初二下学期期中考试

合集下载

四川省成都市树德中学2023-2024学年八年级下学期期中考试英语试题

四川省成都市树德中学2023-2024学年八年级下学期期中考试英语试题

树德中学初2022级初二下学期期中测试英语试题A卷(共100分)第一部分听力(共30小题;计30分)一、听句子,根据所听到的内容选择正确答语。

每小题念两遍。

(共5小题,每小题1分;计5分)()1.A.OK,I will. B.I think so. C.It tastes bad.()2.A.You’re welcome. B.Idon’t agree. C.That’sOK()3.A.Good day! B.Good idea! C.Good job!()4.A.On the phone. B.It doesn’t matter. C.You’re right.()5.A.Sounds bad. B.Goodluck. C.Don’t worry.二、听句子,选择与所听句子内容相符合的图片,并将代表图片的字母填涂在答题卡的相应位置。

每小题念两遍。

(共5小题,每小题1分;计5分)6.7.8.9.10.三、听对话,根据对话内容及问题选择正确答案。

每段对话念两遮。

(共10小题,每小题1分;计10分)()11.A.Clean his room B.Play the game. C.Takeout the rubbish.()12.A.In his office. B.At a park. C.At a supermarket.()13.A.Because Alan argued with him.B.Because Alan copied his homework.C.Because he disliked doing homework.()14.A.Three times a week. B.Twice a week C.Everyday.()15.A.Listening to music.B.Cooking dinner. C.Doing homework.()16.A.By having a food festival B.By having a concert C.By having a book sale.()17.A.Rainy. B.Sunny. C.Windy.()18.A.At9:00p.m. B.At8:30p.m. C.At8:45p.m.()19.A.Father and daughter. B.Sister and brother. C.Classmates.()20.A.Helpful. B.Boring. C.Difficult.四、听短文,根据短文内容完成表格中所缺信息,并将答案填写在答题卡相应题号后。

江苏省苏州市吴中、吴江、相城区2023-2024学年八年级下学期4月期中语文试题(含答案)

江苏省苏州市吴中、吴江、相城区2023-2024学年八年级下学期4月期中语文试题(含答案)

初二年级调研试卷语文 2024.04注意事项:1.本试卷共19题,满分130分,考试用时150分钟.2.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔写在答题卡的相应位置上,并用2B铅笔认真填涂考试号.3.答选择题须用2B铅笔把答题卡上相应的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题.4.考生答题必须答在答题卡上,答在试卷和草稿纸上无效。

活动一:传统节日赏民俗(10分)1.阅读关于春节年俗的短文,完成下面题目。

(6分)春节是中国人最看重的传统节日,承载着源远流长的历史文化.春节(zhù)______留在中国人的记忆深处,也根植于中华文明的精神世界.写春联、剪窗花、舞龙狮,满是对福气、兴旺的希冀;办年货、团圆饭、压岁钱,尽是表达平安、好运的心愿。

一系列仪式感十足的年俗背后,是皮敬天地、善待万物,也是感恩生活、创造美好.在岁月长河的淘洗中,春节文化早已成为中华民族历史传统、亲情伦理、家国情怀的集合,凝聚着中华儿女的精神追求和情感寄托,传承着亿万人民的价值观念和思维方式,积淀着中华文化独具魅力的理念、智慧、气度、神韵。

文化是流动的活水,同样,年味儿自然也是变动不居、常过常断.不只是春晚的欢声笑语,还有电影院里的人头攒动、博物馆里的摩肩接踵,不仅有色香味俱全的美食,还有“试试手气”的惊喜、“扫个福字”的互动……今天的春节,纵然形式在变、场景在变,但是盛情不减、底(yùn)_____更厚,始终在守正创新中展现中华文化新气象、激扬中华文明新活力,涵养着中华儿女[甲]①的文化自觉、②的文化自信、③的文化担当.不久前,春节(农历新年)被确定为联合国假日.(摘自《人民日报》2024年02月10日,盛玉雷《同庆新春共享年味》)(1)根据拼音写出相应的汉字或给加点字注音。

江苏省南通市通州区2023-2024学年八年级下学期期中数学试题(解析版)

江苏省南通市通州区2023-2024学年八年级下学期期中数学试题(解析版)

2023~2024学年(下)初二期中学业水平质量监测数学试卷注意事项考生在答题前请认真阅读本注意事项:1.本试卷共6页,满分为150分,考试时间为120分钟.2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在试卷及答题卡上指定的位置.3.答案必须按要求填涂、书写在答题卡上,在试卷、草稿纸上答题一律无效.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1. 已知中,,则的度数为( )A. B. C. D. 【答案】A【解析】【分析】此题重点考查平行四边形的性质.由平行四边形的性质得,因为,所以,于是得到问题的答案.【详解】解:四边形是平行四边形,,,,故选:A .2. 下列各点在函数图象上的是( )A. B. C. D. 【答案】C【解析】【分析】本题考查了一次函数图象上点的坐标特征.利用一次函数图象上点的坐标特征,逐一对四个选项进行验证即可求解.【详解】解:A 、当时,,点不在函数图象上;B 、当时,,ABCD Y 60A ∠=︒C ∠60︒80︒100︒120︒C A ∠=∠60A ∠=︒60C ∠=︒ ABCD C A ∴∠=∠60A ∠=︒ 60C ∴∠=︒21y x =-()0,1()1,1-()1,3--()2,50x =2011y =⨯-=-∴()0,121y x =-1x =2111y =⨯-=点不在函数图象上;C 、当时,,点在函数图象上;D 、当时,,点不在函数图象上;故选:C .3. 如图,,分别是,的中点,测得,则池塘两端,的距离为( )A. 45mB. 30mC. 22.5mD. 7.5m【答案】B【解析】【分析】本题考查的是三角形中位线定理,三角形中位线等于第三边的一半.根据三角形中位线定理解答即可.【详解】解:,分别是,的中点,是的中位线,,故选:B .4. 若直线(是常数,)经过第一、第三象限,则的值可为( )A. B. C. D. 2【答案】D【解析】【分析】通过经过的象限判断比例系数k 的取值范围,进而得出答案.【详解】∵直线(是常数,)经过第一、第三象限,∴,∴的值可为2,故选:D.∴()1,1-21y x =-=1x -2(1)13y =⨯--=-∴()1,3--21y x =-2x =2213y =⨯-=∴()2,521y x =-D E AC BC 15m DE =A B D E AC BC DE ∴ABC 221530(m)AB DE ∴==⨯=y kx =k 0k ≠k 2-1-12-y kx =k 0k ≠0k >k【点睛】本题考查正比例函数的图象与性质,熟记比例系数与图象经过的象限之间的关系是解题的关键.5. 如图,在中,对角线与相交于点,则下列结论一定正确的是( )A. B. C. D. 【答案】B【解析】【分析】根据平行四边形的性质逐项分析判断即可求解.【详解】∵四边形是平行四边形,对角线与相交于点,A. ,不一定成立,故该选项不正确,不符合题意;B. ,故该选项正确,符合题意;C. ,不一定成立,故该选项不正确,不符合题意;D. ,不一定成立,故该选项不正确,不符合题意;故选:B .【点睛】本题考查了平行四边形的性质,熟练掌握平行四边形的性质是解题的关键.6. 如图,四边形中,E ,F ,G ,H 分别是,,,的中点.若四边形是菱形,则四边形需满足的条件是( )A. B. C. D. 【答案】A【解析】【分析】本题考查的是中点四边形,掌握菱形的判定定理、三角形中位线定理是解题的关键.根据三角形中位线定理得到,,,,再根据菱形的判定定理解答即可.【详解】解:,,,分别是,,,的中点,、、、分别为、、、的中位线,ABCD Y AC BD O AC BD=OA OC =AC BD ⊥ADC BCD∠=∠ABCD AC BD O AC BD =OA OC =AC BD ⊥ADC BCD ∠=∠ABCD AD BC BD AC EGFH ABCD AB DC=AB DC ⊥AC BD =AC BD ⊥12EG AB =12FH AB =12FG CD =12EH CD =E F G H AD BC BD AC EG ∴GF FH EH ABD △BCD △ABC ACD,,,,,,四边形为平行四边形,当时,,平行四边形为菱形,故选:A .7. “漏壶”是一种古代计时器,在它内部盛一定量的水,水从壶下的小孔漏出.壶内壁有刻度,人们根据壶中水面的位置计算时间.用x 表示漏水时间,y 表示壶底到水面的高度.不考虑水量变化对压力的影响,下列图象最适合表示y 与x 对应关系的是( )A. B. C. D.【答案】D【解析】【分析】本题考查函数图象.根据题意,可知随的增大而减小,符合一次函数图象,从而可以解答本题.【详解】解:不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,表示漏水时间,表示壶底到水面的高度,随的增大而减小,符合一次函数图象,故选:D .8. 两张全等的矩形纸片,按如图所示的方式交叉叠放,,,与交于点G ,与交于点H .若,,则四边形的面积为()12EG AB ∴=12FH AB =12FG CD =12EH CD =EG FH ∴=F G E H =∴EGFH AB CD =EG FG =EGFH y x x y y ∴x ABCD AECF AB AF =AE BC =AE BC AD CF 30AGB ∠=︒2AB =AGCHA. 4B. C. 8 D. 16【答案】C【解析】【分析】本题考查了含30度角的直角三角形的性质,矩形的性质,菱形的性质与判定,证明四边形是菱形是解题的关键.证明四边形是菱形,根据含30度角的直角三角形的性质求得的长,即可求解.【详解】解:∵两张全等的矩形纸片,按如图所示的方式交叉叠放,,,∴,,,,,,,,,四边形是平行四边形,,四边形是菱形.四边形的面积.故选:C .9. 如图,中,以点为圆心,适当长为半径作弧,交,于,,分别以点,为圆心,大于长为半径作弧,两弧交于点,作射线交于点,连接.若,,的长为( )AGCH AGCH AG ABCD AECF AB AF =AE BC =30AGB ∠=︒AD BC ∥FC AE ∥90B F ∠=∠=︒30HAG AGB ∴∠=∠=︒30FHA HAG ∠=∠=︒2AG AB ∴=2AH AF=2AB = 4AG AH ∴==AG HC ∥AH GC∥∴AGCH AG AH =∴AGCH ∴AGCH 248AB AH =⋅=⨯=ABCD Y B BA BC F G F G 12FG H BH AD E CE CE AD ⊥3AD =BE =ABA. 1.5B. C. 2 D. 【答案】C【解析】【分析】本题考查作图—基本作图、角平分线的定义、平行四边形的性质、勾股定理.由作图过程可知,为的平分线,则,再结合平行四边形的性质可得.在中,由勾股定理得,.设,则,,在中,由勾股定理得,,代入求出的值,即可得出答案.【详解】解:由作图过程可知,为的平分线,,四边形为平行四边形,,,,,,.在中,由勾股定理得,.设,则,,在中,由勾股定理得,,即,解得,的长为2.故选:C .10. 对于一次函数,其自变量和函数的两组对应值如表所示,则的值为( )x4kBE ABC ∠ABE CBE ∠=∠AB AE=Rt BCECE ==AB x =CD AE x ==3DE x =-Rt CDE △222CD CE DE =+x BE ABC ∠ABE CBE ∴∠=∠ ABCD AB CD ∴=3AD BC ==AD BC ∥AEB CBE ∴∠=∠ABE AEB ∴∠=∠AB AE =∴Rt BCECE ===AB x =CD AE x ==3DE x =-Rt CDE △222CD CE DE =+()2223x x =+-2x =AB ∴y kx b =+b c -y c A. B. C. 2 D. 7【答案】A【解析】分析】本题主要考查了待定系数法求一次函数解析式,利用待定系数法得到,据此求出,进而可得.【详解】解:由题意得,,∴,即,∴,∴,∴,故选:A .二、填空题(本大题共8小题,第11~12小题每小题3分,第13~18小题每小题4分,共30分.不需要写出解答过程,请把最终结果直接填写在答题卡相应位置上)11. 函数中,自变量的取值范围是_______.【答案】【解析】【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,二次根式有意义的条件是:被开方数为非负数.【详解】依题意,得x -3≥0,解得:x ≥3.【点睛】本题考查的知识点为:二次根式的被开方数是非负数.12. 若正比例函数的图象经过点,则______.【答案】【解析】【分析】此题主要考查了一次函数图象上点的坐标特征.将点代入函数解析式即可求得.【4c -8-2-244k b c k b c +=⎧⎨+=-⎩2k =8b c -=-244k b c k b c +=⎧⎨+=-⎩2440k k -+=()220k -=2k =8b c +=8bc -=-y =x 3x ≥y kx =()1,2-k =2-()1,2-【详解】解:点代入函数解析式得:,即,故答案为:.13. 如图,平面直角坐标系中,四边形是菱形.若点A 的坐标是,则菱形的周长为______.【答案】40【解析】【分析】本题考查了菱形的性质,平面直角坐标系中两点的距离,勾股定理等知识.于点D ,根据勾股定理求出,根据菱形的性质即可求解.【详解】解:如图,作于点D ,∵点A 的坐标是,∴,∴菱形的周长为40.故答案为:4014. 将函数的图象向下平移2个单位长度,所得图象对应的函数表达式是______.【答案】【解析】【分析】本题考查了一次函数的平移,根据一次函数的平移规律“左加右减,上加下减”即可解答.【详解】解:函数的图象向下平移2个单位长度为,()1,2-y kx =2k -=2k =-2-xOy AOBC ()6,8AD OB ⊥10OA =AD OB ⊥()6,810OA ===AOBC 23y x =+21y x =+23y x =+23221y x x =+-=+故答案为:.15. 我国古代数学经典著作《九章算术》记载:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”如图是善行者与不善行者行走路程(单位:步)关于善行者的行走时间的函数图象,则两图象交点的纵坐标是________.【答案】【解析】【分析】设图象交点的纵坐标是m ,由“今有善行者行一百步,不善行者行六十步.”可知不善行者的速度是善行者速度的.根据速度关系列出方程,解方程并检验即可得到答案.【详解】解:设图象交点的纵坐标是m ,由“今有善行者行一百步,不善行者行六十步.”可知不善行者的速度是善行者速度的.∴,解得,经检验是方程的根且符合题意,∴两图象交点的纵坐标是.故答案为:【点睛】此题考查了从函数图象获取信息、列分式方程解决实际问题,数形结合和准确计算是解题的关键.16. 如图,在中,,,,于点,是斜边的中点,则线段的长为______.【答案】21y x =+s t P 250P 35P 3510035m m -=250m =250m =P 250250Rt ABC △90ACB ∠=︒67.5B ∠=︒8AB =CD AB ⊥D E AB DE【解析】【分析】本题考查的是直角三角形斜边上的中线的性质、等腰直角三角形的性质.根据直角三角形的性质求出,根据直角三角形斜边上的中线的性质得到,根据等腰三角形的性质得到,根据三角形的外角性质求出,根据等腰直角三角形的性质求出.【详解】解:在中,,,则,在中,,,是斜边的中点,则,,,,,,故答案:17. 如图,直线分别交x 轴、y 轴于A ,B 两点,C 是线段上一点,,则点C 的坐标为______.【答案】【解析】【分析】本题考查了一次函数图象上点的坐标特征,全等三角形的性质和判定,熟练掌握一线三垂直证明全等是解答本题的关键.首先得,,作,交直线于点,作,垂足为点,利用证明得到,,设,则,,将点为A ∠142CE AB AE ===22.5ECA A ∠=∠=︒45BEC ∠=︒DE Rt ABC △90ACB ∠=︒67.5B ∠=︒9067.522.5A ∠=︒-︒=︒Rt ABC △90ACB ∠=︒8AB =E AB 142CE AB AE ===22.5ECA A ∴∠=∠=︒45BEC A ECA ∴∠=∠+∠=︒CD AB ⊥ 90CDE \Ð=°DE ∴==122y x =+OA =45ABC ∠︒2,03⎛⎫- ⎪⎝⎭(0,2)B (4,0)A -CD BC ⊥AB D DE x ⊥E AAS CDE BCO △≌△DE CO =CE OB =(,0)C m -(2,0)E m --(2,)D m m --代入直线解析式解出值即可.【详解】解:如图,作,交直线于点,作,垂足点,,,,,,,直线解析式为直线,,,设则,,点在直线的图象上,解得:,.故答案为:.18. 如图,在矩形中,,,点,分别是边,上的动点,且,过点作直线的垂线,垂足为,则线段长的最大值为______.为D m CD BC ⊥AB D DE x ⊥E 45ABC ∠=︒ CD CB ∴=90DEC BCO DCE CBOCD CB ∠=∠=︒⎧⎪∠=⎨⎪=⎩(AAS)CDE BCO ∴ ≌DE CO ∴=CE OB = AB 122y x =+(0,2)B ∴(4,0)A -(,0)C m -(2,0)E m --(2,)D m m -- (2,)D m m --122y x =+1(2)22m m ∴=--+23m =2(3C ∴-0)2,03⎛⎫- ⎪⎝⎭ABCD 2AB =3BC =E F AD BC AE CF =B EF H BH【解析】【分析】本题考查矩形的性质,全等三角形的判定和性质.由矩形的性质推出,,,,由推出,得到,由勾股定理求出,得到,又,即可得到线段长的最大值为.【详解】解:四边形是矩形,,,,,,,,,,,,,,线段.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤)19. 已知y 是x 的一次函数,且当时,;当时,.AD BC =2DC AB ==AD BC ∥90DBC ∠=︒ASA ODE OBF △≌△OB OD =BD ==12OB BD ==BH OB ≤BH ABCD AD BC ∴=2DC AB ==AD BC ∥90DBC ∠=︒ODE OBF ∴∠=∠OED OFB ∠=∠AE CF = AD AE BC CF ∴-=-DE BF ∴=()ASA ODE OBF ∴≌ OB OD ∴=BD === 12OB BD ∴==BH OB ≤ ∴BH 2x =4y ==1x -1y =(1)求这个一次函数的解析式;(2)若点在该一次函数的图象上,求a 的值.【答案】(1)该一次函数的解析式为(2)【解析】【分析】本题考查了待定系数法求一次函数解析式及一次函数图象上点的坐标特征;(1)设一次函数解析式为,再把两组对应值代入得到的方程组,然后解方程组即可;(2)把代入(1)中的解析式得到的方程,然后解方程即可.【小问1详解】解:设该一次函数的解析式为,分别把代入得:解得:所以,该一次函数的解析式为.【小问2详解】把代入,得:,解得:a 的值:20. 如图,在中,E 是上一点,,点F 在上,.求证:.【答案】见解析【解析】(),1a a -2y x =+12a =-()0y kx b k =+≠k b 、(),1a a -a ()0y kx b k =+≠2,4;1,1x y x y ===-=y kx b =+241k b k b +=⎧⎨-+=⎩12,k b =⎧⎨=⎩2y x =+(),1a a -2y x =+12a a -=+12a =-12a =-ABCD Y BC DE DA =DE DAF EDC ∠=∠DF EC =【分析】本题考查了平行四边形的性质,全等三角形的判定与性质等知识.先根据平行四边形的定义得到,再证明,即可证明.【详解】证明:四边形是平行四边形,,,又∵,,,.21. 如图,在平面直角坐标系中,点在直线上,直线l 经过点A ,交y 轴于点.(1)求m 的值和直线l 的函数表达式;(2)若点在直线l 上,点在直线上.若,求t 的取值范围.【答案】(1),直线的解析式为(2)【解析】【分析】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.(1)利用待定系数法求解即可;(2)首先将代入,代入得到,,然后根据求解即可.【小问1详解】把点代入得:,设直线的解析式为,把和分别代入ADF DEC ∠=∠ADF DEC △≌△DF EC = ABCD AD BC ∴∥ADF DEC ∴∠=∠DE AD =DAF EDC ∠=∠ADF DEC ∴ ≌DF EC ∴=()2,A m -22y x =--()0,4B ()1,P t y ()2,Q t y 22y x =--120y y -<2m =AB 4y x =+2t <-()1,t y 4y x =+()2,t y 22y x =--14y t =+222y t =--120y y -<()2,A m -22y x =--()2222m =-⨯--=AB y kx b =+()2,2-()0,4y kx b=+得:解得:所以,直线的解析式为.【小问2详解】把代入,代入,得:,因为,所以,解得.22. 如图,在菱形中,过点作于点,延长至点,使,连接.(1)求证:四边形是矩形;(2)若,,求的长.【答案】(1)见解析(2)的长为【解析】【分析】本题考查了矩形的判定和性质,菱形的性质,勾股定理,熟练掌握矩形的判定和性质是解题的关键.(1)由,可得,即,结合,可得四边形是平行四边形,再结合,可得平行四边形是矩形;(2)根据矩形的性质和菱形的性质,以及勾股定理即可得到结论.【小问1详解】证明:在菱形中,,,224k b b -+=⎧⎨=⎩14k b =⎧⎨=⎩AB 4y x =+()1,t y 4y x =+()2,t y 22y x =--14y t =+222y t =--120y y -<()()4220t t +---<2t <-ABCD A AE BC ⊥E BC F CF BE =DF AEFD 6BF =3DF =AD AD 154CF BE =EF BC =EF AD =AD BC ∥AEFD AE BC ⊥AEFD ABCD AD BC ∥AD BC CD AB ===,,,,∵,四边形是平行四边形,,平行四边形是矩形;【小问2详解】解:设,,,,,解得,.23. 如图,有两个全等的直角三角形,直角边长分别为2和4,我们知道,用这样的两个直角三角形可以拼成平行四边形.(1)请画出所有可能拼成的平行四边形:(要求:用直尺画图,并在图上标出平行四边形每一条边的长度.)(2)在所有拼成的平行四边形中,求最长对角线的长度.【答案】(1)共有3种拼法,画图见解析(2)(1)中图(3)中一条对角线最长,长度为【解析】【分析】本题考查图形的剪拼,涉及矩形的性质、勾股定理,熟练掌握矩形性质,作辅助线构造直角三角的CF BE = CF EC BE EC ∴+=+EF BC ∴=EF AD ∴=AD BC ∥∴AEFD AE BC ⊥ ∴AEFD AD BC EF CD x ====6CF BE BF EF x ∴==-=-90F ∠=︒ 222CD CF DF ∴=+222(6)3x x ∴=-+154x =154AD ∴=形求解是解答的关键.(1)根据平行四边形的性质求解即可;(2)分情况分别利用平行四边形和矩形的性质和勾股定理求解即可.【小问1详解】共有3种拼法,如下图:【小问2详解】如图①所示:其对角线长;如图②所示:∴∴∴如图③所示:∴∴∴.∴图③中的一条对角线最长,长度为.24. 家电超市出售某品牌手机充电器,每个进价50元,了解到有A ,B 两个厂家可供选择,为了促销、两个厂家给出了不同的优惠方案:A 厂家:一律打8折出售;B 厂家:20个以内(含20个)不打折,超过20个后,超过的部分打7折.该家电超市计划购买充电器x 个,设去A 厂家购买应付元,去B 厂家购买应付元.AB ==4CD ==122OD CD ==OA ==2AB OA ==2C D ==112OD CD ==OB ==2AB OB ==1y 2y(1)分别求出、与x 之间的函数关系;(2)若该商家只在一个厂家购买,怎样买过算?【答案】(1),(2)当时,厂家购买划算;当时,两个厂家付款一样;当时,在厂家购买划算【解析】【分析】本题考查一次函数的应用,理解题意、根据题意写出函数关系式并掌握一元一次不等式的解法是本题的关键.(1)根据“去厂家购买应付款进价折扣购买数量”求出与之间的函数关系;分别求出当且为整数时、当且为整数时与之间的函数关系即可;(2)根据不同的取值范围,分别求出当、、时对应的的取值范围即可.【小问1详解】解:根据题意,得且为整数);当且为整数时,;当且为整数时,;综上,,与之间的函数关系为,与之间的函数关系为.【小问2详解】解:当且为整数时:;当且为整数时:若,得,解得;若,得,解得;若,得,解得;综上,当时,;当时,;当时,.在1y 2y ()1400y x x =≥()25002035300(20)x x y x x ⎧≤≤=⎨+>⎩060x <<A 60x =60x >B A =⨯⨯1y x 020x ≤≤x 20x >x 2y x x 12y y <12y y =12y y >x 10.85040(0y x x x =⨯=≥x 020x ≤≤x 250y x =20x >x 250200.750(20)35300y x x =⨯+⨯-=+()25002035300(20)x x y x x ⎧≤≤=⎨+>⎩1y ∴x ()1400y x x =≥2y x ()25002035300(20)x x y x x ⎧≤≤=⎨+>⎩020x ≤≤x 12y y <20x >x 12y y <4035300x x <+60x <12y y =4035300x x =+60x =12y y >4035300x x >+60x >060x ≤<12y y <60x =12y y =60x >12y y >当时,选择厂家购买比较划算;当时,选择厂家和厂家一样划算;当时,选择厂家购买比较划算.25. 已知四边形是正方形,点E 是射线上一点,连接,点D 关于直线的对称点为M ,射线与直线相交于点G .(1)若点M 在对角线上,则 度;(2)如图,若E 是的中点,试用等式表示线段,,之间的数量关系,并证明;(3)若点E 在边的延长线上,,求的长.【答案】(1)(2),证明见解析(3)【解析】【分析】本题考查了正方形的性质、全等三角形的判定及性质、勾股定理、等腰三角形的性质和判定:(1)根据正方形的性质以及对称的性质得到结果;(2)先作辅助线,根据正方形的性质以及中点得到角度和边长之间的关系,证明出两个三角形全等,得到对应边以及对应角,再根据边长之间的关系可得到结果;(3)先作辅助线,根据勾股定理得到,然后根据对称性以及正方形的特点证明出,即可得到结果;作出正确的辅助线是解题的关键.【小问1详解】解:若点M 在对角线上,如图所示:,此时,∵点D 关于直线的对称点为M,∴060x ≤<A 60x =A B 60x >B ABCD DC AE AE AM BC AC DAE ∠=CD AG AD CG DC 4,3AD BG ==DE 22.5AG AD CG =+8DE =5AG =ABN ECN △≌△AC 45DAC ∠=︒AE∴,故答案为:;【小问2详解】解:,证明如下:延长交的延长线于点,如图所示:,四边形是正方形,,,点是中点,在和中,,,点与点关于直线对称,,,,,而,;【小问3详解】解:设与相交于点,如图所示:122.52DAE EAC DAC ∠=∠=∠=︒22.5AG AD CG =+AE BC F ABCD ,90AD BC ADC ∴∠=︒∥90DCF ADC ∴∠=∠=︒ E CD DE EC∴=ADE V FCE △ADC DCF DE CEAED FEC ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA ADE FCE ∴ ≌,AD CF DAE CFE ∴=∠=∠ D M AE GAF DAE ∴∠=∠GAF CFE ∴∠=∠AG FG ∴=FG CF CG =+ CF AD =AG AD CG ∴=+AE BC N,在中,,,,点与点关于直线对称,,四边形是正方形,,,,,,,,,四边形是正方形,,,在和中,,,Rt ABG △222AB BG AG +=22243AG ∴+=5AG ∴= D M AE DAE GAE ∴∠=∠ ABCD AD BC ∴∥DAE ANG ∴∠=∠GAE ANG ∴∠=∠5GN AG ∴==3GB = 532BN GN GB ∴=-=-=4BC AD == 2BN NC ∴== ABCD AB DC ∴ ABC BCE ∴∠=∠ABN ECN ABC BCE BN NCANB ENC ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA ABN ECN ∴ ≌4CE AB ∴==.26. 如图1,平面直角坐标系中,过点分别作轴、轴的垂线,垂足分别为,两点,直线与交于点,与轴交于点.(1)求点D 的坐标;(2)如图2,是线段上的一个动点(不与点重合),过作的垂线交于点.①若,求的长;②若的平分线与射线交于点,,,求关于的函数解析式.【答案】(1)(2)①的长为2;②【解析】【分析】(1)直线,令,求出,即可得点的坐标;(2)①过作轴于,证明,可得,,设,则,代入直线即可求解;②在上截取,连接,证明,在中,利用勾股定理求解即可.【小问1详解】解:,轴,直线与交于点,点的纵坐标为6,直线,令得,解得,点的坐标为;【小问2详解】448DE DC CE ∴=+=+=xOy ()8,6B x y C A 26y x =-AB D y M E AO O E ED DM F DE EF =AE COM ∠EF H OH m =OE n =m n ()6,6AE m =+26y x =-6y =6x =D F FG y ⊥G ()AAS EFG DEA ≌FG EA =6EG DA ==AE a =(),F a a -26y x =-AD AN AE =NE EOH DNE ≌Rt NAE (8,6)B BA y ⊥26y x =-AB D ∴D 26y x =-6y =266x -=6x =∴D ()6,6解:①过作轴于,,,,,,,,,,设,则,,,,,代入得,解得,的长为2;②在上截取,连接,∵平分,∴,F FG y ⊥G 90EGF A ∴∠=∠=︒90FEG EFG ∠+∠=︒EF DE ⊥ 90FEG DEA ∴∠+∠=︒EFG DEA ∴∠=∠DE EF = ()AAS EFG DEA ∴ ≌FG EA ∴=6EG DA ==AE a =FG EA a ==6OA AE OE =+= 6EG OG OE =+=OG AE a ∴==(,)F a a ∴-26y x =-26a a -=-2a =AE ∴AD AN AE =NE OH COM ∠11904522MOH COM ∠=∠=⨯︒=︒∴,∵,,∴∴,∴,由(1)中D 的坐标可知,∴,即.∴,∴,在中,,∴,∵,∴,∴,∴,【点睛】本题是一次函数综合题,考查一次函数图象上点的坐标特征,全等三角形的判定和性质,勾股定理,等腰直角三角形的性质等,能够通过作垂线构造全等三角形是解题的关键.180********EOH MOH ∠=︒-∠=︒-︒=︒AN AE ==90DAE ∠︒45ANE ∠=︒180********END ANE ∠=︒-∠=︒-︒=︒EOH END ∠=∠()6,6AD AO =AD AN AO AE -=-DN EO =EOH DNE ≌NE OH m ==NAE 90NAE ∠=︒222AE AN NE +=AN AE =222AE AE NE +=222AE NE =NE =m ∴=+。

北京市人大附中2023-2024学年八年级下学期期中考试语文试卷答案

北京市人大附中2023-2024学年八年级下学期期中考试语文试卷答案

人大附中2023 ~ 2024学年度第二学期初二年级语文期中练习2024年4月22日答案一.基础·运用(共20分)(一)1.(1)D (2分)2.【甲】织女还将支撑织布机的一块珍贵的石头赠给了他。

(原句多重定语顺序有误)【乙】以这个神话传说为素材进行创作的,除了文人骚客之外,艺术家们也纷纷参与其中。

(原句句式杂糅)(2分)3.藏品二:雕品为一牛呈卧姿状,圆润可感;牛背上驮一童子,手拽缰绳和拨浪鼓,表情欢愉(或憨态可掬)。

(2分)4. B (2分)5. D (2分)6. C (2分)7. D (2分)8.示例:希望大家努力学习美学知识,传承传统技艺,创新融合古今,共铸文化辉煌。

让我们行动起来吧!(用上三个词,逻辑合理,表达通顺,即可得分)。

(2分)(二)综合性学习(共4分)9. C (2分)10.示例:①风筝也会展翅翱翔(或启航、勇敢飞翔等)②因为,每一次跌宕,都是在宣告成长。

(或每一次盘旋,都是在告别迷茫。

)(每空1分,共2分)二.古诗文阅读(共17分)(一)古诗文默写。

(4分)11. 白露未已(1分)12. 气蒸云梦泽(1分)13. 俶尔远逝天涯若比邻(每空1分,共2分。

有错字该空不得分)(二)古诗阅读(共5分)14. 水鸟和鸣(或水鸟和鸣起兴)钟鼓乐之(或琴瑟友之)(每空1分,共2分)15. 示例:两首诗都运用了“重章叠句”的艺术形式。

《关雎》诗人通过对“参差荇菜”“窈窕淑女”等,反复吟咏、一唱三叹,将男子对心仪女子的热切之情层层推进,表达了对美好情感的向往和追求。

而《式微》则通过反复运用设问“式微式微,胡不归”(或反问“微君之”“胡为乎”)来表达服劳役的人民的疾苦和对统治者的怨愤。

(3分)(三)文言文阅读(共8分)16. A(2分)17. B(2分)18. ①对理想社会的向往②热情好客③申以主敬④知礼(每空1分共4分)【译文】唐大历六年(公元771年),温州人李庭带领一批人到深山老林里伐木取材,由于山林密集而迷了路,遇见了一处瀑布。

北京市中国人民大学附属中学2023-2024学年八年级下学期期中数学试题(解析版)

北京市中国人民大学附属中学2023-2024学年八年级下学期期中数学试题(解析版)

人大附中2023~2024学年度第二学期初二年级数学期中练习说明:1.本试卷共6页,共两部分,三道大题,24道小题,满分100分,考试时间90分钟.2.试题答案一律填涂或书写在答题卡上,在试卷、草稿纸上作答无效.3.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.第一部分 选择题一、选择题(共24分,每题3分)1. 以下列长度的三条线段为边能组成直角三角形的是( )A. 6,7,8B. 2,3,4C. 3,4,6D. 6,8,10【答案】D【解析】【分析】根据勾股定理逆定理即两短边的平方和等于最长边的平方逐一判断即可.【详解】解:.,不能构成直角三角形,故本选项错误;.,不能构成直角三角形,故本选项错误;.,不能构成直角三角形,故本选项错误;.,能构成直角三角形,故本选项正确.故选:.【点睛】本题考查的是勾股定理逆定理,熟知如果三角形的三边长,,满足,那么这个三角形就是直角三角形是解答此题的关键.2. 如图,中,于点,若,则的度数为( )A. B. C. D. 【答案】B【解析】【分析】由在□ABCD 中,∠EAD =35°,得出∠D 的度数,根据平行四边形的对角相等,即可求得∠B 的度数,继而求得答案.【详解】解:∵∠EAD =35°,AE ⊥CD ,∴∠D =55°,A 222678+≠ ∴B 222234+≠ ∴C 222346+≠ ∴D 2226810+= ∴D a b c 222+=a b c ABCD Y AE CD ⊥E 35EAD ∠=︒B ∠35︒55︒65︒125︒∴∠B =55°,故选:B .【点睛】此题考查了平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.3. 下列各式中,运算正确的是( )A. B. C. D. 【答案】A【解析】【分析】本题考查了算术平方根,二次根式的加减运算.熟练掌握算术平方根,二次根式的加减运算是解题的关键.根据算术平方根,二次根式的加减运算求解作答即可.【详解】解:AB .,错误,故不符合要求;C .D,错误,故不符合要求;故选:A .4. 在菱形中,点分别是的中点,若,则菱形的周长是( )A. 12B. 16C. 20D. 24【答案】D【解析】【分析】根据三角形中位线定理可得,再根据菱形的周长公式列式计算即可得到答案.【详解】解:点分别是的中点,是的中位线,,菱形的周长,=3=2=2=-=3=≠2+≠22=≠-ABCD E F ,AC DC ,3EF =ABCD 26AD EF == E F ,AC DC ,EF ∴ACD 2236AD EF ∴==⨯=∴ABCD 44624AD ==⨯=【点睛】本题主要考查了三角形中位线定理,菱形性质,熟练掌握三角形的中位线等于第三边的一半及菱形的四条边都相等,是解题的关键.5. 如图,正方形的边长为2,是的中点,,与交于点,则的长为( )A. B. C. D. 3【答案】A【解析】【分析】由正方形的性质得出∠DAF =∠B =90°,AB =AD =2,由E 是BC 的中点,得出BE =1,由勾股定理得出AEADF ≌△BAE(ASA ),即可得出答案.【详解】∵四边形ABCD是正方形,∴∠DAF =∠B =90°,BC =AB =AD =2,∴∠BAE +∠2=90°,∵AB =2,E 是BC 的中点,∴BE =1,∴AE ,∵AD ∥BC ,∴∠1=∠2,∵DF ⊥AE ,∴∠1+∠ADF =90°,∴∠ADF =∠BAE ,在△ADF 和△BAE 中,,的ABCD E BC DF AE ⊥AB F DF =DAF B AD ABADF BAE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF ≌△BAE (ASA ),∴DF =AE故选:A .【点睛】此题主要考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.6. 一个正方形的面积是22.73,估计它的边长大小在( )A. 2与3之间B. 3与4之间C. 4与5之间D. 5与6之间【答案】C 【解析】【分析】设正方形的边长为,根据其面积公式求出的值,估算出的取值范围即可.【详解】解:设正方形的边长为,正方形的面积是22.73,,,,它的边长大小在4与5之间,故选:C .【点睛】本题考查的是估算无理数的大小及算术平方根,估算无理数的大小时要用有理数逼近无理数,求无理数的近似值.7. 要判断一个四边形是否为矩形,下面是4位同学拟定的方案,其中正确的是 ( )A. 测量两组对边是否分别相等B. 测量两条对角线是否互相垂直平分C. 测量其中三个内角是作都为直角D. 测量两条对角线是否相等【答案】C【解析】【分析】根据矩形的判定和平行四边形的判定以及菱形的判定分别进行判断,即可得出结论.【详解】解:矩形的判定定理有①有三个角是直角的四边形是矩形,②对角线互相平分且相等的四边形是矩形,③有一个角是直角的平行四边形是矩形,、根据两组对边分别相等,只能得出四边形是平行四边形,故本选项错误;a a a a a ∴=1622.7325<< <<45<<∴A、根据对角线互相垂直平分得出四边形是菱形,故本选项错误;、根据矩形的判定,可得出此时四边形是矩形,故本选项正确;、根据对角线相等不能得出四边形是矩形,故本选项错误;故选:.【点睛】本题考查了矩形的判定、平行四边形和菱形的判定,主要考查学生的推理能力和辨析能力.8. 如图,点A ,B ,C 在同一条直线上,点B 在点A ,C 之间,点D ,E 在直线AC 同侧,,,,连接DE ,设,,,给出下面三个结论:①;②;.上述结论中,所有正确结论的序号是( )A. ①B. ①③C. ②③D. ①②③【答案】D【解析】【分析】此题考查了勾股定理,全等三角形的判定与性质,完全平方公式的应用,熟记勾股定理是解题的关键.①根据直角三角形的斜边大于任一直角边即可;②在三角形中,两边之和大于第三边,据此可解答;③将用和表示出来,再进行比较.【详解】解:①过点作,交于点;过点作,交于点.∵,,,又,,B C D C AB BC <90A C ∠=∠=︒EAB BCD ≌△△AB a =BC b =DE c =a b c +<a b +>)a b c +>c a b D DF AC ∥AE F B BG FD ⊥FD G DF AC ∥AC AE ⊥DF AE ∴⊥BG FD ⊥ BG AE ∴四边形为矩形,同理可得,四边形也为矩形,,在中,则,故①正确,符合题意;②∵,,在中,,,故②正确,符合题意;③∵,,,又,,.,,,,,.故③正确,符合题意;故选:D第二部分 非选择题二、填空题(共24分,每题3分)∴ABGF BCDG FD FG GD a b ∴=+=+∴Rt EFD DF ED<a b c +<EAB BCD ≌△△AE BC b ∴==Rt EAB△BE ==AB AE BE +>a b ∴+>EAB BCD ≌△△AEB CBD ∠∠∴=BE BD =90AEB ABE ∠+∠=︒ 90CBD ABE ∴∠+=∠︒90EBD ∴∠︒=BE BD = 45BED BDE ∴∠=∠=︒sin 45BE c ∴==⋅︒=c ∴= 22222222()2(2)2()42()a b a ab b a b ab a b +=++=++>+∴)a b +>∴)a b c +>9.有意义,则实数x 的取值范围是______.【答案】【解析】【分析】本题主要考查了二次根式有意义的条件,解题的关键是熟练掌握二次根式被开方数为非负数.有意义,∴,解得:,故答案为:.10. 如图,在中,若,点D 是的中点,,则的长度是_____.【答案】2【解析】【分析】本题考查了直角三角形的性质,利用直角三角形斜边上的中线等于斜边的一半可得的长度.【详解】解:∵在中,,点D 是的中点,,∴.故答案为:2.11. 如图,在数轴上点 A 表示的实数是_____.【解析】【分析】根据勾股定理求得的长度,即可得到的长度,根据点的位置即可得到点表示的数.【详解】解:如图,1x ≥10x -≥1x ≥1x ≥ABC 90ACB ∠=︒AB 4AB =CD CD ABC 90ACB ∠=︒AB 4AB =114222CD AB ==⨯=BD AB B A根据勾股定理得:,,点【点睛】本题考查了实数与数轴,掌握直角三角形两直角边的平方和等于斜边的平方是解题的关键.12. 如图,在四边形中,对角线相交于点O .如果,请你添加一个条件,使得四边形成为平行四边形,这个条件可以是______________________.【答案】(答案不唯一)【解析】【分析】本题考查了平行四边形的判定.熟练掌握平行四边形的判定是解题的关键.根据平行四边形的判定作答即可.【详解】解:由题意知,可添加的条件为,∵,,∴四边形平行四边形,故答案为:.13. 如图,矩形的对角线相交于点O ,,,则矩形对角线的长为___________,边的长为___________.【答案】①. 8 ②. 【解析】【分析】本题主要考查了矩形的性质,等边三角形的性质与判定,勾股定理,先由矩形对角线相等且互相是BD ==∴AB BD ==∴A ABCD AC BD ,AB CD ∥ABCD AD BC ∥AD BC ∥AD BC ∥AB CD ∥ABCD AD BC ∥ABCD AC BD ,60AOB ∠=︒4AB =BD BC平分得到,再证明是等边三角形,得到,则,据此利用勾股定理求出的长即可.【详解】解:∵四边形是矩形,∴,∵,∴是等边三角形,∴,∴,在中,由勾股定理得故答案为:8;14. 小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示的菱形,并测得,对角线的长为,接着活动学具成为图2所示的正方形,则图2中对角线的长为________.【答案】【解析】【分析】如图1,2中,连接AC .在图2中,利用勾股定理求出BC ,在图1中,只要证明△ABC 是等边三角形即可解决问题.【详解】解:如图1,2中,连接AC .如图1中,∵AB =BC ,∠B =60°,∴△ABC 是等边三角形,∴AB =BC =AC =30,在图2中,∵四边形ABCD 是正方形,2290AC BD OA BD ABC ====︒,∠AOB 4OA OB AB ===28AC BD OB ===BC ABCD 2290OA OB AC BD OA BD ABC =====︒,,∠60AOB ∠=︒AOB 4OA OB AB ===28AC BD OB ===Rt ABC △BC ===60B ∠︒AC 30cm AC cm∴AB =BC ,∠B =90°,∵AB =BC =30cm ,∴AC =cm ,故答案为:.【点睛】本题考查菱形的性质、正方形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15. 如图,将菱形纸片ABCD 折叠,使点B 落在AD 边的点F 处,折痕为CE ,若∠D =80°,则∠ECF 的度数是________.【答案】40°【解析】【分析】根据题意由折叠的性质可得∠BCE =∠FCE ,BC =CF ,由菱形的性质可得BC ∥AD ,BC =CD ,可求∠BCF =∠CFD =80°,即可求解.【详解】解:∵将菱形纸片ABCD 折叠,使点B 落在AD 边的点F 处,∴∠BCE =∠FCE ,BC =CF ,∵四边形ABCD 是菱形,∴BC ∥AD ,BC =CD ,∴CF =CD ,∴∠CFD =∠D =80°,∵BC ∥AD ,∴∠BCF =∠CFD =80°,∴∠ECF =40°.故答案为:40°.【点睛】本题考查翻折变换以及菱形的性质,熟练掌握并运用折叠的性质是解答本题的关键.16. 图1中的直角三角形有一条直角边长为3,将四个图1中的直角三角形分别拼成如图2,图3所示的正方形,其中阴影部分的面积分别记为,,则的值为___________.【答案】9【解析】【分析】设直角三角形另一直角边为,然后分别用表示出两个阴影部分的面积,最后求解即可.本题主要考查了三角形和正方形面积的求法,解题的关键在于能够熟练地掌握相关的知识点.【详解】解:设直角三角的另一直角边为,则,,,.故答案为:9三、解答题(共52分,第17题8分,第18-19题,每题5分,第20题6分,第21题5分,第22题6分,第23题7分,第24题10分)解答应写出文字说明、演算步骤或证明过程.17. 计算:(1);(2).【答案】(1(2)【解析】【分析】本题考查了利用二次根式的性质进行化简,二次根式的加减运算,二次根式的混合运算.熟练掌握利用二次根式的性质进行化简,二次根式的加减运算,二次根式的混合运算是解题的关键.(1)先利用二次根式的性质进行化简,然后进行加减运算即可;1S 2S 12S S -a a a 2211(3)4392S a a a =+-⨯⨯=+22S a a a =⋅=221299S S a a ∴-=+-=(1-(2)先分别计算二次根式的乘除,然后进行加减运算即可.【小问1详解】解:【小问2详解】解:.18. 如图,四边形为平行四边形,,是直线上两点,且,连接,.求证:.【答案】见详解【解析】【分析】本题考查平行四边形的性质、平行线的性质、全等三角形的判定与性质,根据可得,再根据平行四边形的性质可得,且,即,即可证明,即可得到结论.【详解】证明:∵,∴,∴,∵四边形为平行四边形,∴,且,∴,在和中,2=⨯=(32=+1=-ABCD E F BD BE DF =AF CE AF CE =BE DF =ED FB =AB DC =AB DC =EDC FBA ∠∠()SAS DEC BFA ≌BE DF =BE BD DF BD +=+ED FB =ABCD AB DC =AB DC =EDC FBA ∠∠DEC BFA V,∴,∴.19. 已知,求的值.【答案】11【解析】【分析】本题考查了已知式子的值求代数式的值,平方差公式,先整理,再代入计算,即可作答.【详解】解:依题意,20. 如图,在中,点D 是线段的中点.求作:线段,使得点E 在线段上,且.作法:①连接,②以点A 为圆心,长为半径作弧,再以C 为圆心,长为半径作弧,两弧相交于点M ;③连接,交于点E ;所以线段即为所求的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明:证明:连接∵,,∴四边形是平行四边形.(①)(填推理的依据)∵交于点E ,∴,即点E 是的中点.(② )(填推理的依据)DE BF EDC FBA DC AB =⎧⎪∠=∠⎨⎪=⎩()SAS DEC BFA ≌AF CE=1x =-227x x ++()22727x x x x ++=++()))2272711751711x x x x ++=++=⨯++=-+=ABC AB DE AC 12DE BC =CD CD AD DM AC DE AM CM ,,AM CD =AD CM =ADCM AC DM ,AE CE =AC∵点D 是AB 的中点,∴.(③ )(填推理的依据)【答案】见详解【解析】【分析】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.(1)根据几何语言画出对应的几何图形即可;(2)先证明四边形是平行四边形,得出点E 是的中点,再结合然后点D 是的中点,即三角形中位线性质得到.【详解】解:(1)如图,;(2)证明:连接AM ,CM ,∵,,∴四边形是平行四边形.(①两组对边分别相等的四边形是平行四边形)(填推理的依据)∵AC ,DM 交于点E ,∴,即点E 是中点.(②平行四边形的对角线互相平分)(填推理的依据)∵点D 是的中点,∴(③中位线的性质).故答案为:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;中位线的性质.21. 如图,四边形中,,,.的12DE BC =-ADCM AC AB 12DE BC =AM CD =AD CM =ADCM AE CE =AC AB 12DE BC =ABCD 90BAD ∠=︒AB AD ==4BC =CD =(1)求的度数;(2)求四边形的面积.【答案】(1)(2)5【解析】【分析】(1)由题意得,,由勾股定理得,,由,可得是直角三角形,且,根据,计算求解即可;(2)根据,计算求解即可.【小问1详解】解:∵,∴,由勾股定理得,,∵,∴,∴是直角三角形,且,∴,∴的度数为;【小问2详解】解:由题意知,,∴四边形的面积为5.【点睛】本题考查了三角形内角和定理,等边对等角,勾股定理,勾股定理逆定理等知识.熟练掌握三角形内角和定理,等边对等角,勾股定理,勾股定理逆定理是解题的关键.ABC ∠ABCD 135︒1802BADABD ADB ︒-∠∠=∠=2BD =222BD BC CD +=BCD △90CBD ∠=︒ABC ABD CBD ∠=∠+∠1122ABD BCD ABCD S S S AB AD BC BD =+=⨯+⨯ 四边形90BAD ∠=︒AB AD ==180452BAD ABD ADB ︒-∠∠=∠==︒2BD ==(2222420+==222BD BC CD +=BCD △90CBD ∠=︒135ABC ABD CBD ∠=∠+∠=︒ABC ∠135︒11522ABD BCD ABCD S S S AB AD BC BD =+=⨯+⨯= 四边形ABCD22. 在中,,点D 是边上的一个动点,连接.作,,连接.(1)如图1,当时,求证:;(2)当四边形是菱形时,①在图2中画出四边形,并回答:点D 的位置为 .②若,,则四边形的面积为 .【答案】(1)见解析,(2)①见解析,为的中点;②【解析】【分析】(1)由,,可证四边形是平行四边形,由,可证四边形是矩形,进而结论得证;(2)①由题意作图如图2,由四边形是菱形,可得,则,由,可得,则,,即为的中点;②如图2,记的交点为,则,,,由勾股定理求,则,根据,计算求解即可.【小问1详解】证明:∵,,∴四边形是平行四边形,∵,∴,∴四边形是矩形,∴;【小问2详解】①解:如图2,Rt ABC △90ACB ∠=︒AB CD AE DC ∥CE AB ∥DE CD AB ⊥AC DE =ADCE ADCE 10AB =8DE =ADCE D AB 24AE DC ∥CE AB ∥AECD 90CDA ∠=︒AECD ADCE AD CD =DAC DCA ∠=∠18090B ACB DAC DCB DCA ∠=︒-∠-∠∠=︒-∠,B DCB ∠=∠CD BD =AD BD =D AB AC DE 、O 5AD =142DO DE ==AC DE ⊥3AO =26AC AO ==12ADCE S AC DE =⨯四边形AE DC ∥CE AB ∥AECD CD AB ⊥90CDA ∠=︒AECD AC DE =∵四边形是菱形,∴,∴,∵,∴,∴,∴,∴为的中点;②解:如图2,记的交点为,∵四边形是菱形,为的中点,,,∴,,,由勾股定理得,,∴,∴,故答案为:.【点睛】本题考查了矩形的判定与性质,等边对等角,三角形内角和定理,菱形的性质,勾股定理等知识.熟练掌握矩形的判定与性质,等边对等角,三角形内角和定理,菱形的性质,勾股定理是解题的关键.23. 如图,四边形中,,,对角线平分,过点A 作的垂线,分别交,于点E ,O ,连接.(1)求证:四边形菱形;(2)连接,若,,求的长.是ADCE AD CD =DAC DCA ∠=∠18090B ACB DAC DCB DCA ∠=︒-∠-∠∠=︒-∠,B DCB ∠=∠CD BD =AD BD =D AB AC DE 、O ADCE D AB 10AB =8DE =5AD =142DO DE ==AC DE⊥3==AO 26AC AO ==1242ADCE S AC DE =⨯=四边形24ABCD AD BC ∥90BCD ∠=︒BD ABC ∠BD AE BC BD DE ABED CO 3AB =2CE =CO【答案】(1)见解析(2)【解析】【分析】(1)先证明,再由等腰三角形的性质得,然后证,得,则四边形是平行四边形,然后由菱形的判定即可得出结论;(2)由勾股定理得,根据直角三角形斜边上的中线等于斜边的一半,即可得出【小问1详解】证明:∵,∴,∵平分,∴,∴,∴,∵,∴,∵,在和中,,,,四边形是平行四边形,又,平行四边形为菱形;【小问2详解】解:∵四边形为菱形,∴,,CO =AB AD =OB OD =()ASA OBE ODA ≌OE OA =ABED CD =BD =CO =AD BC ∥ADB DBE ∠=∠BD ABC ∠ABD DBE ∠=∠ABD ADB ∠=∠AB AD =AE BD ⊥BO DO =AD BC ∥OBE △ODA V DBE ADB OB ODBOE DOA ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA OBE ODA ∴ ≌OE OA ∴=∴ABED AB AD = ∴ABED ABED 3BE DE AB ===BO DO =∵,,,∴在中,根据勾股定理得:,∵,为直角三角形,∴.【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、等腰三角形的性质以及勾股定理、直角三角形斜边上的中线等于斜边的一半,二次根式的混合运算等知识,熟练掌握菱形的判定与性质是解题的关键.24. 在中,,,点D 为射线上一动点(不与点B 、C 重合),点B 关于直线的对称点为E ,作射线,过点C 作的平行线,与射线交于点F .连接(1)如图1,当点E 恰好在线段上时,用等式表示与的数量关系,并证明;(2)如图2,当点D 在线段的延长线上时,①依题意补全图形;②用等式表示和的数量关系,并证明.【答案】(1),证明见详解(2)①见详解②,证明见详解【解析】【分析】本题考查了全等三角形的判定与性质、正方形的性质与判定,矩形的性质,轴对称性质,正确掌握相关性质内容是解题的关键.(1)先由轴对称性质,得出再证明,因为,得出得证即可作答.90BCD ∠=︒CD =∴=325BC BE CE =+=+=Rt BCDBD ===BO DO =BCD△12CO BD ==ABC 90ABC ∠=︒AB BC =BC AD DE AB DE AE AF ,.AC DF BD BC ADB ∠AFE ∠2DF BD =45ADB AFE ∠+︒=∠AB AE BD ED ==,,()SSS ADE ADB ≌CF AB ∥45ECD ECF ∠=∠=︒,()ASA CED CEF ≌,(2)①根据题意的描述作图即可;②易得,过点作于点,四边形是正方形,证明,则,再通过角的运算,即可作答.【小问1详解】解:,证明如下:如图:当点E 恰好在线段上时,∵在中,∴,∵点B 关于直线的对称点为E ,∴在和中,∴,∴,∴,,∵,∴在和中,∴ADE ADB ≌A AG CF ⊥G ABCG ()Rt Rt HL AFG AFE ≌FAG FAE EAG ∠==∠2DF BD =AC ABC 90ABC AB BC∠=︒=,45BAC ACB ∠=∠=︒AD AB AE BD ED ==,,ADE V ADB AE AB ED BD AD AD =⎧⎪=⎨⎪=⎩,()SSS ADE ADB ≌90AED ABD ∠=∠=︒AC DF ⊥90CED CEF ∠=∠=︒CF AB ∥45ECF BAC ∠=∠=︒,45ECD ECF ∴∠=∠=︒,CED △CEF △CED CEF CE CEECD ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA CED CEF ≌,∴ ∴,即有;【小问2详解】解:当点在线段的延长线上时①依题意补全图形如下②用等式表示和的数量关系是,证明如下∵点关于直线的对称点为E ,∴,∴,过点作于点,如上图,则,∵,∴∴四边形是矩形,∵,∴四边形是正方形,∴,在和中,∴,∴,即有,12DE EF DF ==,12BD DE DF ==2DF BD =D BC ADB ∠AFE ∠45ADB AFE ∠+︒=∠B AD ADE ADB ≌90AE AB AEF ABC =∠=∠=︒,12EAD BAD BAE ∠=∠=∠,A AG CF ⊥G 90AGF AGC ∠=∠=︒CF AB ∥90BAG AGF ABC AGC∠=∠=︒=∠=∠ABCG AB BC =ABCG AG AB AE ==Rt AFG △Rt AFE AG AE AF AF=⎧⎨=⎩()Rt Rt HL AFG AFE ≌FAG FAE EAG ∠==∠2EAG FAE ∠=∠∵∴,∴,∴∴在中,,∴∴.人大附中2023~2024学年度第二学期初二年级数学期中练习附加题说明:1.附加题共4页,共两道大题,9道小题,满分40分,考试时间30分钟.2.试题答案一律填涂或书写在答题卡上,在试卷、草稿纸上作答无效.3.在答题卡上,作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.一、填空题(共15分,第1题4分,第2-4题,每题3分,第5题2分)25. 矩形中,,,点E 是边上一点,连接,将沿折叠,使点B 落在点处,连接.(1)如图1,当时,的长为___________.(2)如图2,当点恰好在矩形的对角线上,则的长为___________.【答案】①. 4 ②. 【解析】【分析】(1)由矩形性质得,由折叠得:,,由平行线的性质得:,,进而得出:,,即;90AFE FAE ∠+∠=︒90FAE AFE ∠=︒-∠21802EAG FAE AFE ∠=∠=︒-∠2702BAE BAG EAG AFE∠=∠+∠=︒-∠135.BAD BAE AFE ∠=∠=︒-∠Rt △ABD 90ADB BAD ∠+∠=︒13590ADB AFE ∠+︒-∠=︒45ADB AFE ∠+︒=∠ABCD 6AB =8BC =BC AE ABE AE B 'CB 'CB AE '∥BE B 'ABCD ACAE 90ABE ∠=︒B E BE '=AEB AEB '∠=∠AEB ECB '∠=∠AEB EB C ''∠=∠ECB EB C ''∠=∠B E EC '=142BE EC BC ===(2)利用勾股定理可得,由折叠得:,,,设,则,,利用勾股定理建立方程求解即可;本题是矩形综合题,考查了矩形的性质,折叠变换的性质,勾股定理等,熟练掌握相关知识,学会添加辅助线是解题关键.【详解】解:(1)四边形是矩形,,由折叠得:,,,,,,,,,,故答案为:4;(2)如图,点恰好在矩形的对角线上,四边形是矩形,,,,,由折叠得:,,,,,设,则,,在中,,10AC ===AB AB '=B E BE '=90AB E ABE '∠=∠=︒BE x =B E x '=8CE x =- ABCD 90ABE ∴∠=︒B E BE '=AEB AEB '∠=∠CB AE ' AEB ECB '∴∠=∠AEB EB C ''∠=∠ECB EB C ''∴∠=∠B E EC '∴=12BE EC BC ∴==8BC = 4BE ∴=B 'ABCD AC ABCD 90ABC ∴∠=︒=6AB 8BC=10AC ∴===AB AB '=B E BE '=90AB E ABE '∠=∠=︒1064B C AC AB ''∴=-=-=18090CB E AB E ''∠=︒-∠=︒BE x =B E x '=8CE x =-Rt CB E '△222B E B C CE ''+=,解得:,,在中,;故答案为:4,26. 如图,四边形中, ,的平分线交于点E ,连接.在以下条件:①平分;②E 为中点;③中选取两个作为题设,另外一个作为结论,组成一个命题.(1)请写出一个真命题:题设为___________,结论为___________.(填序号)(2)可以组成真命题的个数为___________.【答案】①. ②, ②. ③, ③. 6【解析】【分析】(1)根据挑选题设为②,结论为③,结合,的平分线交这个两个条件,先证明,再进行边的等量代换,即可作答.(2)注意分类讨论以及逐个分析,不管取哪个作为条件都可以证明,从而利用全等三角形的性质进行边的等量代换或者角的等量代换,即可作答.【详解】解:(1)题设为②,结论为③;理由如下:延长交的延长线于点,∵∴,()22248x x ∴+=-3x =3BE ∴=Rt ABEAE ===ABCD AD BC ∥BAD ∠CD BE BE ABC ∠CD AD BC AB +=AD BC ∥BAD ∠CD ()AAS AED FEC ≌AED FEC △≌△AE BC F AD BC∥DAE F ∠=∠∵E 为中点,∴,在和中,∴,∴,,∵的平分线交于点E ,∴,∴∴∴(2)由(1)知,题设为②,结论为③是真命题,同理:题设为③,结论为②是真命题,过程如下:延长交的延长线于点,∵的平分线交于点E∴,∵∴∴∵∴∴∵CD DE CE =AED △FEC DAE F DEA CEFDE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AED FEC ≌CF AD =AD BC CF BC BF +=+=BAD ∠CD DAE BAD ∠=∠BAD F∠=∠AB BF=AD BC AB+=AE BC F BAD ∠CD DAE BAD ∠=∠AD BC∥BAD DAE F∠=∠=∠AB BF=AD BC AB+=AD BC AB BF+==AD CF=AD BC∥∴∵∴∴即E 为中点;当题设为①,结论为②是真命题,过程如下:延长交的延长线于点,∵的平分线交于点E∴,∵∴∴∵平分∴∵∴∴即E 为中点;同理:当题设为②,结论①为是真命题,同理,∴,,∵的平分线交于点E ,∴,∴∴∴DAE F∠=∠DEA CEF∠=∠ ≌DEA CEFDE CE=CD AE BC F BAD ∠CD DAE BAD ∠=∠AD BC∥BAD DAE F∠=∠=∠AB BF=BE ABC∠EB AF AE EF⊥=,DEA CEF DAE F∠=∠∠=∠, ≌DEA CEFDE CE=CD CF AD =AD BC CF BC BF +=+=BAD ∠CD DAE BAD ∠=∠BAD F∠=∠AB BF=AD BC AB+=则当题设为①,结论为③是真命题,同理:当题设为③,结论为②是真命题,综上共有6个命题:分别是题设为②,结论为③;题设为③,结论为②;题设为①,结论为②;题设为②,结论①;题设为①,结论为③,题设为③,结论为②.【点睛】本题考查了全等三角形的判定与性质、真命题,等腰三角形的判定与性质,角平分线的定义,正确掌握相关性质内容是解题的关键.27. 如图,在正方形中,,点E 为对角线上的动点(不与A ,C 重合),以为边向外作正方形,点P 是的中点,连接,则的取值范围为___________.【解析】【分析】先取的中点O,结合正方形的性质,得证,当时,有最小值,在中,,计算即可作答.【详解】解:如图,取的中点O ,连接,∵四边形、是正方形,∴,,∴,则在和中ABCD 4AB =AC DE DEFG CD PG PG PG ≤<AD ()SAS ODE PDG ≌OEAC ⊥OE Rt AOE △2224OE AE AO +==AD OE DEFG ABCD 90ODE EDC ︒∠+∠=90PDG EDC ∠+∠=︒ODE PDG ∠=∠ODE PDG △OD OP ODE PDGDE DG =⎧⎪∠=∠⎨⎪=⎩,∴,当时,有最小值,此时为等腰直角三角形,,∵,∴,在中,,即,解得,∴.当点运动到点的时候,如图:此时即为点H 的位置,此时正方形的边长最大且为则的值最大,此时∴则.【点睛】本题考查了正方形性质,全等三角形的判定与性质,垂线段最短,勾股定理等知识,正确掌握相关性质内容是解题的关键.28.如图,正方形ABCD 边长为2,点E 是射线AC 上一动点(不与A ,C 重合),点F 在正方形ABCD 的外角平分线CM 上,且CF=AE ,连接BE , EF , BF 下列说法:①的值不随点E 的运动而改变的()SAS ODE PDG ∴ ≌OE PG =OE AC ⊥OE AOE △OE AE =4AD AB ==122AO AB ==Rt AOE △2224OE AE AO +==224OE =OE =OE E C G DEFG 4CD AD ==PH PH ===PG PG ≤<PG ≤<②当B ,E , F 三点共线时,∠CBE=22.5°;③当△BEF 是直角三角形时,∠CBE=67.5°;④点E 在线段AC 上运动时,点C 到直线EF 的距离的最大值为1;其中正确的是__________(填序号).【答案】①②④【解析】【分析】连接、,由正方形的对称性可知,,,证明,得出,,证出,证出是等腰直角三角形得出,因此,得出①正确;当,,三点共线时,证出,,,四点共圆,由圆周角定理得出,证出,得出,求出,②正确;当是直角三角形时,证出,得出,,③不正确;当点在线段上运动时,过点作于,则,最大时,与重合,即,证出是的中位线,得出,④正确;即可得出结论.【详解】解:连接、,如图1所示:由正方形的对称性可知,,四边形是正方形,,,点是正方形外角平分线上一点,,,在和中,,,,,ED DF BE DE =CBE CDE ∠=∠()ABE CDF SAS ∆≅∆BE DF =ABE CDF ∠=∠DE DF =EDF∆EF=EF B E F E C F D BFC CDE ∠=∠CDE CBE =∠∠CBF CFB ∠=∠22.5CBF ∠=︒BEF ∆9045135BED ∠=︒+︒=︒1(36013590)67.52CBE ∠=︒-︒-︒=︒67.5CBF ∠<︒E AC C CQ EF ⊥Q CQ CH …CQ CQ CH CD EF ⊥QE ACD ∆112CQ DQ CD ===ED DF BE DE =CBE CDE∠=∠ ABCD AB CD ∴=45BAC ∠=︒ F ABCD CM 45DCF ∴∠=︒BAC DCF ∴∠=∠ABE ∆CDF ∆AB CD BAC DCF AE CF =⎧⎪∠=∠⎨⎪=⎩()ABE CDF SAS ∴∆≅∆BE DF ∴=ABE CDF ∠=∠,,,即,是等腰直角三角形,,的值不随点的运动而改变,①正确;当,,三点共线时,如图2所示:,,,,四点共圆,,,,,,,,②正确;当是直角三角形时,如图3所示:是等腰直角三角形,,DE DF ∴=90ABE CBE ∠+∠=︒ 90CDF CDE ∴∠+∠=︒90EDF ∠=︒EDF∴∆EF ∴=EF ∴=∴EF BEE B EF 90ECF EDF ∠=∠=︒ E ∴C F D BFC CDE ∴∠=∠ABE ADE ∠=∠ 90ABC ADC ∠=∠=︒CDE CBE ∴∠=∠CBF CFB ∴∠=∠45FCG CBF CFB ∠=∠+∠=︒ 22.5CBF ∴∠=︒BEF ∆EDF ∆ 9045135BED ∴∠=︒+︒=︒,,③不正确;当点在线段上运动时,如图4所示:过点作于,则,最大时,与重合,即,当时,,,是的中位线,,④正确;综上所述,①②④正确;故答案为:①②④.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、四点共圆、圆周角定理等知识;本题综合性强,有一定难度.29. 如图,在平行四边形中,,,,在线段上取一点E ,使,连接,点M ,N 分别是线段上的动点,连接,则的最小值为___________.1(36013590)67.52CBE ∴∠=︒-︒-︒=︒67.5CBF ∴∠<︒E AC C CQ EF ⊥Q CQ CH …CQ ∴CQ CH CD EF ⊥CD EF ⊥//EF AD CF CE AE ==QE ∴ACD ∆112CQ DQ CD ∴=== ABCD 3AB =4BC =60ABC ∠=︒AD 1DE =BE AE BE ,MN 12MN BN +【解析】【分析】如图,作于,于,于,则四边形是矩形,,由题意可求,,,则,,由,可知当三点共线且时,最小,为,求的长,进而可求最小值,【详解】解:如图,作于,于,于,则四边形是矩形,∴,∵平行四边形中,,,,,∴,,∴,∴,∴,∴,∴当三点共线且时,最小,为,∵,∴,由勾股定理得,,∴,【点睛】本题考查了平行四边形的性质,矩形的判定与性质,含的直角三角形,等边对等角,勾股定理NF BC ^F AH BC ⊥H MG BC ⊥G AHGM MG AH =3AE AB ==120BAC ∠=︒30ABE AEB ∠=∠=︒30EBC ∠=︒12NF BN =12MN BN MN NF +=+M N F 、、MF BC ⊥12MN BN +MG AH 12MN BN +NF BC ^F AH BC ⊥H MG BC ⊥G AHGM MG AH =ABCD 3AB =4BC =1DE =60ABC ∠=︒3AE AB ==120BAC ∠=︒30ABE AEB ∠=∠=︒30EBC ∠=︒12NF BN =12MN BN MN NF +=+M N F 、、MF BC ⊥12MN BN +MG =30BAH ∠︒1322BH AB ==AH ==12MN BN +30︒等知识.明确线段和最小的情况是解题的关键.二、解答题(共25分,第6题5分,第7题4分,第8-9题,每题8分)解答应写出文字说明、演算步骤或证明过程.30. 如图是由小正方形组成的网格,每个小正方形的边长为,其顶点称为格点,四边形的四个顶点都在格点上,请运用课本所学知识,仅用无刻度的直尺,在给定网格中按要求作图.(1)①线段的长为 个单位长度;②在图1中求作边的中点E ;(2)在图中求作边上一点,使平分.注:保留作图痕迹,同时标出必要的点;当你感觉方法比较复杂时,可用文字简要说明作法.【答案】(1)①;②作图见解析;(2)见解析.【解析】【分析】(1)①利用勾股定理即可求解;②取格点、,连接交于点,则点为所求;(2)取格点、,连接、相交于点,作射线交于点,则点为所求.【小问1详解】解:①,故答案为:;②如图,点为所求作图形,【小问2详解】解:如图,点为所求,87⨯1ABCD CD CD 2AB F CF BCD ∠5M N MN AC E E G H AQ DH Q CF AB FF 5CD ==5E F。

八年级语文下学期期中考试语文试卷(含答案)

八年级语文下学期期中考试语文试卷(含答案)

八年级语文下学期期中考试语文试卷(含答案)2023初二(下)期中语文(满分100分,考试时间120分钟)一、基础·积累(共14分)学校要开展“所学课文知多少”活动,请你完成以下任务。

1. 阅读《社戏》选段,完成小题。

两岸的豆麦和河底的水草所发散出来的清香,夹杂在水气中扑面的吹来;月色便朦胧在这水气里。

淡黑的起伏的连山,仿佛是踊跃的铁的兽脊似的,都远远地向船尾跑去了,但我却还以为船慢。

他们换了四回手,渐望见依稀的赵庄,而且似乎听到歌吹了,还有几点火,料想便是戏台,但或者也许是渔火。

那声音大概是横笛,宛转,悠扬,使我的心也沉静,然而又自失起来,觉得要和他①在含着豆麦蕴藻之香的夜气里。

……最惹眼的是屹立在庄外临河的空地上的一座戏台,模胡在远处的月夜中,和空间几乎分不出界限,我疑心画上见过的仙境,就在这里出现了。

这时船走得更快,不多时,在台上显出人物来,红红绿绿的动,近台的河里一望乌黑的是看戏的人家的船②。

……月还没有落,仿佛看戏也并不很久似的,而一离赵庄,月光又显得格外的皎洁。

……不多久,松柏林早在船后了,船行也并不慢,但周围的黑暗只是浓,可知已经到了深夜。

……离平桥村还有一里模样,船行却慢了,摇船的都说很疲乏,因为太用力,而且许久没有东西吃。

这回想出来的是桂生,说是罗汉豆正旺相,柴火又现成,我们可以偷一点来煮吃的。

大家都赞成,立刻近岸停了船……(1)加点字读音全都正确的一项是()A.兽脊(jí)模样(mú)B.兽脊(jí)模样(mó)C.兽脊(jǐ)模样(mú)D.兽脊(jǐ)模样(mó)(2)文段①②处选填词语和汉字全都正确的一项是()A. ①弥漫②篷____________B.①弥散②蓬C. ①弥漫②蓬____________D.①弥散②篷(3)根据文意解释画线句“……船行也并不慢,但周围的黑暗只是浓……”中“浓”的意思。

(____________ )2. 阅读《大自然的语言》选段,完成小题。

河南省济源市2022-2023学年八年级下学期期中考试 物理试卷(含答案)

河南省济源市2022-2023学年八年级下学期期中考试 物理试卷(含答案)

2022-2023学年河南省济源市初二下学期期中考试物理一.选择题(共15小题)1.下列四幅图中,在水平地面上不可能保持平衡的是( )A.B.C.D.2.如图所示,一辆汽车在平直的公路上行驶,车上有一个木箱子,在忽略空气阻力的情况下,以下判断正确的是( )A.箱子与汽车一起匀速行驶时,箱子水平方向受向前的力B.箱子与汽车一起加速行驶时,箱子的惯性变大C.汽车突然刹车,箱子相对汽车发生滑动,这时汽车相对箱子向后运动D.汽车突然起动,箱子受到的摩擦力的方向与车的运动方向相反3.同学们在进行估测大气压实验时,首先读出注射器的最大刻度为V,用刻度尺量出全部刻度的长度为L;然后按照如图所示的过程,慢慢的拉注射器(甲图没有盖上橡皮帽、乙图在排尽空气后盖上了橡皮帽),刚好拉动活塞时,弹簧测力计的示数分别是F1和F2。

则下列说法中正确的是( )A.大气对针筒活塞的压力F=F1+F2B.若在乙图中,针筒未排尽空气,会使得大气压强的测量值偏大C.大气压强的测量值最接近(F2−F1)L VD.若大气压强测量为F2LV,则与真实值相比测量值偏小4.如图所示,薄壁圆柱形容器A、B放在水平面上(S A>S B),其中分别盛有质量为m甲、m乙的两种等高液体,它们对容器底部的压强为p甲、p乙。

现在两容器中分别倒入体积相同的原有液体后(容器足够高),此时它们对容器底部的压强相等,倒入液体质量分别为Δm甲、Δm乙,液体压强变化量分别为Δp甲、Δp乙。

则下列判断正确的是( )A.m甲>m乙,p甲<p乙B.m甲<m乙,p甲>p乙C.Δm甲>Δm乙,Δp甲<Δp乙D.Δm甲<Δm乙,Δp甲>Δp乙5.关于力与运动,下列说法正确的是( )A.人推桌子,桌子没有动,是因为推力小于摩擦力B.物体的运动状态发生改变,一定受到力的作用C.运送雪糕的货车静止公路上,地面对货车的支持力与货车的重力是一对平衡力D.推出去的铅球能在空中飞行,是因为铅球受到惯性的作用6.如图所示,冰壶比赛中,一名队员手持冰刷刷冰面,使冰壶尽量滑到目标位置,下列说法正确的是( )A.冰壶在滑行过程中运动状态保持不变B.用冰刷刷冰面是为了减小冰壶滑行时受到的摩擦力C.冰壶对冰面的压力与冰面对冰壶的支持力是一对平衡力D.冰壶受到的阻力大于惯性,所以冰壶的滑行速度越来越小7.2022年乒乓球世界杯决赛中,中国运动员孙颖沙和王曼昱赢得世乒赛女双金牌,实现了世乒赛五连冠。

江苏省江阴市青阳镇2023-2024学年八年级下学期期中语文试题(解析版)

江苏省江阴市青阳镇2023-2024学年八年级下学期期中语文试题(解析版)

2023-2024学年第二学期初二语文期中考试试卷(考试时间120分钟,满分120分)一、积累与运用。

(23分)1. 阅读经典诗文,品味古人情思。

请你根据提示,将空缺处的古诗文原句书写在横线上。

古诗文是中国传统文化中的瑰宝,滋润我们干涸的心灵,点缀我们生命的星空。

我们从“蒹葭萋萋,①____________”(《蒹葭》)中感受到一种朦胧、清新又神秘的意境;从“②____________,君子好逑”(《关雎》)中品读到古人歌咏美好爱情的华章;从“③___________,悠悠我心”(《诗经·郑风》)中体味到女主人公思念心中所恋的失落与惆怅;从“④___________,胡为乎泥中”(《诗经·邶风》)中感受到劳役者的满腔愤懑。

古人常在诗文中表达心志,王勃在《送杜少府之任蜀州》中用“⑤____________,_____________”来表达远隔天涯仍彼此牵挂的深厚友谊;孟浩然《望洞庭湖赠张丞相》中的“⑥___________,___________”,巧设比喻,委婉表达希望得到张丞相举荐,以在太平盛世闲居为耻而渴求从政的心愿。

【答案】①. 白露未晞②. 窈窕淑女③. 青青子衿④. 微君之躬⑤. 海内存知己⑥. 天涯若比邻⑦. 欲济无舟楫⑧. 端居耻圣明【解析】【详解】本题考查名句默写。

默写题作答时,一是要透彻理解诗文的内容;二是要认真审题,找出符合题意的诗文句子;三是答题内容要准确,做到不添字、不漏字、不写错字。

本题中的“晞、窈窕、衿、躬、己、涯、楫”等字词容易写错。

2. 天州一中本周国旗下讲话的主题是“倡导低碳生活”,以下是班长小澄同学的发言稿,请你帮他完善稿子。

人与自然是生命共同体,人类必须尊重自然、顺应自然、保护自然。

但追sù()近些年人们的生活方式,总有些不和谐的现象令人怅wǎnɡ():肆意开采,肆意破坏,造成草木稀疏、水土流失、土地龟()裂,沙漠面积不断扩大……为此,我们应当树立和践行绿水青山就是金山银山的理念,倡导简约适度、绿色低碳的生活方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

未成年人的特殊保护。

()
①生命健康权②劳动权③受教育权④人格尊严权⑤人身自由权
A.①②
B.①③
C.②③
D.④⑤
10、甘肃省庆阳师范学生李勇,家住山区,生活困难,父亲身患重病,李勇为了改变山区贫困面貌,渴望学到更多的知识,便毅然“背起爸爸上学去”。

李勇的行为说明()
①受教育是改变家乡贫困面貌的需要
②要克服困难,争取受教育的权利
③每个公民都应该珍惜受教育的权利,自觉履行受教育的义务
④赡养扶助父母是中华民族的传统美德
A.②③
B.①②③④
C.①③④
D.②③④
11、积极行使生命健康权应该做到()
①积极锻炼身体,增强体魄②有病及时就医,增强体质③当生命健康受到非法侵害时,要依法自卫④为博取他人同情而自残
A.①②③④
B.①②③
C.②③④
D.①③④
12、我国未成年人保护法第30条规定:“任何组织和个人不得披露未成年人的个人隐私”。

这段话说明()
①未成年人的隐私受法律保护
②披露未成年人个人隐私的行为仅仅是违反社会道德的行为
③披露他人隐私的行为是违法行为,要受法律的追究
④披露他人隐私的行为既是违反社会道德的行为,也是违法行为
A.①②③④
B.①②③
C.①②④
D.①③④
13、针对有关部门准备引进大量洋花洋草美化城市的做法,某中学思想品德课研究性学习小组通过调查了解后认为,用大量洋花洋草美化城市既浪费钱财,又可能导致花粉污染,威胁市民的健康。

他们想建议有关部门改变这种做法。

请你告诉他们可以通过哪些合法方式来反映意见()
①张贴大字报,号召市民进行抵制
②写信、打电话向有关部门反映情况
③私自上街游行,呼吁有关部门引起重视
④通过新闻媒体发表意见
A.①②
B.①③
C.②④
D.③④
14、小东等同学纷纷行动起来,履行环保义务。

你赞同下列哪几位同学()①小东积极参加本地开展的义务植树活动
②小强向有关部门举报某饭馆宰杀野生动物做菜
③小江把一个每天深夜唱歌扰民的歌舞厅门窗砸坏以示警告
④小高把一位破坏校园花草的同学关在教室令其反省
A、①②
B、②③
C、①④
D、③④
15、中学生王佳在去年“十一”黄金周外出旅游时,发现一位外国游人向插有“军事禁区”标志的山林内录像。

王佳随后拨打“110”报警,使这名外国游人受到有关部门的依法查处。

王佳同学的行为()
A.履行了维护国家统一和民族团结的义务
B.履行了维护祖国荣誉的义务
C.履行了维护祖国安全的义务
D.履行了维护祖国尊严的义务
16、某村村民张某偷窃用电,电管站工作人员在未经主人许可的情况下进入其住宅收集证据,为此,张某向法院提诉讼。

下列说法正确的是()
①张某先违了法,所以他没有权利起诉
②电管站应要求公安机关配合,依法定程序收集证据
③张某虽违了法,但其隐私权仍受法律保护
④电管站工作人员也违了法
A.①②④
B.②③④
C.①③④
D.①②③④
17、小安的父母在她上小学六年级时离婚了,小安一直不想告诉别人。

但是在一节心理课上,老师在一个活动中要求每个同学如实地说出自己的家庭情况。

小安十分困惹,不知道该怎么办。

你认为她应该()
A.如实的说出自己的家庭情况
B.始终保持沉默,用沉默对抗老师
C.一言不发地离开教室
D.不说,因为这属于个人隐私,课下与老师解释清楚
18、在现实生活中,公民的合法权益遭到侵害时不应该采取的方法是()
A.向人民法院起诉
B.运用法律武器维护自己的合法权益
C.以其人之道还治其人之身
D.向有关部门投诉或到执法部门控告
19、以下关于公民受教育的说法正确的是()
①受教育是公民个人的事,别人管不着
②公民受教育享有广泛的权利,我国法律保障公民的各种受教育权
③任何妨害公民受教育的违法行为,都要受到刑法的严厉打击
④受教育既是公民的基本权利,又是公民的基本义务
A.①②④
B.③④
C.②④
D.②③④
20、某天,小刚在放学回家的路上被两个持刀歹徒劫持。

此时,与小刚同行的小军等4人在小刚的生命健康受到威胁时应该()
①赶紧溜回家,以免受到伤害
②要善于与歹徒斗智,抓住机会,在自身力量不允许的情况下,想办法借助社会力量最终制服歹徒
③同歹徒拼命,力争夺回小刚
④记住歹徒相貌,了解歹徒去向,及时拨打“110”报警
A.①④
B.②③
C.②④
D.③④
21、下面不属于我国公民的是()
A、加入中国国籍的外国人
B、留学北大的韩国女学生
C、退休在家的中国工人老张
D、具有中国国籍,被剥夺政治权利在监狱服役的李某
22、公民权利得以实现的最重要、最有效的保障是()
A、家庭保障
B、法律保障
C、学校保障
D、社会保障
23、下列属于宪法规定的公民的基本权利是()
①平等权②维护国家统一的义务③文化教育权④交纳个人所得税⑤宗教信仰自由⑥人身自由
A、①③⑤⑥
B、①②③④
C、②④⑤⑥
D、②③④⑤
24、中学生有使用计算机网络的权利,同时必须遵守“全国青少年网络文明公约”和其他有关网络的规定。

这表明()
A、我国公民的权利和义务是一致的
B、公民先履行义务,后享有权利
C、公民先享有权利,后履行义务
D、权利是科技进步带来的,义务是国家规定的
25、下列行为属于积极行使生命健康权的是()
A、我们应该珍爱生命、维护健康。

但是,没有必要每天早晨或晚上要锻炼身体
B、小王常关注一些健康杂志中一些疾病的症状与自己的身体对照,常怀疑自己患有疾病
C、在外出郊游的高速公路旁,小王等几位同学救助发生车祸的受伤人员
D、某青年在身上纹了龙虎图案
26、“玉不琢,不成器;人不学,不知义。

”这句话说明的道理是()
A、说明学习的重要性
B、对于一个人的成长,教育起着至关重要的作用
C、我们一定要接受教育
D、一个人如果不学习就不知义气
27、人格尊严是指公民的名誉和公民作为一个人应当受到他人最起码的尊重的权利。

它不包括()
A、生命权和健康权
B、肖像权和名誉权
C、荣誉权和姓名权
D、隐私权
28、下列行为属于侵犯了公民肖像权的是()
①报纸刊登了小丽在大街上吐痰的照片,并配有文字:“随地吐痰可耻!”
②为了泄私愤,将别人的照片当做射箭的靶子
③未经美女舒舒的本人同意,将其照片摆在橱窗里
④某杂志刊登了刘翔比赛的照片
A、①③
B、①②
C、③④
D、②③
29、有些同学经常利用他人的缺陷给人起难听的外号,这种做法实际上侵犯了公民的( )
A、姓名权
B、荣誉权
C、名誉权
D、人身自由权
30、下列行为不会侵害公民隐私权的是()
A、公开他人身体缺陷
B、公开他人的日记
C、依法搜查公民住宅
D、刺探他人私人信息
二、问答题(每题5分,共40分)
31、材料一:小张是一名余业摄影爱好者,前几天在一公园游玩时,发现几个女青年边吃东西边把果皮扔在地上,于是立即按动快门。

不料她们立即围过来,要小张把底片交给她们,否则就告小张侵犯她们的肖像权。

小张非常矛盾,不知是不是应该将照片投给报社。

材料二:中国科技大学少年班学生马某窃取了美国明尼苏达大学给同班同学陈某的邀请信,并假冒陈某之名拒绝了该大学的留学邀请,同时向该校推荐自己。

事情败露后,学校开除了马某的学籍。

阅读上述材料,回答下列问题:
(1)材料一中的小张是否侵犯了那几个女青年的肖像权?为什么?(4分)
(2)材料二中的马某侵犯了陈某的什么权利?为什么?(4分)
32、小磊上学期间,多次被评为“三好学生”。

高中毕业后,他应征入伍。

在部队,他刻苦训练,对工作认真负责,曾荣立三等功一次。

复员后,他积极参加地方建设,由于业绩突出,被任命为单位的部门负责人。

在区人大选举中,他当选为区人大代表。

在家里,他孝敬老人,教育孩子,有一个幸福美满的家庭。

在生活中他热心助人,关心邻里,曾多次见义勇为,受到大家的称赞。

(1)小磊享受了哪些权利?履行了哪些义务?(6分)
(2)上述材料对你有何启示?(3分)
33.材料一:据报载,77岁的陕北老汉常某因《乡镇论坛》杂志社未经同意擅自刊登他的照片,在北京提起诉讼,结果获得了部分赔偿。

材料二:李某和冯某是门对门的邻居,平时两人关系不太和睦。

李某为了报复,捏造事实并张贴大字报,致使冯某名誉受损。

据此,冯某把李某告上法院,法院一审判决李某向冯某赔礼道歉,并赔偿精神损失费。

(1)上述材料一、材料二中公民的什么权利受到侵害?4分
(2)你从中得到了什么启示?5分34、2004年11月4日,云南省昆明市官渡区人民法院审理了一起故意伤害案,父亲李普能因儿子(不满18周岁)吸毒、盗窃、恨铁不成钢,情急之下竟将其活活毒打致死,结果被一审判处有期徒刑5年。

(1)有人认为,父亲有权管教儿子,即使将其打死,也是“大义灭亲”,所以不应追究法律责任。

这种认识正确吗?为什么?(6分)
(2)从上述案例中,我们可以得到哪些启示?(3分)
35、请你简述履行受教育的义务的内容有哪些?5分。

相关文档
最新文档