高等数学课件:2007_11_16复习(上)中值,极限,导数
《高数》数列极限课件PPT

定义与其他概念的关系
极限与连续性的关系
函数的连续性是指在某一点处的极限 值等于该点的函数值,因此,函数的 连续性可以看作是极限的一种特殊情 况。
极限与可导性的关系
极限与积分的关系
积分是研究面积和体积的重要工具, 而积分的计算需要用到极限的概念。
可导性是指函数在某一点处的切线斜 率存在,而这个切线斜率可以通过函 数在该点的极限值来定义。
数列极限与其他数学概念的关系
数列极限与函数极限的关 系
函数极限是数列极限的一个特例,即当自变 量n趋于无穷大时,函数值趋于一个常数, 这个常数就是函数的极限值。函数极限和数 列极限有许多共同的性质和定理,如单侧极 限、连续性等。
数列极限与微积分学
微积分学中的许多概念都与数列极限有关, 如导数、定积分等。通过数列极限,我们可 以更好地理解这些概念的本质和性质。同时 ,微积分学中的许多问题也需要借助数列极
04
数列极限的应用
在数学分析中的应用
极限是数学分析的基本概念之一,数列极限在数学分析中有 着广泛的应用。通过研究数列极限,可以更好地理解函数的 变化趋势、导数和积分的定义和性质等。
数列极限在证明一些数学定理和推导数学公式中也有着重要 的作用。例如,利用数列极限可以证明实数的完备性定理、 级数收敛的判别法等。
数列极限的几何解释
数列极限的几何解释是通过图形直观 地理解数列收敛和发散的概念。在平 面坐标系中,我们可以绘制数列的图 像,通过观察图像的变化趋势来理解 数列的收敛性和发散性。
收敛数列的图像会趋近于一个固定的 点,而发散数列的图像则会远离这个 点。通过比较不同数列的图像,我们 可以更好地理解数列极限的性质和特 点。
闭区间套定理
总结词
闭区间套定理是数列极限存在的一个充分条件,它表明如果一个数列的项构成一个闭区 间套,则该数列收敛。
《高等数学极限》课件

THANK YOU
无穷级数与无穷积分的收敛性
总结词
收敛性是无穷级数和无穷积分最重要的性质之一,它 表示无穷级数或无穷积分的和是有限的。收敛性的判 定是高等数学中的一个重要问题,需要用到多种数学 方法和技巧。
详细描述
收敛性是无穷级数和无穷积分最重要的性质之一,它 表示无穷级数或无穷积分的和是有限的。如果一个无 穷级数或无穷积分是收敛的,那么它的和就是有限的 ,否则就是发散的。收敛性的判定是高等数学中的一 个重要问题,需要用到多种数学方法和技巧,如比较 判别法、柯西判别法、阿贝尔判别法等。对于不同的 级数和积分,需要采用不同的方法和技巧进行收敛性 的判定。
03
导数与连续性
导数的定义与性质
导数的定义
导数是函数在某一点的变化率的极限 ,表示函数在该点的切线斜率。
导数的性质
导数具有线性、可加性、可乘性和链 式法则等性质,这些性质在研究函数 的单调性、极值和曲线的几何特性等 方面具有重要应用。
导数的计算方法
基本初等函数的导数
对于常数、幂函数、指数函数、三角函数和反三角函 数等基本初等函数,需要熟记其导数公式。
限的。
无穷积分的定义与性质
总结词
无穷积分是数学中另一个重要的概念,它是由无穷多个 定积分的和组成的积分。无穷积分具有一些重要的性质 ,如可加性、可乘性和可微性等。
详细描述
无穷积分是由无穷多个定积分的和组成的积分,这些定 积分可以是积分限不同的积分。无穷积分在数学中也有 着广泛的应用,如求解面积、体积和曲线长度等。无穷 积分具有一些重要的性质,如可加性、可乘性和可微性 等。其中,可加性表示无穷积分可以拆分成若干个部分 的和,可乘性和可微性则表示无穷积分可以与函数进行 运算和求导。
高等数学完整全套教学课件

高等数学完整全套教学课件一、教学内容1. 极限与连续数列极限的定义及性质函数极限的定义及性质无穷小、无穷大的概念极限的运算法则函数在一点处的连续性定义函数在区间上的连续性2. 导数与微分导数的定义及几何意义基本导数公式高阶导数微分的定义及运算法则隐函数、参数方程函数求导3. 微分中值定理与导数的应用罗尔定理、拉格朗日中值定理柯西中值定理洛必达法则泰勒公式函数的单调性、凹凸性、极值和最值二、教学目标1. 掌握极限、导数、微分等基本概念及其性质、运算法则。
2. 能够运用微分中值定理解决实际问题,分析函数的性质。
3. 培养学生的抽象思维能力、逻辑推理能力和数学建模能力。
三、教学难点与重点1. 教学难点:极限、导数、微分等概念的理解;微分中值定理的应用。
2. 教学重点:极限、导数、微分的基本性质和运算法则;函数的单调性、凹凸性、极值和最值的求解。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:教材、笔记本、文具。
五、教学过程1. 实践情景引入通过实际案例,如物体的运动轨迹、温度变化等,引出极限、导数、微分等概念。
2. 例题讲解选取具有代表性的例题,详细讲解极限、导数、微分的基本性质和运算法则。
结合图形,解释函数的单调性、凹凸性、极值和最值的概念。
3. 随堂练习布置与例题难度相当的练习题,让学生巩固所学知识。
对学生进行个别辅导,解答疑问。
4. 课堂小结六、板书设计1. 极限、导数、微分的基本概念及性质。
2. 极限、导数、微分的运算法则。
3. 微分中值定理及其应用。
4. 函数的单调性、凹凸性、极值和最值。
七、作业设计1. 作业题目求下列函数的极限、导数、微分。
判断下列函数的单调性、凹凸性,并求极值、最值。
2. 答案详细的解答过程和答案。
八、课后反思及拓展延伸2. 拓展延伸:引导学生研究更高级的微积分概念,如泰勒级数、场论等。
鼓励学生参加数学竞赛、数学建模等活动,提高数学素养。
重点和难点解析1. 教学内容的布局与组织2. 教学目标的设定3. 教学难点与重点的识别4. 教学过程的实践情景引入5. 例题讲解的深度和广度6. 板书设计的清晰度与逻辑性7. 作业设计的针对性与答案的详细性8. 课后反思与拓展延伸的实际效果详细补充和说明:一、教学内容的布局与组织教学内容应遵循由浅入深、循序渐进的原则。
高等数学(微积分)ppt课件

曲线的凹凸性与拐点
凹凸性
若函数f(x)在区间I上二阶可导,且 f''(x)>0(或<0),则称曲线y=f(x)在 I上是凹的(或凸的)。
拐点
拐点的判定
若函数f(x)在点x0处二阶可导,且 f''(x0)=0,则可通过三阶导数f'''(x0) 的符号来判断点(x0,f(x0))是否为曲线 的拐点。
THANKS
感谢观看
非线性微分方程
通过变量替换、积分等方法求解,或 利用数值方法近似求解
级数的概念与性质
级数的定义 无穷序列的部分和序列
级数的性质 加法、减法、乘法、除法、重排等性
质
级数的收敛与发散 部分和序列有极限则级数收敛,否则 发散
常见级数及其敛散性 等差级数、等比级数、调和级数、交 错级数等,通过比较法、比值法、根 值法等方法判断其敛散性
VS
极限的性质
唯一性、局部有界性、保号性、保不等式 性、迫敛性等。
极限的运算法则
极限的四则运算法则
若两个函数的极限存在,则它们的和、差、积、商(分母不为零)的极限也存在,且等于这两 个函数极限的和、差、积、商。
复合函数的极限运算法则
设函数$y=f[g(x)]$是由函数$u=g(x)$与函数$y=f(u)$复合而成,若$lim_{x
无穷小量的定义
如果函数$f(x)$当$x to x_0$(或$x to infty$)时的极限为零,那么称函数$f(x)$为当$x to x_0$(或$x to infty$)时 的无穷小量。
高等数学课件完整

要点二
二重积分的性质
二重积分具有一些基本性质,如线性性、可加性、保号性 等。这些性质在求解二重积分时非常有用。
07 无穷级数
常数项级数的概念与性质
常数项级数的定义
由一系列常数按照一定顺序排列并加上正负号组 成的无穷序列。
收敛与发散
常数项级数可能收敛于一个有限值,也可能发散 至无穷大或不存在。
级数的基本性质
特点
高等数学具有抽象性、严谨性和 应用广泛性等特点,需要学生具 备较强的逻辑思维能力和数学基 础。
高等数学的重要性
培养逻辑思维能力
高等数学的学习有助于培养学生的逻辑思维能力,提高学生的数学 素养和解决问题的能力。
为后续课程打下基础
高等数学是许多后续课程的基础,如物理学、工程学、经济学等, 掌握高等数学有助于学生更好地理解和应用这些学科的知识。
不定积分的性质
不定积分具有线性性、 可加性、常数倍性等基 本性质,这些性质在求 解积分时非常有用。
基本积分公式
掌握基本积分公式是求 解不定积分的基础,如 幂函数、指数函数、三 角函数等的基本积分公 式。
定积分的概念与性质
定积分的定义
定积分是积分学中的另一个重 要概念,它表示函数在某个区
间上的积分值。定积分记为 ∫[a,b]f(x)dx,其中a和b是积
函数的性质
函数具有有界性、单调性、奇偶性、周 期性等重要性质,这些性质对于研究函 数的图像和变化规律具有重要意义。
极限的概念与性质
1 2 3
极限的定义
极限是描述函数在某一点或无穷远处的变化趋势 的重要工具,它可以通过不同的方式定义,如数 列极限、函数极限等。
极限的性质
极限具有唯一性、有界性、保号性、四则运算法 则等重要性质,这些性质对于求解极限问题和证 明极限定理具有重要作用。
高数知识点总结PPT课件

时,为右导数 时,为左导数
可微
第9页/共33页
第
二
章
导数 与 微分
• 应用:
(1) 利用导数定义解决的问题 求分段函数在分界点处的导数 由导数定义证明一些命题
(2) 用导数定义求极限 (3) 求曲线的切线与法线 (4) 微分在近似计算与误差估计中的应用
第10页/共33页
第
二
章
导数 与 微分
二、导数和微分的求法
第
一
章
函数 与 极限
一、函数
1. 特性 有界性, 单调性, 奇偶性, 周期性 2. 反函数 3. 复合函数 4. 初等函数
第1页/共33页
第
一
章
函数 与 极限
二、 极限
1. 极限定义的等价形式
(以 x x0为例 )
" "
(即 f ( x) A为无穷小)
有
第2页/共33页
第
一
章
函数 与 极限
2. 极限存在准则及极限运算法则
3. 无穷小
无穷小的Байду номын сангаас质; 无穷小的比较 ;
常用等价无穷小:
sin x ~ x,
1 cos x ~ 1 x2, 2
arcsin x ~ x,
ex 1 ~ x,
(1 x) 1 ~ x.
第3页/共33页
第
一
章
函数 与 极限
4. 两个重要极限
或 注: 代表相同的表达式
第4页/共33页
3. 有关中值问题的解题方 法 利用逆向思维,设辅助函数. 一
般解题方法: (1) 证明含一个中值的等式或根的存在,多 用罗尔定理,可用原函数法找辅助函数. (2) 若结论中涉及含中值的两个不同函 数,可考虑用柯西中值定理 .
《高等数学(上册)》课件 第三章

高等数学
01 中值定理与洛 必达法那么
02 函数的单调性、 极值与最值
03 函数图形的描绘
例7
求
ln x
lim
x
xn
(n 0).
解 此题属于“ ”型未定式,应用洛必达法则有
1
xl im ln xnxxl im nxxn1
1 lim
xnxn
0
高等数学
01 中值定理与洛 必达法那么
02 函数的单调性、 极值与最值
高等数学
01 中值定理与洛 必达法那么
02 函数的单调性、 极值与最值
03 函数图形的描绘
在使用洛必达法则时,应注意如下几点:
0
0
lim f ( x ) g ( x )
lim f ( x ) g (x)
高等数学
01 中值定理与洛 必达法那么
02 函数的单调性、 极值与最值
03 函数图形的描绘
高等数学
推论2 如果对(a,b)内的任意x,均有f ’(x)= g ’(x) ,那么 在(a,b)内f(x)与g(x)之间只差一个常数,即f(x)= g(x) +C〔 C 为 常数〕.
高等数学
01 中值定理与洛 必达法那么
02 函数的单调性、 极值与最值
03 函数图形的描绘
高等数学
01 中值定理与洛 必达法那么
02 函数的单调性、 极值与最值
03 函数图形的描绘
例1 函数f(x)=1-x2在区间[-1,2]上是否满足拉格朗日 中值定理条件?假设满足,找出点.
解 函数f(x)=1-x2在区间[-1,2]上连续,在(-1,2)上可
导,因此,满足拉格朗日定理的条件,即至少存在一点
ξ ,使
《高等数学导数》课件

答案
2. 求下列函数的极值:
$f'(x) = 3x^2 - 6x + 2$,极值点为 $x=1 pm sqrt{2}$,极大值为 $f(1+sqrt{2}) = 1 + 2sqrt{2}$,极小值为 $f(1-sqrt{2}) = 1 - 2sqrt{2}$。
$f'(x) = ln x + 1$,极值点为 $x=1$,极大值为 $f(1) = 0$。
《高等数学导数》ppt 课件
contents
目录
• 导数的基本概念 • 导数的计算 • 导数的应用 • 导数的扩展 • 习题与答案
CHAPTER 01
导数的基本概念
导数的定义
总结词
导数是函数在某一点的变化率,表示 函数在该点的切线斜率。
详细描述
导数定义为函数在某一点附近取得的 最小变化率,即函数在这一点处的切 线斜率。导数的计算公式为lim(x→0) [f(x+h) - f(x)] / h,其中h趋于0。
2. 求下列函数的极值:
01
03 02
习题
$f(x) = frac{1}{x}$
$f(x) = e^x$
答案
01
1. 求下列函数的导数:
02
$y' = 2x + 2$
03
$y' = -frac{1}{x^2}$
答案
• $y' = \sin x + x \cdot \cos x$
答案
• $y' = e^x$
总结词
导数的四则运算在解决实际问题中具 有广泛的应用,例如在经济学、物理
学和工程学等领域。
详细描述
导数的四则运算法则是基于极限理论 推导出来的,通过这些法则,可以方 便地求出复杂函数的导数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.
1.
1.
1.
2 x (6)已知F lim t f ( x ) f ( x) sin , t t t
2
f ( x) , 求dF.
8.
设f ( x)在 1,1上具有二阶连续导数 且f ( x) 0.试证: (1)x 1,1( x 0), 唯一 1,1 f ( x) f (0) xf (x) 1 ( 2) lim x 0 2 1 提示:f ( x) f (0) f (0) x f ( ). 2 相减后利用二阶导数的定义
复习(上)
(中值,极限,导数)
1.
2. 设在[1,)上 f ( x) 0, 且 f (1) 2, f (1) 3,
证明在 (1,) 内 f ( x) 0 有且仅有一个实根 .
3.
(a)
(a, b), 使f() g()
(b)
4. 设f ( x)在a, b上可微,且f ( x)在a, b 内递增,
e , 求y.( f ( y ) 1)
y
(2) y xe y 1, 求y(0).
x e 2t 1 dy d 2 y (3) ,求 , 2 . 3 dx dx y t 1
(4) y ( x 1) ln( 2 x 1), 求y
2 (8 )
(1).
(1)设f ( x)在a, b上可微,且f ( x) 严格 试证:当a x b时,有 f ( x) f (a) f (b) f (a) xa ba
(2) .证明不等式: x 1时,
(1 x)ln(1 x) 1 x
2
1.
2.
1.
1.
1.
和二阶导数的连续性
9. 设x 0,证明:
1 x 1 x (0 1) 2 x ( x)
1 1 并且 lim ( x) ,lim ( x) x 0 4 x 2 1 1 提示: ( x) ( x( x 1) x) 4 2
10.不等式
又f (a ) f (b) A(常数)。证明对x a, b ,
恒有f ( x) A
5. 设f ( x)在0,1上连续,且f ( x)在0,1内可微,
f (0) 0, 且x (0,1)有 f ( x) f ( x)
求证:在0,1上f ( x) 0
6. 求极限
(1) lim
n 1 (n e n ) n
(2) lim
x arcsin x x sin 3x
2
x 0
(3) lex
xx x (4) lim x 11 ln x x
(5) lim
cos x cos x sin 2 x
x0
e x 1 x (6) lim x 0 1 x cos x
(8)当x 0时,e
x
sin x cos x是x的
2 __________ 无穷小
(9)当x 0时, x e 是x的 cos
x
2
__________ 无穷小 4
7.求导问题
(1) xe
f ( y)