数据结构各种排序方法的综合比较

合集下载

数据结构最基础的十大算法

数据结构最基础的十大算法

数据结构最基础的十大算法数据结构是计算机科学中的重要分支,它研究如何组织和存储数据以便于访问和修改。

在数据结构中,算法是解决问题的关键。

下面将介绍数据结构中最基础的十大算法。

1. 线性搜索算法线性搜索算法是最简单的算法之一,它的作用是在一个列表中查找一个特定的元素。

该算法的时间复杂度为O(n),其中n是列表中元素的数量。

2. 二分搜索算法二分搜索算法是一种更高效的搜索算法,它的时间复杂度为O(log n)。

该算法要求列表必须是有序的,它通过将列表分成两半来查找元素,直到找到目标元素为止。

3. 冒泡排序算法冒泡排序算法是一种简单的排序算法,它的时间复杂度为O(n^2)。

该算法通过比较相邻的元素并交换它们的位置来排序列表。

4. 快速排序算法快速排序算法是一种更高效的排序算法,它的时间复杂度为O(nlog n)。

该算法通过选择一个基准元素并将列表分成两部分来排序列表。

5. 插入排序算法插入排序算法是一种简单的排序算法,它的时间复杂度为O(n^2)。

该算法通过将每个元素插入到已排序的列表中来排序列表。

6. 选择排序算法选择排序算法是一种简单的排序算法,它的时间复杂度为O(n^2)。

该算法通过选择最小的元素并将其放在列表的开头来排序列表。

7. 堆排序算法堆排序算法是一种更高效的排序算法,它的时间复杂度为O(n log n)。

该算法通过将列表转换为堆并进行排序来排序列表。

8. 归并排序算法归并排序算法是一种更高效的排序算法,它的时间复杂度为O(n log n)。

该算法通过将列表分成两部分并将它们合并来排序列表。

9. 哈希表算法哈希表算法是一种高效的数据结构,它的时间复杂度为O(1)。

该算法通过将键映射到哈希表中的位置来存储和访问值。

10. 树算法树算法是一种重要的数据结构,它的时间复杂度取决于树的深度。

树算法包括二叉树、AVL树、红黑树等。

以上是数据结构中最基础的十大算法,它们在计算机科学中有着广泛的应用。

【数据结构】常见排序算法复杂度

【数据结构】常见排序算法复杂度

【数据结构】常见排序算法复杂度相关概念1、稳定排序(stable sort)和⾮稳定排序稳定排序是指所有相等的数经过某种排序算法操作后仍然能保持它们在排序之前的相对次序。

反之就是⾮稳定排序。

2、内排序(internal sorting)和外排序(external sorting)在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序;在排序过程中,只有部分数被调⼊内存,并借助内存调整数在外存中的存放顺序排序⽅法称为外排序。

排序算法【冒泡排序】(Bubble Sort)冒泡排序⽅法是最简单的排序⽅法。

这种⽅法的基本思想是,将待排序的元素看作是竖着排列的“⽓泡”,较⼩的元素⽐较轻,从⽽要往上浮。

在冒泡排序算法中我们要对这个“⽓泡”序列处理若⼲遍。

所谓⼀遍处理,就是⾃底向上检查⼀遍这个序列,并时刻注意两个相邻的元素的顺序是否正确。

如果发现两个相邻元素的顺序不对,即“轻”的元素在下⾯,就交换它们的位置。

显然,处理⼀遍之后,“最轻”的元素就浮到了最⾼位置;处理⼆遍之后,“次轻”的元素就浮到了次⾼位置。

在作第⼆遍处理时,由于最⾼位置上的元素已是“最轻”元素,所以不必检查。

⼀般地,第i遍处理时,不必检查第i⾼位置以上的元素,因为经过前⾯i-1遍的处理,它们已正确地排好序。

冒泡排序是稳定的。

算法时间复杂度是O(n2)。

【选择排序】(Selection Sort)选择排序的基本思想是对待排序的记录序列进⾏n-1遍的处理,第 i 遍处理是将[i..n]中最⼩者与位置 i 交换位置。

这样,经过 i 遍处理之后,前 i 个记录的位置已经是正确的了。

选择排序是不稳定的。

算法复杂度是O(n2 )。

【插⼊排序】(Insertion Sort)插⼊排序的基本思想是,经过i-1遍处理后,L[1..i-1]⼰排好序。

第i遍处理仅将L插⼊L[1..i-1]的适当位置,使得L[1..i]⼜是排好序的序列。

要达到这个⽬的,我们可以⽤顺序⽐较的⽅法。

各种排序算法的总结和比较

各种排序算法的总结和比较

各种排序算法的总结和比较1 快速排序(QuickSort )快速排序是一个就地排序,分而治之,大规模递归的算法。

从本质上来说,它是归并排序的就地版本。

快速排序可以由下面四步组成。

(1 )如果不多于1 个数据,直接返回。

(2 )一般选择序列最左边的值作为支点数据。

(3 )将序列分成2 部分,一部分都大于支点数据,另外一部分都小于支点数据。

(4 )对两边利用递归排序数列。

快速排序比大部分排序算法都要快。

尽管我们可以在某些特殊的情况下写出比快速排序快的算法,但是就通常情况而言,没有比它更快的了。

快速排序是递归的,对于内存非常有限的机器来说,它不是一个好的选择。

2 归并排序(MergeSort )归并排序先分解要排序的序列,从1 分成2 ,2 分成4 ,依次分解,当分解到只有1 个一组的时候,就可以排序这些分组,然后依次合并回原来的序列中,这样就可以排序所有数据。

合并排序比堆排序稍微快一点,但是需要比堆排序多一倍的内存空间,因为它需要一个额外的数组。

3 堆排序( HeapSort )堆排序适合于数据量非常大的场合(百万数据)。

堆排序不需要大量的递归或者多维的暂存数组。

这对于数据量非常巨大的序列是合适的。

比如超过数百万条记录,因为快速排序,归并排序都使用递归来设计算法,在数据量非常大的时候,可能会发生堆栈溢出错误。

堆排序会将所有的数据建成一个堆,最大的数据在堆顶,然后将堆顶数据和序列的最后一个数据交换。

接下来再次重建堆,交换数据,依次下去,就可以排序所有的数据。

4 Shell 排序( ShellSort )Shell 排序通过将数据分成不同的组,先对每一组进行排序,然后再对所有的元素进行一次插入排序,以减少数据交换和移动的次数。

平均效率是O(nlogn) 。

其中分组的合理性会对算法产生重要的影响。

现在多用D.E.Knuth 的分组方法。

Shell 排序比冒泡排序快5 倍,比插入排序大致快2 倍。

Shell 排序比起QuickSort ,MergeSort ,HeapSort 慢很多。

数据结构课程设计—内部排序算法比较

数据结构课程设计—内部排序算法比较

数据结构课程设计—内部排序算法比较在计算机科学领域中,数据的排序是一项非常基础且重要的操作。

内部排序算法作为其中的关键部分,对于提高程序的运行效率和数据处理能力起着至关重要的作用。

本次课程设计将对几种常见的内部排序算法进行比较和分析,包括冒泡排序、插入排序、选择排序、快速排序和归并排序。

冒泡排序是一种简单直观的排序算法。

它通过重复地走访要排序的数列,一次比较两个数据元素,如果顺序不对则进行交换,并一直重复这样的走访操作,直到没有要交换的数据元素为止。

这种算法的优点是易于理解和实现,但其效率较低,在处理大规模数据时性能不佳。

因为它在最坏情况下的时间复杂度为 O(n²),平均时间复杂度也为O(n²)。

插入排序的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入,直到整个序列有序。

插入排序在数据量较小时表现较好,其平均时间复杂度和最坏情况时间复杂度也都是 O(n²),但在某些情况下,它的性能可能会优于冒泡排序。

选择排序则是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(或最大)元素,然后放到已排序序列的末尾。

以此类推,直到全部待排序的数据元素排完。

选择排序的时间复杂度同样为O(n²),但它在某些情况下的交换操作次数可能会少于冒泡排序和插入排序。

快速排序是一种分治的排序算法。

它首先选择一个基准元素,将数列分成两部分,一部分的元素都比基准小,另一部分的元素都比基准大,然后对这两部分分别进行快速排序。

快速排序在平均情况下的时间复杂度为 O(nlogn),最坏情况下的时间复杂度为 O(n²)。

然而,在实际应用中,快速排序通常表现出色,是一种非常高效的排序算法。

归并排序也是一种分治算法,它将待排序序列分成若干个子序列,每个子序列有序,然后将子序列合并成一个有序序列。

所有排序的原理

所有排序的原理

所有排序的原理排序是将一组数据按照某种特定顺序进行排列的过程。

在计算机科学中,排序是一种基本的算法问题,涉及到许多常见的排序算法。

排序算法根据其基本原理和实现方式的不同,可以分为多种类型,如比较排序、非比较排序、稳定排序和非稳定排序等。

下面将详细介绍排序的原理和各种排序算法。

一、比较排序的原理比较排序是指通过比较数据之间的大小关系来确定数据的相对顺序。

所有常见的比较排序算法都基于这种原理,包括冒泡排序、插入排序、选择排序、归并排序、快速排序、堆排序等。

比较排序算法的时间复杂度一般为O(n^2)或O(nlogn),其中n是待排序元素的数量。

1. 冒泡排序原理冒泡排序是一种简单的比较排序算法,其基本思想是从待排序的元素中两两比较相邻元素的大小,并依次将较大的元素往后移,最终将最大的元素冒泡到序列的尾部。

重复这个过程,直到所有元素都有序。

2. 插入排序原理插入排序是一种简单直观的比较排序算法,其基本思想是将待排序序列分成已排序和未排序两部分,初始状态下已排序部分只包含第一个元素。

然后,依次将未排序部分的元素插入到已排序部分的正确位置,直到所有元素都有序。

3. 选择排序原理选择排序是一种简单直观的比较排序算法,其基本思想是每次从待排序的元素中选择最小(或最大)的元素,将其放到已排序部分的末尾。

重复这个过程,直到所有元素都有序。

4. 归并排序原理归并排序是一种典型的分治策略下的比较排序算法,其基本思想是将待排序的元素不断地二分,直到每个子序列只包含一个元素,然后将相邻的子序列两两归并,直到所有元素都有序。

5. 快速排序原理快速排序是一种常用的比较排序算法,其基本思想是通过一趟排序将待排序的元素分割成两部分,其中一部分的元素均比另一部分的元素小。

然后,对这两部分元素分别进行快速排序,最终将整个序列排序完成。

6. 堆排序原理堆排序是一种常用的比较排序算法,其基本思想是利用堆这种数据结构对待排序的元素进行排序。

数据结构(严蔚敏)第10章

数据结构(严蔚敏)第10章

一、什么是排序?
排序是计算机内经常进行的一种操作, 其目的是将一组“无序”的记录序列调 整为“有序”的记录序列。
例如:将下列关键字序列 52, 49, 80, 36, 14, 58, 61, 23, 97, 75
调整为
14, 23, 36, 49, 52, 58, 61 ,75, 80, 97 .页 08.06.2020
10. 2 插入排序
.页 08.06.2020
一趟直接插入排序的基本思想:
有序序列R[1..i-1]
无序序列 R[i..n]
R[i]
有序序列R[1..i]
无序序列 R[i+1..n]
.页 08.06.2020
实现“一趟插入排序”可分三步进行:
1.在R[1..i-1]中查找R[i]的插入位置,
R[1..j].key R[i].key < R[j+1..i-1].key;
有序序列区 无 序 序 列 区
经过一趟排序
08.06.2020
有序序列区 无 序 序 列 区
.页
基于不同的“扩大” 有序序列长 度的方法,内部排序方法大致可分 下列几种类型:
插入类 交换类 选择类
归并类 其它方法
.页 08.06.2020
#待de排fin记e M录A的XS数IZ据E 类10型00定// 义待排如顺下序:表最大长度
第十章 排序
.页 08.06.2020
【课前思考】
1. 你熟悉排序吗?你过去曾经学过哪些排序方法? 在第一章中曾以选择排序和起泡排序为例讨论算 法实践复杂度,不知你还记得吗? 2. 你自己有没有编过排序的程序?是用的什么策 略?
.页 08.06.2020
【学习目标】

数据结构的常用算法

数据结构的常用算法

数据结构的常用算法一、排序算法排序算法是数据结构中最基本、最常用的算法之一。

常见的排序算法有冒泡排序、选择排序、插入排序、快速排序、归并排序等。

1. 冒泡排序冒泡排序是一种简单的排序算法,它重复地比较相邻的两个元素,如果它们的顺序错误就将它们交换过来。

通过多次的比较和交换,最大(或最小)的元素会逐渐“浮”到数列的顶端,从而实现排序。

2. 选择排序选择排序是一种简单直观的排序算法,它每次从待排序的数据中选择最小(或最大)的元素,放到已排序序列的末尾,直到全部元素排序完毕。

3. 插入排序插入排序是一种简单直观的排序算法,它将待排序的数据分为已排序区和未排序区,每次从未排序区中取出一个元素,插入到已排序区的合适位置,直到全部元素排序完毕。

4. 快速排序快速排序是一种常用的排序算法,它采用分治的思想,通过一趟排序将待排序的数据分割成独立的两部分,其中一部分的所有数据都比另一部分小,然后再按此方法对这两部分数据进行快速排序,递归地进行,最终实现整个序列有序。

5. 归并排序归并排序是一种稳定的排序算法,它采用分治的思想,将待排序的数据分成若干个子序列,分别进行排序,然后将排好序的子序列合并成更大的有序序列,直到最终整个序列有序。

二、查找算法查找算法是在数据结构中根据给定的某个值,在数据集合中找出目标元素的算法。

常见的查找算法有线性查找、二分查找、哈希查找等。

1. 线性查找线性查找是一种简单直观的查找算法,它从数据集合的第一个元素开始,依次比较每个元素,直到找到目标元素或遍历完整个数据集合。

2. 二分查找二分查找是一种高效的查找算法,它要求数据集合必须是有序的。

通过不断地将数据集合分成两半,将目标元素与中间元素比较,从而缩小查找范围,最终找到目标元素或确定目标元素不存在。

3. 哈希查找哈希查找是一种基于哈希表的查找算法,它通过利用哈希函数将目标元素映射到哈希表中的某个位置,从而快速地找到目标元素。

三、图算法图算法是解决图结构中相关问题的算法。

数据结构之各种排序的实现与效率分析

数据结构之各种排序的实现与效率分析

各种排序的实现与效率分析一、排序原理(1)直接插入排序基本原理:这是最简单的一种排序方法,它的基本操作是将一个记录插入到已排好的有序表中,从而得到一个新的、记录增1的有序表。

效率分析:该排序算法简洁,易于实现。

从空间来看,他只需要一个记录的辅助空间,即空间复杂度为O(1).从时间来看,排序的基本操作为:比较两个关键字的大小和移动记录。

当待排序列中记录按关键字非递减有序排列(即正序)时,所需进行关键字间的比较次数达最小值n-1,记录不需移动;反之,当待排序列中记录按关键字非递增有序排列(即逆序)时,总的比较次数达最大值(n+2)(n-1)/2,记录移动也达到最大值(n+4)(n-2)/2.由于待排记录是随机的,可取最大值与最小值的平均值,约为n²/4.则直接插入排序的时间复杂度为O(n²).由此可知,直接插入排序的元素个数n越小越好,源序列排序度越高越好(正序时时间复杂度可提高至O(n))。

插入排序算法对于大数组,这种算法非常慢。

但是对于小数组,它比其他算法快。

其他算法因为待的数组元素很少,反而使得效率降低。

插入排序还有一个优点就是排序稳定。

(2)折半插入排序基本原理:折半插入是在直接插入排序的基础上实现的,不同的是折半插入排序在将数据插入一个有序表时,采用效率更高的“折半查找”来确定插入位置。

效率分析:由上可知该排序所需存储空间和直接插入排序相同。

从时间上比较,折半插入排序仅减少了关键字间的比较次数,为O(nlogn)。

而记录的移动次数不变。

因此,折半查找排序的时间复杂度为O(nlogn)+O(n²)= O(n²)。

排序稳定。

(3)希尔排序基本原理:希尔排序也一种插入排序类的方法,由于直接插入排序序列越短越好,源序列的排序度越好效率越高。

Shell 根据这两点分析结果进行了改进,将待排记录序列以一定的增量间隔dk 分割成多个子序列,对每个子序列分别进行一趟直接插入排序, 然后逐步减小分组的步长dk,对于每一个步长dk 下的各个子序列进行同样方法的排序,直到步长为1 时再进行一次整体排序。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据结构各种排序方法的综合比较
结论:
排序方法平均时间最坏时间辅助存储
简单排序O(n2) O(n2) O(1)
快速排序O(nlogn)O(n2)O(logn)
堆排序O(nlogn)O(nlogn)O(1)
归并排序O(nlogn)O(nlogn)O(n)
基数排序O(d(n+rd))O(d(n+rd))O(rd)
PS:直接插入排序、冒泡排序为简单排序,希尔排序、堆排序、快速排序为不稳定排序
一、时间性能
按平均的时间性能来分,有三类排序方法:
时间复杂度为O(nlogn)的方法有:快速排序、堆排序和归并排序,其中以快速排序为最好;时间复杂度为O(n2)的有:直接插入排序、起泡排序和简单选择排序,其中以直接插入为
最好,特别是对那些对关键字近似有序的记录序列尤为如此;
时间复杂度为O(n)的排序方法只有,基数排序。

当待排记录序列按关键字顺序有序时,直接插入排序和起泡排序能达到O(n)的时间复杂度;而对于快速排序而言,这是最不好的情况,此时的时间性能蜕化为O(n2),因此是应该尽量避免的情况。

简单选择排序、堆排序和归并排序的时间性能不随记录序列中关键字的分布而改变。

二、空间性能
指的是排序过程中所需的辅助空间大小。

1. 所有的简单排序方法(包括:直接插入、起泡和简单选择)和堆排序的空间复杂度为O(1);
2. 快速排序为O(logn),为栈所需的辅助空间;
3. 归并排序所需辅助空间最多,其空间复杂度为O(n );
4.链式基数排序需附设队列首尾指针,则空间复杂度为O(rd)。

三、排序方法的稳定性能
1. 稳定的排序方法指的是,对于两个关键字相等的记录,它们在序列中的相对位置,在排序之前和经过排序之后,没有改变。

2. 当对多关键字的记录序列进行LSD方法排序时,必须采用稳定的排序方法。

3. 对于不稳定的排序方法,只要能举出一个实例说明即可。

4. 快速排序和堆排序是不稳定的排序方法
-----------------------------------------------------------------------------------
二、插入排序
1、直接插入排序
基本操作是将一个记录插入到已排好序的有序表中,从而得到一个新的、记录数增1的有序表。

排序过程:
3849659776132749...
3849657697132749
...
1338496576972749...
1327384965769749...
1327384949657697...
在直接插入排序中,为了找到插入位置,采用了顺序查找的方法。

为了提高查找速度,可以采用折半查找,这种排序称折半插入排序。

3、2-路插入排序
为减少排序过程中移动记录的次数,在折半插入排序的基础上加以改进:4938659778132749...
i=1
i=238
first
i=36538
final first
i=4659738
final first
i=565769738
final first
i=66576971338
final first
i=7657697132738
final first
i=849657697132738
final first
三、快速排序
1、起泡排序
首先将第一个记录的关键字和第二个记录的关键字进行比较,若为逆序,则将两个记录交换之,然后比较第二个记录和第三个记录的关键字。

直至第n-1个记录和第n个记录的关键字进行过比较为止。

然后进行第二趟起泡排序,对前n-1个记录进行同样操作。

...直到在某趟排序过程中没有进行过交换记录的操作为止。

49383838381313
38494949132727
65656513273838
977613274949
7613274949
13274965
274978
4997
初始第一趟第二趟第三趟第四趟第五趟第六趟
2、快速排序
通过一趟排序将待排记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

初始关键字4938659776132749
i j j
1次交换之后
i i j
2次交换之后27389776136549
i j j
3次交换之后27381397766549
i i j
4次交换之后
ij j
完成一趟排序2738134976976549
初始状态4938659776132749
一次划分27381349976549
分别进行132738
结束结束496576
4965结束
结束
有序序列13273849496576。

相关文档
最新文档