初三数学重要知识点精讲教案及模拟试题--二次根式2
中考数学《二次根式》复习教案

二次根式复习复习目标:1.了解二次根式的定义,掌握二次根式有意义的条件和性质。
2.会根据公式2)(a=a(a≥0)∣a∣进行计算。
3.熟练进行二次根式的乘除法运算。
4.了解最简二次根式的定义,能运用相关性质化简二次根式。
复习重点:二次根式有意义的条件和性质,二次根式的计算和化简。
复习难点:正确依据二次根式相关性质计算和化简。
复习过程:一.知识结构:三个概念:二次根式最简二次根式同类二次根式三个性质:二次根式的双重非负性2(a=a(a≥∣a∣)四种运算:加.减.乘.除二.复习过程1.二次根式的概念(1).二次根式的定义:形如a(a≥0)的式子叫做二次根式2.二次根式的识别:(1).被开方数a ≥0 (2).根指数是2例.下列各式中哪些是二次根式?哪些不是?为什么?①②③④⑤⑥⑦⑧3.二次根式的性质(1).双重非负性:a ≥0(a ≥0) (2).2)(a =a (a ≥0)(3)∣a ∣题型1:确定二次根式中被开方数所含字母的取值范围 (1).当X_____时,x -3有意义。
(2).求下列二次根式中字母的取值范围x 315x --+ 说明:二次根式被开方数不小于0,所以求二次根式中字母的取值范围常转化为不等式(组) 题型2.求下列各式的值(1)2(3)2(4)4.二次根式的乘除 (1).二次根式的乘法法则)0,0(≥≥=⋅b a ab b a例1.化简8116)1(⨯ 2000)2( 例2.计算 721)1(⋅ 15253)2(⋅)521(154)3(-⋅-xyx 11010)4(-⋅(2).二次根式的除法法则)0,0(>≥=b a b aba例3、计算4540)1(245653)2(n m n m ÷5.最简二次根式的两个条件: (1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式;抢答:判断下列二次根式是否是最简二次根式,并说明理由。
621)6())(()5(75.0)4()3()2(50)1(2222b a b a y x bc a -++6.化简二次根式的方法:(1)如果被开方数是整数或整式时,先因数分解或因式分解,然后利用积的算术平方根的性质,将式子化简。
3.1二次根式(2)

3.1 二次根式(2)--- ( 教案)备课时间: 主备人:【学习目标】:1、掌握二次根式的基本性质:a a =22、能利用上述性质对二次根式进行化简.【重点难点】:重点:二次根式的性质a a =2. 难点:综合运用性质a a =2进行化简和计算。
【知识回顾】1、什么是二次根式,它有哪些性质?2、下列各式要在实数范围内有意义,说出x 的取值范围(1)4-x (2)5-x 2 (3)x 31- (4)2x 2+3、在实数范围内因式分解:x 2-6= x 2 - ( )2= (x+ ____)(x-____)【自主归纳】计算:=24 =22.0 =2)54( =220=-2)4( =-2)2.0( =-2)54( =-2)20(=20综上得:2a = =【典型例题】例1、计算:(1)4;(2)2.51)(-; (3)21-x )((x 》1)例2、下列等式中,字母a 应分别符合什么条件?(1)2a =2a )( (2)2a =-a【课堂练习】1、判断正误:(1)22=2 ( )(2)22)(-=-2 ( ) (3)243)(+=3+4 ( ) (4)2243+=3+4 ( )2、计算:(1)26; (2)25)(-; (3)21a )(+; (4)22x )(-(x 》2)3、计算(1)25; (2)94; (3)27)(-; (4)4x 4x 2+-(x 》2);【知识梳理】二次根式的性质:1、当a 》0时,2a )(=a2、⎪⎩⎪⎨⎧<-=>==0a a 0a 00a a 2 a a【课后练习】1、填空:(1)、2)12(-x -2)32(-x )2(≥x =_________.(2)、2)4(-π=2、已知2<x <3,化简:3)2(2-+-x x3、化简下列各式:______=______=_______= _____a 0=(<)4、错在哪里?因为221)(=221)(-,所以2225)(-=2252)(-, 2225)(-=252)(-, 25-2=2-25, 21=21-5、 边长为a 的正方形桌面,正中间有一个边长为3a的正方形方孔.若沿图中虚线锯开,可以拼成一个新的正方形桌面.你会拼吗?试求出新的正方形边长.。
人教新课标版初中九上21.1二次根式(2)教案

21.1二次根式(2)教学内容本节课主要学习二次根式的性质a(a≥0)是一个非负数与(a)2=a及其运用教学目标一、知识技能理解a(a≥0)是一个非负数和(a)2=a(a≥0),并利用它们进行计算和化简.二、数学思考乘方与开方互为逆运算在推导结论(a)2=a(a≥0)中的应用.三、解决问题利用二次根式的非负性和(a)2=a(a≥0)解题.四、情感态度通过利用乘方与开方互为逆运算推导结论(a)2=a(a≥0),使学生感受到数学知识的内在联系.重难点、关键重点:a(a≥0)是一个非负数;(a)2=a(a≥0)及其运用.难点:理解二次根式a(a≥0)是一个非负数与(a)2=a。
关键:用分类思想的方法导出a(a≥0)是一个非负数;•用探究的方法导出(a)2=a(a≥0).教学准备教师准备:制作课件,精选习题学生准备:复习有关知识,预习本节课内容教学过程一、复习引入【提出问题】1.什么叫二次根式?2.当a≥0时,a表示什么?当a<0时,a有意义吗?【活动方略】教师演示课件,给出题目.学生根据所学知识回答问题.【设计意图】复习二次根式的概念及算术平方根的基本形式.为二次根式的性质引入作好铺垫.二、探索新知【问题】a(a≥0)有没有可能小于零?为什么?【活动方略】教师提出问题学生总结出二次根式的性质1:a(a≥0)是一个非负数.【设计意图】使学生归纳出二次根式的性质1:a (a ≥0)是一个非负数。
【探究】根据算术平方根的意义填空: (4)2=_______;(2)2=_______;(13)2=______;(0)2=_______. 【活动方略】教师演示课件,给出题目.学生口答结果后总结有何规律.老师点评:4是4的算术平方根,根据算术平方根的意义,4是一个平方等于4的非负数,因此有(4)2=4.同理可得:(2)2=2,(13)2=13,(0)2=0,所以 (a )2=a (a ≥0) 【设计意图】归纳出二次根式的性质2:(a )2=a (a ≥0)三、 范例点击例1 已知3+x +5-y =0,求xy 的值是多少? 解:∵3+x +5-y =0,∴3+x ≥0且5-y ≥0, ∴3+x =0且5-y =0; 即x +3=0且y -5=0解得x =-3,y =5∴xy =-15.【设计意图】使学生掌握二次根式的性质1,理解非负式的应用.例2 计算:(1)(7.1)2;(2)(25)2;(3)(12+a )2.【设计意图】使学生掌握二次根式的性质2:(a )2=a (a ≥0),并有较深刻的理解.【活动方略】教师活动:操作投影,分别将例1、例2显示,组织学生讨论.学生活动:合作交流,讨论解答。
九年级下二次根式复习课教案(20200602074834)

二次根式复习课教学目标1•理解和掌握二次根式的有关概念以及二次根式的意义。
2.巩固二次根式的性质。
3•熟练掌握含有二次根式的运算。
过程与方法1•师生一起回顾归纳二次根式的有关知识点。
(学生口述,教师板书)2.根据考点给出典例精析。
(先请学生上台演示,后请其他学生讲评。
)3.通过练习进一步巩固二次根式的有关知识点。
4.课后5分钟小测。
教学重点和难点重点:1 .二次根式的意义2 .含二次根式的式子的混合运算.难点:1•对a (a>0)是一个非负数的理解;对等式(一a )2= a (a>0)及、.a2 = a的理解及应用.2 •综合运用二次根式的性质及运算法则化简和计算含二次根式的式子.教学过程设计一、复习1.请同学回忆二次根式的有关概念,以及二次根式的意义。
2.二次根式有哪些基本性质?用式子表示出来,并说明各式成立的条件.指出:二次根式的这些基本性质都是在一定条件下才成立的,主要应用于化简二次根式.3.二次根式的加减、乘法及除法的法则是什么?用式子表示出来.指出:二次根式运算的最终结果如果是根式,要化成最简二次根式二、典例精析例1 : x取什么值时,下列各式在实数范围内有意义:考点:二次根式的意义分析:(1)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;⑵题中,式子的分母不能为零,即器不能职使1^=0的值,(3)题是两个二次根式的和,x 的取值必须使两个二次根式都有意义;(4)题的分子是二次根式, 分母是含x 的单项式,因此x 的取值必须使二次根式有意义,同时使分母的值不等于零.fS ⑴要使J3-掘有意义*必须?即要便4% - 2有意义,必须盘-2》山即呂〉2・所以使式子73-x 有意义的澹为2=辰3・(和因为i- 4^ =・[签|,当耳=±1^? 叮原式没有意义$所叹当话±1时F⑶因为使压有意义的趁值为使厲有意义的諏值为曲山所以便辰⑷因为使JW2有意义的蛊取值为髯+ 2>0『即冗而分母3s#0F 即只弄①所以使式子 ―_2有意义的x 的取值为x > -2且x丰0.3x考点:最简二次根式,分母有理化。
有关初三数学知识点大全之二次根式讲解

有关初三数学知识点大全之二次根式讲解第1篇:有关初三数学知识点大全之二次根式讲解1.二次根式:一般地,式子叫做二次根式.注意:(1)若这个条件不成立,则不是二次根式;(2)是一个重要的非负数,即;0.2.重要公式:(1),(2)3.积的算术平方根:积的算术平方根等于积中各因式的算术平方根的积;4.二次根式的乘法法则:.5.二次根式比较大小的方法:(1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小;(3)分别平方,然后比大小.6.商的算术平方根:,商的算术平方根等于被除式的算术平方根除以除式的算术平方根.7.二次根式的除法法则:(1);(2);(3)分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式.8.最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式,①被开方数的因数是整数,因式是整式,②被开方数中不含能开的尽的因数或因式;(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;(4)二次根式计算的最后结果必须化为最简二次根式.10.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数未完,继续阅读 >第2篇:初三数学二次根式的乘除法知识点二次根式的乘除法运算:1.乘法规定:(a≥0,b≥0)二次根式相乘,把被开方数相乘,根指数不变。
推广:(1)(a≥0,b≥0,c≥0)(2)(b≥0,d≥0)2.乘法逆用:(a≥0,b≥0)积的算术平方根等于积中各因式的算术平方根的积。
注意:公式中的a、b可以是数,也可以是代数式,但必须满足a≥0,b≥0;3.除法规定:(a≥0,b>0)二次根式相处,把被开方数相除,根指数不变。
推广:,其中a≥0,b>0,。
初三复习教案(二次根式)

初三复习教案课 题:二次根式 教案设计教学目标:使学生掌握二次根式的有关概念、性质及根式的化简.教学重点:二次根式的化简与计算.教学难点:二次根式的化简与计算.教学过程:一、知识要点:1.平方根:若x 2=a(a>0),则x 叫a 做的平方根,记为a ±.注意:①正数的平方根有两个,它们互为相反数;②0的平方根是0;③负数没有平方根;2.算术平方根:一个数的正的平方根叫做算术平方根;3.立方根:若x 3=a(a>0),则x 叫a 做的立方根,记为3a .4.同类二次根式: 化简后被开方数相同的二次根式.5.二次根式的性质: ①)0(≥a a 是一个非负数; ②)0()(2≥=a a a ③⎪⎩⎪⎨⎧<-=>==)0()0(0)0(||)(2a a a a a a a ④)0,0(>≥=b a ba b a ⑤)0,0(≥≥⋅=b a b a ab6.二次根式的运算:(1)加、减;(2)乘、除二、例题分析:例1.下列二次根式27,121,211,12,其中与3是同类二次根式的个数是( ) (A)1 (B)2 (C)3 (D)4例2.若最简二次根式2431212-+-a a 与是同类二次根式,求a 的值。
例3.化简: (1)2)23(-; (2)当a≤|12|441,212-++-a a a 化简时(3)已知a 为实数,化简a a a 13---, (4)化简二次根式a 21aa +-, 例4.(1)若633-=a ,求36122+-x x 的值。
(2)已知:x=53-,求962++x x 的值。
(3) 已知:a=321+,求01222)1()211(12a a a a a a a a ++----+-- 例4:把根号外的因式移到根号内: (1)aa 1; (2)11)1(---x x ; (3)x x 1-; (4) 21)2(--x x 例5.观察下列各式及其验证过程 232232+=.验证:2322122)12(2122)22(3222233+=-+-=-+-= 3833133)13(3133)33(83833:..8338322233+=-+-=-+-==+=验证 (1) 根据上述两个等式及其验证过程的基本思路,猜想4154的变形结果并进行验证.(2) 针对上述各式反映的规律,写出用n(n 为任意自然数,且n≥2)表示的等式,并给出证明.例6.计算: ①()5.043()4483181--- ②2392393322-++++++xx x x x x (0<x<3) ③)23(6)13()26(+÷--⋅+④)2131(15+÷ ⑤y x xyy x y x xyx --+-++2三、小 结:师生共同归纳解题思路与方法四、同步练习:1. 已知.a<0,化简22)1(4)1(4aa a a -+-+-= 2.化简二次根式22a a a +-的结果是( ) A .2--a B.2---a C.2-a D.2--a 32,则a 的取值范围是( )A .a ≥4B .a ≤2C .2≤a ≤4D .a =2或a =44.化简并求值:22111a a a a a ----+,其中a = 5. 已知01132=--++b b a ,求a 3+b 3和a 2-ab+b 2的值.6.已知x=23+,求(23212+---x x x x )÷211x -的值. 7.已知:x>0,y>0,且x-xy -2y=0,求y xy x yxy x --++值. 8.若a=4+3,b=4-3,求ab a a--ab a b+的值.9. 已知x 、y 为实数,若规定x *y=4xy,(1)求2*4; (2)若x *x+2*x-2*4=0,求x 的值;(3)若不论x 是什么实数,总有a *x=x,求a 的值.10.已知:571-=x ,571+=y 求x 3+x 2y+xy 2+y 3的值。
初三数学二次根式知识点学习讲解

初三数学二次根式一、学习目标1.二次根式的定义、最简二次根式、同类二次根式;2.二次根式的运算。
二、知识点讲解二次根式定义一般地,形如√a的代数式叫做二次根式,其中,a 叫做被开方数。
当a≥0时,√a表示a的算术平方根;当a小于0时,√a的值为纯虚数(在一元二次方程求根公式中,若根号下为负数,则方程有两个共轭虚根)。
注意被开方数可以是数,也可以是代数式。
被开方数为正或0的,其平方根为实数;被开方数为负的,其平方根为虚数。
二次根式的判断方法根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察。
性质1. 任何一个正数的平方根有两个,它们互为相反数。
如正数a的算术平方根是,则a的另一个平方根为﹣;最简形式中被开方数不能有分母存在。
2. 零的平方根是零;3. 负数的平方根也有两个,它们是共轭的。
如负数a的平方根是±i。
4. 有理化根式:如果两个含有根式的代数式的积不再含有根式,那么这两个代数式互为有理化根式,也称互为有理化因式。
5. 无理数可用连分数形式表示。
6. 当a≥0时,()22;()2与2中a取值范围是整个复平面。
7. ()2=a任何一个数都可以写成一个数的平方的形式;利用此性质可以进行因式分解。
8. 逆用可将根号外的非负因式移到括号内。
算术平方根非负数的平方根统称为算术平方根,用(a≥0)来表示。
负数没有算术平方根,0的算术平方根为0。
有理化因式两个含有二次根式的代数式相乘,如果他们的积不含有二次根式,那么这两个代数式叫做互为有理化因式。
有理化因式注意①他们必须是成对出现的两个代数式;②这两个代数式都含有二次根式;③这两个代数式的积化简后不再含有二次根式;④一个二次根式可以与几个二次根式互为有理化因式。
分母有理化在分母含有根号的式子中,把分母的根号化去,叫做分母有理化。
分母有理化即将分母从非有理数转化为有理数的过程最简二次根式①被开方数的因数是整数或字母,因式是整式;②被开方数中不含有可化为平方数或平方式的因数或因式。
九年级数学二次根式教案2

九年级数学二次根式教案2教案:二次根式教学目标:1.了解二次根式的概念,能够正确读写二次根式的符号和表示方法。
2.能够将简单的算术式化成二次根式的形式。
3.能够将二次根式化简,并进行运算。
教学重点:1.理解二次根式的概念和符号表示方法。
2.能够将简单的算术式化成二次根式的形式。
教学难点:1.能够将二次根式化简,并进行运算。
2.能够应用二次根式解决实际问题。
教学准备:教师准备:教学课件,教学黑板,教学板书学生准备:教材,笔记本,文具教学过程:一、导入新课(10分钟)1.教师利用教材中的相关例题,先提问题:你们学过根式吗?它的定义是什么?2.回顾根式的概念及符号表示方法。
3.引入新知识:根式的指数为2的特殊根式称为二次根式。
二次根式的示例有哪些?4.总结:二次根式是指根式的指数为2的特殊根式,其中包括平方根和平方根的任意乘积。
二、二次根式的表示与读写(10分钟)1.教师利用教材中的相关例题,引入二次根式的表示与读写。
2.讲解二次根式的表示方法:以方形根号为例,其中的a被称为根式的被开方数,n为根式的指数。
3.操练:教师出示相关练习题,学生运用二次根式的表示方法将其写出。
三、化简二次根式(15分钟)1.教师利用教材中的相关例题,引入化简二次根式的概念。
2.讲解化简二次根式的方法:简化根号下的被开方数,将分母中所有的根式移到根号外。
3.操练:教师出示相关练习题,学生化简二次根式。
四、二次根式的运算(15分钟)1.教师利用教材中的相关例题,引入二次根式的运算。
2.讲解二次根式的加减法:同根式的相加减,只需合并同类项。
3.讲解二次根式的乘除法:利用乘方和除法的性质进行运算。
4.操练:教师出示相关练习题,学生进行二次根式的运算。
五、应用实际问题(10分钟)1.教师利用教材中的相关例题,引入应用实际问题的讨论。
2.讲解如何应用二次根式解决实际问题。
3.操练:教师出示相关练习题,学生运用二次根式解决实际问题。
六、课堂小结(5分钟)1.复习与总结:请学生总结本节课所学的内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=6×4××
=24
=24×3×4
=288;
另解:-6×(-4)
=-6×(-4)
=-6×3×(-4)×4××
=288 ;
(2)===8×9=72;
(3)====13×11=143;
(4)3c÷=3c·=3c·=2c=2c·=a.
例3.把下列各式化成最简二次根式.
(1);ቤተ መጻሕፍቲ ባይዱ2);(3);(4)-.
分析:600=6×102,1000=10×102,27=3×32,a3=a·a2等,先把这些数分解,然后把能开尽方的开方后移到根号前面,最后化去根号下的分母.
解:(1)==10;
(2)===;
(3)==3ab;
(4)-=-=-×=-=-.
例1.计算:
(1)×;(2)××.
分析:(1)直接应用·=(a≥0,b≥0)计算,结果中将被开方数能开尽方的因式(数)开方后移到根号外面.
(2)应用 计算。
解:(1)×===3.
(2)××=
==3×5×7=105.
评析:三个或三个以上的二次根式相乘,同样是被开方数相乘作为被开方数;在被开方数相乘时,要考虑到化简时因数分解,如×直接得再来分解就麻烦了;说明无理数相乘的结果可能是无理数,也可能是有理数.
评析:有关二次根式的运算结果都要化简为最简二次根式(或有理式),化简的主要方法有;(1)将被开方数中能开尽方的因式开方后写在根号外;(2)被开方数有分母的用性质=(a≥0,b>0)转化后,化去分母的根号.
例4.用简便方法计算.
(1)-6×(-4);
(2);
(3);
(4)3c÷.
分析:(1)先确定符号,用乘法交换律、结合律将两系数与两根式分别相乘;(2)中被开方数是两个负数之积,化成64×81;(3)应用平方差公式较方便;(4)宜将除法转化为乘法(颠倒相乘).
①如果被开方数是分数或分式(包括小数),可以将二次根式的除法转化为商的算术平方根的形式进行计算.也可以先利用商的算术平方根的性质把它写成分式的形式,然后再利用==(a≥0,b>0)化简.
②如果被开方数不含分母,可以先将它分解因式或分解因数,然后把开得尽方的因式或因数开出来,从而将式子化简.
二、金典题型:
2.一般地,对二次根式的除法规定:
=(a≥0,b>0).
把=反过来,就得到=(a≥0,b>0),利用它可以进行二次根式的化简.
3.最简二次根式
(1)定义:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.
(2)将一个二次根式化简实际上就是将它化成最简二次根式.有以下两种情况:
初三数学:二次根式2
一、重点知识点:
1.一般地,对二次根式的乘法规定:
·=(a≥0,b≥0).
把·=反过来,就得到=·,利用它可以进行二次根式的化简.
化简时应注意:
(1)一般先将被开方数进行因数分解或因式分解,然后再将能开得尽方的因数或因式开出来.
(2)在计算的过程中既要用到二次根式的乘法法则,又要用到积的算术平方根的性质进行化简.
例2.利用二次根式的性质=(a≥0,b>0)进行化简.
(1);(2);(3).
分析:(1)题中的带分数化成假分数;(2)题直接应用性质化简;(3)题先将分母化简,再化去分母中的根号.
解:(1)==;
(2)====;
(3)====.
评析:(1)按课本约定,题中字母a、b、c、x、y均为正数,可以直接应用二次根式的性质=a(a≥0);(2)化去分母中的根号时,一般先把分子、分母中的根式化简,再约分,最后分子、分母同乘一个适当的式子(如(3)题中的)化去根号;(3)题还可以这样做==== =.