 、PQ 水平放置,两板间距为d 、板长为l ,在紧靠平行板右侧的正三角形区域内存在着垂直纸面的匀强磁场,三角形底边BC 与PQ 在同一水平线上,顶点A 与MN 在同一水平线上,如图所示.一个质量为m 、电量为+q 的粒子沿两板中心线以初速度v 0水平射入,若在两板间加某一恒定电压,粒子离开电场后垂直AB 边从D 点进入磁场,BD=41AB,并垂直AC 边射出不计粒子的重力.求: 1两极板间电压;2三角形区域内磁感应强度;3若两板间不加电压,三角形区域内的磁场方向垂直纸面向外.要使粒子进入磁场区域后能从AB 边射出,试求所加磁场的磁感应强度最小值.9.如图甲所示,竖直挡板MN 左侧空间有方向竖直向上的匀强电场和垂直纸面向里的水平匀强磁场,电场和磁场的范围足够大,电场强度E =40N/C,磁感应强度B 随时间t 变化的关系图象如图乙所示,选定磁场垂直纸面向里为正方向.t =0时刻,一质量m =8×10-4kg 、电荷量q =+2×10-4C 的微粒在O 点具有竖直向下的速度v =0.12m/s,O ´是挡板MN 上一点,直线OO´与挡板MN 垂直,取g =10m/s 2.求:1微粒再次经过直线OO´时与O 点的距离; 2微粒在运动过程中离开直线OO ´的最大高度;3水平移动挡板,使微粒能垂直射到挡板上,挡板与O 点间的距离应满足的条件.M O O ´ v B EO t /s B /T5π 15π 25π 35π 10π 20π 30π10.如图所示,在倾角为30°的斜面OA 的左侧有一竖直档板,其上有一小孔P ,OP=0.5m.现有一质量m =4×10-20kg,带电量q =+2×10-14C 的粒子,从小孔以速度v 0=3×104m/s 水平射向磁感应强度B =、方向垂直纸面向外的一圆形磁场区域.且在飞出磁场区域后能垂直打在OA 面上,粒子重力不计.求:1粒子在磁场中做圆周运动的半径; 2粒子在磁场中运动的时间; 3圆形磁场区域的最小半径;4若磁场区域为正三角形且磁场方向垂直向里,粒子运动过程中始终不碰到挡板,其他条件不变,求:此正三角形磁场区域的最小边长.11.如图所示,在x>0的空间中,存在沿x 轴方向的匀强电场,电场强度E=10N/C ;在x<0的空间中,存在垂直xy 平面方向的匀强磁场,磁感应强度B=.一带负电的粒子比荷q/m=160C/kg,在x=0.06m 处的d 点以8m/s 沿y 轴正方向的初速度v 0开始运动,不计带电粒子的重力.求: 1带电粒子开始运动后第一次到达y 轴时的坐标. 2带电粒子进入磁场后经多长时间会返回电场. 3带电粒子的y 方向分运动的周期. 30OP Av12.如图所示,一绝缘圆环轨道位于竖直平面内,半径为R,空心内径远小于R.以圆环圆心O为原点在环面建立平面直角坐标系xOy,在第四象限加一竖直向下的匀强电场,其他象限加垂直环面向外的匀强磁场.一带电量为+q、质量为m的小球在轨道内从b点由静止释放,小球刚好能顺时针沿圆环轨道做圆周运动.1求匀强电场的电场强度E.2若第二次到达最高点a,小球对轨道恰好无压力,求磁感应强度B.3求小球第三次到达a点时对圆环的压力.13.如图所示的区域中,左边为垂直纸面向里的匀强磁场,磁感应强度为B,右边是一个电场强度大小未知的匀强电场,其方向平行于OC且垂直于磁场方向.一个质量为m,电荷量为-q的带电粒子从P孔以初速度v0沿垂直于磁场方向进入匀强磁场中,初速度方向与边界线的夹角θ=60°,粒子恰好从C孔垂直于OC射入匀强电场,最后打在Q点,已知OQ=2OC,不计粒子的重力,求:1粒子从P运动到Q所用的时间t.2电场强度E的大小.3粒子到达Q点的动能E kQ.14.如图所示,在半径为R的绝缘圆筒内有匀强磁场,方向垂直纸面向里,圆筒正下方有小孔C与平行金属板M、N相通.两板问距离为两板与电动势为E的电源连接,一带电量为一质量为-q、质量为m的带电粒子重力忽略不计,开始时静止于C点正下方紧靠N板的A点,经电场加速后从C点进入磁场,并以最短的时间从C点射出,己知带电粒子与筒壁的碰撞无电荷量的损失,且每次碰撞时间极短,碰后以原速率返回.求:1筒内磁场的磁感应强度大小.2带电粒子从A点出发至第一次回到A点射出所经历的时间.专题二:带电粒子在复合场中的运动——参考答案1 1、解析:由于此带电粒子是从静止开始释放的,要能经过M 点,其起始位置只能在匀强电场区域.物理过程是:静止电荷位于匀强电场区域的y 轴上,受电场力作用而加速,以速度v 进入磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向x 轴偏转.回转半周期过x 轴重新进入电场,在电场中经减速、加速后仍以原速率从距O 点2R 处再次超过x 轴,在磁场回转半周后又从距O点4R 处飞越x 轴如图所示图中电场与磁场均未画出故有L =2R,L =2×2R,L =3×2R 即 R =L /2n,n=1、2、3………………… ①设粒子静止于y 轴正半轴上,和原点距离为h,由能量守恒得mv 2/2=qEh ……② 对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R =mv /qB ………③解①②③式得:h =B 2qL 2/8n 2mE n =l 、2、3……2、解析:粒子在电场中运行的时间t = l /v ;加速度 a =qE /m ;它作类平抛的运动.有tg θ=at/v=qEl/mv 2………①粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv 2/r,所以r=mv/qB 又:sin θ=l/r=lqB/mv ………② 由①②两式得:B=Ecos θ/v3、解析:离子在磁场中做匀速圆周运动,作出两条边界轨迹TP 和TQ,分别作出离子在 T 、P 、Q 三点所受的洛仑兹力,分别延长之后相交于O 1、O 2点,如图所示,O 1和O 2分别是TP 和TQ 的圆心,设 R 1和 R 2分别为相应的半径.离子经电压U 加速,由动能定理得.qU =½mv 2………①由洛仑兹力充当向心力得qvB=mv 2/R ………② 由①②式得q/m=2U/B 2R 2由图直角三角形O 1CP 和O 2CQ 可得 R 12=d 2+R 1一d/22,R 1=5d/4……④ R 22=2d 2+R 2一d/22,R 2=17d/4……⑤依题意R 1≤R ≤R 2 ……⑥ 由③④⑤⑥可解得2228932d B U ≤m q ≤222532d B U.24、解析:1根据动能定理,得20012eU mv =解得002eU v m =2欲使电子不能穿过磁场区域而打在荧光屏上,应有mv r d eB=<而212eU mv =由此即可解得222d eB U m <HPBv45°打在荧光屏上的位置坐标为x,则由轨迹图可得2222x r r d =-- 注意到mv r eB=和212eU mv =所以,电子打到荧光屏上的位置坐标x 和金属板间电势差U 的函数关系为222222(22)()2d eB x emU emU d e B U eB m =--≥35、解析:1E n =nqv2∵nqU=½mv 2n∴v n =m nqU2 Rmv n 2=qv n B n B n =mv n /qR以v n 结果代入,B n =qR m m nqU 2=R 1qnmv2 3绕行第n 圈需时n v R π2=2πR qv m 2n 1 ∴t n =2πR qv m 21+21+31+……+n14如图所示,对图的要求:越来越近的等幅脉冲5不可以,因为这样粒子在A 、B 之间飞行时电场对其做功+qv,使之加速,在A 、B 之外飞行时电场又对其做功-qv 使之减速,粒子绕行一周,电场对其作的总功为零,能量不会增大; 6、解析:1粒子在电场中被加速,由动能定理得 221mv qU =α粒子在磁场中偏转,则牛顿第二定律得rv m qvB 2=联立解得2102.312051064.62005.01211927=⨯⨯⨯⨯==--q mU B r m 2由几何关系可得,α粒子恰好垂直穿过分界线,故正确图象为3带电粒子在磁场中的运动周期qBmv r T ππ22==O M 2 -22-4 4 x /my /m -2 vB B4,2-α粒子在两个磁场中分别偏转的弧度为4π,在磁场中的运动总时间 631927105.6105102.321064.614.3241----⨯=⨯⨯⨯⨯⨯⨯===qB m T t πs 47、解:1小球从A 运到O 的过程中,根据动能定理:212mv mgl qEl =- ① 则得小球在O 点速度为:2/s v m == ② 2小球运到O 点绳子断裂前瞬间,对小球应用牛顿第二定律:2v F T mg f m l=-==向洛 ③f Bvq =洛 ④由③、④得:28.2mv T mg Bvq N l=++= ⑤ 3绳断后,小球水平方向加速度25/s x F Eq a m m===电 ⑥ 小球从O 点运动至N 点所用时间0.8t s aυ∆== ⑦ON 间距离21 3.2m 2h gt == ⑧8、 解:⑴垂直AB 边进入磁场,由几何知识得:粒子离开电场时偏转角为30°∵0.v lmd qu v y =0v v tg y=θ ∴qlmdv u 332= 由几何关系得:030cos dl AB = 在磁场中运动半径d l r AB 23431== ∴ 121r mv qv B = ︒=30cos 0v v∴qdmv B 3401=方向垂直纸面向里 ⑶当粒子刚好与BC 边相切时,磁感应强度最小,由几何知识知粒子的运动半径r 2为:42d r = ……… 2分 2202r mv qv B = ∴qd mv B 024=即:磁感应强度的最小值为qdmv 049、解:1由题意可知,微粒所受的重力 G =mg =8×10-3N电场力大小F =Eq =8×10-3N因此重力与电场力平衡微粒先在洛伦兹力作用下做匀速圆周运动,则2v qvB m R=解得 R =mvBq=0.6m 由 2RT vπ=解得T =10πs则微粒在5πs 内转过半个圆周,再次经直线OO´时与O 点的距离 l = 2R =1.2m2微粒运动半周后向上匀速运动,运动的时间为t =5πs,轨迹如图所示,位移大小 s =vt =πm=1.88m因此,微粒离开直线OO´的最大高度 h =s +R =2.48m3若微粒能垂直射到挡板上的某点P ,P 点在直线OO ´下方时,由图象可知,挡板MN 与O 点间的距离应满足L =+m n =0,1,2…若微粒能垂直射到挡板上的某点P ,P 点在直线OO ´上方时,由图象可知,挡板MN 与O 点间的距离应满足 L =+ m n =0,1,2…若两式合写成 L =+ m n =0,1,2…同样给分 510、解:1由r v m qvB 2=,vrT π2=得:m qBmvr 3.0==2画出粒子的运动轨迹如图,可知T t 65=,得:s s qB m t 551023.5103535--⨯=⨯==ππ 3由数学知识可得:︒︒+=30cos 30cos 2r r L 得:m qB mv L 99.010334)134(=+=+=11.1y=0.069m2t=3T== 12.12313.12314.12。

论点的复合运动中动点、动系的选择原则和方法

论点的复合运动中动点、动系的选择原则和方法

论点的复合运动中动点、动系的选择原则和方法1引言理论力学是机械、土木类专业的专业基础课。

包括静力学、运动学和动力学三大部分。

运动学是从几何角度研究物体运动轨迹、运动方程、速度和加速度,而不考虑引起物体运动的物理原因。

其中点的合成运动是运动学的重点内容。

此部分内容题目多样,解题方法灵活,并且具有趣味性,完成一道题目时很有成就感。

当然也是让学生感到没有思路、无从下手的部分,普遍反映难度较大,也是测验、考核过程中丢分比较多的部分,问题的关键是无法正确的选取动点和动系。

本文从典型例题出发,介绍了点的合成运动中动点和动系的选取原则,可以帮助学生理清思路,提高点的合成运动的解题能力。

2点的合成运动概述在日常生活中,会经常遇到这样的情况。

当我们站在不同的参考物上,观察同一个物体的运动,发现物体所呈现的运动形式是不一样的。

举个最常见的例子,如图1。

人站在一辆沿直线匀速行驶的公共汽车上,以地面为参考物,观察人的运动,人在作匀速直线运动。

而以公共汽车为参考物,则人静止的。

可见,人的运动形式依选取的参考物不同而不同。

再引申一个例子,如图2。

沿直线轨道滚动的车轮,研究其轮缘上任意一点M的运动。

对于地面来说,点M的轨迹是旋轮线,而对于车厢来说,点M的轨迹则是一个圆。

车轮上的点M是沿旋轮线运动,是一种比较复杂复杂的运动形式,但是以车厢作为参考体,则点M相对于车厢的运动是简单的定轴转动,车厢相对于地面的运动是简单的平移。

轮缘上一点M的运动就可以看成为两个简单运动的合成,即点M相对于车厢作圆周运动,同时车厢相对地面作平移。

于是得到了合成运动的定义,即相对于某一参考体的运动可由相对于其他参考体的几个运动组合而成,称这种运动为合成运动。

3一点二系三运动研究点的合成运动,确定一个动点,选择定参考系和动参考系两个坐标系,分析动点的绝对运动、相对运动和牵连运动是首要任务。

3.1两个参考坐标系研究点的合成运动,总要涉及两个参考坐标系。

(1)定参考系建立在固定参考物上的坐标系,简称定系。

理论力学第七篇_复合运动

理论力学第七篇_复合运动

例: 刨床急回机构。曲柄长OA r , 两轴间
距杆的oo角1 速 度l 。w求1 。当曲柄在水平位置时摇
wo
w1
o1
步 骤:








va ve vr
wo
y 解:动点:滑块A;
va B
动系:固连在摇杆O1B上;
vr
ve A
绝对运动:圆周运动;
相对运动:直线运动;
牵连运动:转动。
va ve vr
t0 t
t0 t
t0 t
aa
lim
t 0
va ' va t
ar
lim vr
t 0
' vr1 t
ae
lim
t 0
ve1 ve t
lim vr ' vr lim vr ' vr1 vr1 vr
t0 t
t 0
t
ar
lim vr1 vr t0 t
ar w vr
lim ve ' ve lim ve ' ve1 ve1 ve
牵连运动:平动
aa ae ar
arn
vr2 R
vr
ve
sin
v
sin
arn
1 R
v2
sin2
aa ae ar arn
vr
va
ve
aa sin ae cos arn
aa
1
sin
a
cos
v2
R sin2
actg
v2
R sin3
例2 已知曲柄转动的匀角速度为w, OAr,
OO1 =l, 求当OA处于水平时摇杆O1B的 加速度

第3章 复合运动—习题

第3章 复合运动—习题

第3章 复合运动——习题3-1 图示半圆形凸轮以匀速v 向左平移,凸轮的半径为r ,杆OA 的长度也为r ,且杆OA 的A 端与凸轮的轮廓线保持接触,O 、B 两点连线为水平直线,试求图示位置杆OA 的角速度。

3-2 在图示平面机构中,O 1A = O 2B = O 1O 2 = AB = l ,C 为杆AB 的中点,l OE 332=,杆OE 以匀角速度绕轴O 作逆时针转动,试求图示瞬时杆O 1A 的角速度。

3-3 在图示平面机构中,直角弯杆OAB 以匀角速度ω绕轴O 作顺时针转动,OA = DE = l ,试求图示瞬时杆DE 绕轴E 转动的角速度。

题3-1图题3-3图题3-4图题3-2图3-4 在图示平面系统中,半径为r ,偏心距OD = r /2 的凸轮以匀角速度0ω绕轴O 作顺时针转动,轴O 在杆AB 的正下方,试求图示位置杆AB 运动的速度。

3-5 在图示平面系统中,长度为l = 2r 的杆OA 以匀角速度0ω绕轴O 作逆时针转动,通过杆A 端与半径为r 的圆盘B 的盘缘接触,从而带动圆盘B 在水平地面上作纯滚动,试求图示瞬时(杆OA 处于水平位置)圆盘B 的角速度。

3-6 在图示平面机构中,O 1A = O 2B = l ,AB = 2l ,杆O 1A 以匀角速度0ω绕轴O 1作逆时针转动。

在图示位置套筒D 恰好位于杆AB 的中点,试求该位置杆DE 沿水平滑道运动的速度。

题3-6图题3-7图题3-8图题3-5图3-7 图示系统处于铅垂平面内,倾角为30°的三角块在水平地面上以匀速度v 向左运动,以推动半径为r 的圆盘A 在铅垂墙面上运动。

试在以下两种情况下分别求圆盘的角速度:(1) 圆盘相对于墙面作纯滚动;(2) 圆盘相对于三角块作纯滚动。

3-8 在图示平面系统中,杆OD 以匀角速度0ω绕轴O 作逆时针转动,滑块B 以匀速0v 水平向右运动,AB = l ,试求图示位置杆AB 的角速度。

点的合成运动

点的合成运动
第八章
点的合成运动
在此之前,我们研究点的运动时,都是相对于某 一个参考系(定系)而言。但在有些问题中,往往需 要同时在两个不同的参考系中来描述同一点的运动, 而其中一个参考系相对于另一参考系也在运动。
为此,引入动点,动系,定系。并研究同一动点 相对 于两个不同参考系的运动之间的关系。
2013年8月6日
计算有何影响?
2013年8月6日
理论力学CAI
20
选择方法一
动系
动点
2013年8月6日
理论力学CAI
21
选择方法二
动系
动点
2013年8月6日
理论力学CAI
22
动点、动系和定系的选择原则
1. 动点是个确定的点。
2. 动点与动系必须分别选在两个不同的物体上,动点
与动系间有相对运动。
3. 动点相对动系的相对运动轨迹易于直观判断。
例题
已知:AB匀角速度转动。 求:M在导槽EF及BC中运动的速度与加速度。
E
B
C M

A
l F D
2013年8月6日
理论力学CAI
35
y
vB
B
ve
M
E
vM
C
速度分析:
x 动点—M点 动系—BC杆

A
vr
D
l

F
ve = vB = l
v M = ve v r
y : vM = ve sin = l sin x : 0 = vr ve cos
相对轨迹,相对速度vr,相对加速度ar。
2013年8月6日 理论力学CAI
7
牵连运动(entangled motion) :

2022届高三物理二轮专题:带电粒子在复合场中的运动 课件

2022届高三物理二轮专题:带电粒子在复合场中的运动 课件

A.该带电粒子是带正电荷的粒子
B.动能增加,重力势能增加,电势能减少
C.动能不变,重力势能增加,电势能减少
D.动能减少,重力势能增加,电势能增加
考向一
例2
带电粒子在复合场中的匀变速运动
(2019·全国卷Ⅲ·24)空间存在一方向竖直向下的匀强电场,O、P是
电场中的两点.从O点沿水平方向以不同速度先后发射两个质量均为m的
重力加速度g=10 m/s2,问:
(1)油滴在第三象限运动时受到的重力、电场力、
洛伦兹力三力的大小之比,并指出油滴带何种电荷;
(2)油滴在P 点获得的初速度大小;
F
qE
(3)油滴在第一象限运动的时间。
mg
考向三
带电粒子在复合场中的多过程运动
A
×
× ×
×
× ×
C
×
× ×
N
F
qE
mg
考向三 带电粒子在复合场中的多过程运动
小球在y轴右侧匀强电场中受到的合力方向由
A点指向O点,则qE1=mg
q 20
解得m= 9 C/kg
1 2
由 A 到 O 过程中,由动能定理得 mgy1+qE1x1=2mv -0
解得v=4 m/s
qE
mg
(2)小球第二次穿过y轴时的纵坐标;
解析
小球在y轴左侧时,有qE2=mg
故小球做匀速圆周运动,其轨迹如图所示,
2mg=ma
qE
y
F合
v
mg
x
2 2
可得 t2= 5 s
故小球从 O 点到第三次穿过 y 轴所经历的时间


2
2

t=t1+t2= +
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y
B
A
x
O
C

arn
ae
C
动点:C 动系:Axy固连在AB杆上
O a C
art
2018/12/19
32
第1节 点的复合运动

例6
一曲柄摇臂机构中,曲柄
OA以 0作等角速度转动,滑 套C可沿DB滑动,短杆AC则 与 C 固连且垂直于滑套。求 图示位置时,DB的角速度和
0
O
A
B
C
角加速度。已知 OA=AC=l,

2018/12/19
5
第1节 点的复合运动
设Oxyz(动系)相对O0XYZ(定系)的运动已知,P点(动 点)在空间中运动。定义: 相对运动 — 动点对于动系的运动
复合运动或绝对运动 — 动点对于定系的运动 牵连运动 — 动系对于定系的刚体运动 z 可见,绝对运动和相对运动是点 P 的运动,牵连运动是刚体的运动。
C
选C为动点。
aC
0
O
A
ak
ar
C
aen
aet
D
D
v A ωAC rAC vC ve vr
2 aA εAC rAC AC rAC aC ae ar ak
r A(t ) ρ
P
z
Z
R
Z
y
r
O
Y
r A ρ Aρ AA r A ρ
T
dr ω r + dr dt dt
O0
X
RO
X
x
Y
矢量的绝对导数等于它的相对导数加上动系的 角速度叉乘该矢量。
2018/12/19 10
第1节 点的复合运动
速度合成公式
R RO r
dr d r v ω r v vO O dt dt
2018/12/19
24
第1节 点的复合运动

加速度合成公式 a ae ar ac
v v O ω r dr dt
科氏加速度
a aO ε r ω dr d dr dt dt dt
2 d r d r d aO ε r ω ( ω r ) ω r dt dt dt 2

讨论与总结


利用速度合成定理,可以避免列写运动方程及 求导,多用于求特定瞬时(位置)的速度。 进行运动分解时,动点、动系的选择:

动点、动系应选在不同刚体上 动点的相对轨迹应尽量简单或直观

在平面问题中,速度合成定理的几何表达是速 度平行四边形,解析表达式是两个投影方程, 可以解两个未知数。
Z z
R
P
r
O x
y
v ve vr
dr vr 是P点的相对速度 dt
RO
O0
X
Y
ve vO ω r是P点的牵连速度
2018/12/19 11
第1节 点的复合运动
怎么理解速度合成公式呢?
v ve vr
ve vO ω r
牵连速度ve是动参考系(刚体)上与点P重合的点 (称为牵连点)的瞬时速度。 牵连速度 ve可以看成是在该瞬时将 P点固连在动参 考刚体上,跟随动参考刚体一起运动时所具有的 速度,即受刚体的拖带或牵连而产生的速度。
e sin t R cos t
R cos e2 R2
O
C t

OCA π 2
t 时,
e R
2 2
e sin e2 R2
R
e t
vAB x e R2 e2 / R
2018/12/19
23
第1节 点的复合运动
ve vA θ vr C x O
相对速度 vr: vr=?,方向已知。
牵连速度 ve: ve=?,方向已知。
B
o A
vBC ve vA sin ωl sin 30 1 l 2
D y
2018/12/19
18
第1节 点的复合运动

例3 凸轮顶杆机构如图,已知 R, , OC e OCA 90 求 时,AB杆的速度。
2018/12/19 28
第1节 点的复合运动

例5 凸轮顶杆机构如图,已知 R, , OC e OCA 90 求 时,AB杆的加速度。
B
A
C
O

2018/12/19
29
第1节 点的复合运动
根据例3,选A为动点,动系Oxy与偏心轮固连 2 2 B e R e 2 2 vA R e , vr R R vr aA art 加速度分析: x ak A a aA , ae , arn , art , ak 的方向如图。 rn
1. 选择动点与动系
动点:曲柄上的A点
O B o θ A C
动系:连杆上oxy
2. 分析运动和速度

绝对运动-以O为圆心 l为半径的等 速圆周运动。 相对运动-沿BC方向的直线运动。
D ´ 2018/12/19 y
牵连运动-铅垂方向的平移
17
第1节 点的复合运动
2、分析运动和速度
绝对速度 vA:vA=ωl,方向已知。
注1:类似于复合函数概念 注2:动系和定系是相对的,在 运动学中可以任意选取。
2018/12/19 6
Z
y
O
Y
Z
R
r
RO
X
x
Y
O0
X
第1节 点的复合运动
点的绝对(复合)运动是由点的相对运动和动坐 标系的牵连运动合成而得。
2018/12/19 7
第1节 点的复合运动
2018/12/19
8
第1节 点的复合运动
ae aO ω r ω (ω r )
a ae ar ac
动系平动: ae aO 动系定轴转动:
ac 0
ae ω r 2r aet aen
动系以常角速度定轴转动: ae 2r aen 相对运动轨迹为曲线: ar art arn
y
P

e2
e1
O

M
x
2018/12/19
26
第1节 点的复合考系
v r e1
a r e1
2
y
v e e 2
a e e1 e 2
a c 2 k v r 2 e 2
e2
o
e1
aet v vr e ar aen
P O
2018/12/19
vr X
va ve vr
v e j v r i R j ui
P
15
第1节 点的复合运动
例2 在正弦机构中,曲柄OA=l,角速度,=30o 求连杆BCD的速度。
O
θ
A C
B
D
2018/12/19 16
第1节 点的复合运动
已知曲柄(刚体,主动件)运动,求连杆(刚体,被动件) 的运动。
第3章 复合运动
3.1 点的复合运动
第1节 点的复合运动
在地球参考系与太阳参考系中行星的运动 最早的天文学理论:托勒密(90-168,埃及)提出 地心说,基本可以解释人们观察到的天体运动规律。
十五世纪下半叶,航海迅 速发展,需要天文学知识 判定方向。天文观测精度 不断提高。发现行星“逆 行”现象。
2018/12/19
3
第1节 点的复合运动


“地心说”牵强解释 “逆行”,在圆上再 套一个甚至套几个圆 “日心说”合理解释 “逆行”
2018/12/19
4
第1节 点的复合运动

以地球为参考系,行星的运动很复杂。 以太阳为参考系,行星的运动很简单。 相对不同参考系,描述运动难易不同。 从运动学角度,应寻找合适的参考系使描 述运动简单;从动力学角度,牛顿定律仅 在惯性系中成立。因此,我们需要研究相 对不同参考系的运动之间的关系。
2 0
2 BD
ak
ar
A
aet
O
B C
aA
aen
将上式向ac方向投影得:
2 2 0 l cos 600 BD (2l ) cos 600 BD (2l ) cos300 2 BD vr BD 30 / 12
D
2018/12/19
35
讨论
vC
0
O A ve
vr
cos R R 2 e2
B
ak
aa art
A
vr
x
C
aA cos ae cos arn ak
4 e aA 4 R
y
ae
arn
R e
2 2
2
o
类似于速度分析中,可以选不同动点动系。
2018/12/19 31
讨论
B
aA ae
A
art arn
y x
动点:A 动系:Cxy,平动系
ae OA 2 R 2 e 2 2
v (R e ) 2 a rn 3 R R R2 e2 2 ak 2 R
2 r 2 2 2
2018/12/19 30
y
ae
o
C
第1节 点的复合运动
加速度合成定理
a A ae ar ak
向y轴投影
A
x y
B
vA
ve
O vr C

2018/12/19
相关文档
最新文档