七年级数学因式分解练习题及答案

合集下载

七年级数学下册《整式乘法与因式分解》练习题及答案

七年级数学下册《整式乘法与因式分解》练习题及答案

七年级数学下册《整式乘法与因式分解》练习题及答案一、单选题1.计算a2(﹣a)3的结果是()A.a6B.﹣a5C.﹣a6D.a﹣62.下列各式,计算结果为a3的是()A.a2+a B.a4﹣a C.a•a2D.a6÷a23.﹣x3y﹣1•(﹣2x﹣1y)2=()A.﹣2xy B.2xy C.﹣2x2y D.2xy24.若x2﹣kx﹣12=(x+a)(x+b),则a+b的值不可能是()A.﹣11B.4C.8D.115.若(x+2)与(x﹣m)的乘积中不含x的一次项,则m的值为()A.﹣2B.0C.2D.46.下列运算正确的是()A.a3+a3=a6B.(a3)2=a6C.(ab)2=ab2D.2a5•3a5=5a57.若x2+ax+16是完全平方式,则|a﹣2|的值是()A.6B.6或10C.2D.2或68.如图,从边长为a的正方形中去掉一个边长为b的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)9.下列各式中,从左到右变形是因式分解的是()A.(x+3y)(x﹣3y)=x2﹣9y2B.9﹣x2=(3+x)(3﹣x)C.x2+6x+4=(x+2)2+2x D.x2﹣8=(x+4)(x﹣4)10.小明是一位密码编译爱好者,在他的密码手册中有这样一条信息:a﹣1,x﹣y,2,a2+1,x,a+1分别对应下列六个字:西,爱,我,数,学,定.现将2x(a2﹣1)﹣2y(a2﹣1)因式分解,结果呈现的密码信息可能是()A.我爱定西B.爱定西C.我爱学D.定西数学二、填空题11.分解因式:﹣m2n+6mn﹣9n=.12.全球新冠病毒仍在蔓延,新型冠状病毒直径约为80﹣120纳米,某种β属的新型冠状病毒直径为0.000000102米,将数据0.000000102用科学记数法表示为.13.计算:(18a3﹣9a2﹣3a)÷3a=.14.已知x2﹣6x+k是一个完全平方式,则k的值是.15.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a+b)n (n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1,系数和为4;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1,系数和为8;…根据以上规律,(a+b)n展开式的系数和为.三、解答题16.已知3m=a,3n=b,分别求:(1)3m+n.(2)32m+3n.(3)32m+33n的值.17.计算:(1)﹣32+(4﹣π)0++|2﹣5|;(2)(3a+b)(a﹣b)+2ab.18.先化简,再求值:[(﹣x3y4)3+(﹣xy2)2•3xy2]÷(﹣xy2)3,其中x=﹣2,y=.19.分解因式:(1)2x2y+4xy2+2y3;(2)9a2(x﹣y)+4b2(y﹣x).20.如图1,有A型、B型、C型三种不同形状的纸板,A型是边长为a的正方形,B型是边长为b的正方形,C型是长为b,宽为a的长方形.现用A型纸板一张,B型纸板一张,C型纸板两张拼成如图2的大正方形.(1)观察图2,请你用两种方法表示出图2的总面积.方法1:;方法2:;请利用图2的面积表示方法,写出一个关于a,b的等式:.(2)已知图2的总面积为49,一张A型纸板和一张B型纸板的面积之和为25,求ab的值.(3)用一张A型纸板和一张B型纸板,拼成图3所示的图形,若a+b=8,ab=15,求图3中阴影部分的面积.21.阅读与思考在因式分解中,有些多项式看似不能分解,如果添加某项,可以达到因式分解的效果,此类因式分解的方法称之为“添项法”.例如:a4+4=a4+4+4a2﹣4a2=(a4+4a2+4)﹣4a2=(a2+2)2﹣(2a)2=(a2+2a+2)(a2﹣2a+2).参照上述方法,我们可以对a3+b3因式分解,下面是因式分解的部分解答过程.a3+b3=a3+a2b﹣a2b+b3=(a3+a2b)﹣(a2b﹣b3)=(a+b)•a2﹣(a+b)•b(a﹣b)=…任务:(1)请根据以上阅读材料补充完整对a3+b3因式分解的过程.(2)已知a+b=2,ab=﹣4,求a3+b3的值.参考答案与解析一、单选题1.解:原式=a2•(﹣a)3=﹣a5,故选B.2.解:A、a2与a不是同类项,不能合并,故本选项错误;B、a4与a不是同类项,不能合并,故本选项错误;C、a•a2=a3,故本选项正确;D、a6÷a2=a4≠a3,故本选项错误.故选:C.3.解:﹣x3y﹣1•(﹣2x﹣1y)2=﹣x3y﹣1•4x﹣2y2=﹣2xy.故选:A.4.解:根据题意知a+b=﹣k、ab=﹣12若a=1、b=﹣12,则a+b=﹣11;若a=﹣1、b=12,则a+b=11;若a=﹣3、b=4,则a+b=1;若a=3、b=﹣4,则a+b=﹣1;若a=2、b=﹣6,则a+b=﹣4;若a=﹣2、b=6,则a+b=4.故选:C.5.解:(x+2)(x﹣m)=x2﹣mx+2x﹣2m=x2+(﹣m+2)x﹣2m∵不含x的一次项∴﹣m+2=0解得:m=2故选:C.6.解:A、a3+a3=2a3,故A不符合题意;B、(a3)2=a6,故B符合题意;C、(ab)2=a2b2,故C不符合题意;D、2a5•3a5=6a10,故D不符合题意;故选:B.7.解:∵(x±4)2=x2±8x+16∴a=±8当a=8时|a﹣2|=|6|=6当a=﹣8时|a﹣2|=|﹣10|=10故选:B.8.解:大正方形的面积﹣小正方形的面积=a2﹣b2矩形的面积=(a+b)(a﹣b)故(a+b)(a﹣b)=a2﹣b2故选:A.9.解:A.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B.从左到右的变形属于因式分解,故本选项符合题意;C.等式的右边不是几个整式的积的形式,不属于因式分解,故本选项不符合题意;D.,故本选项不符合题意;故选:B.10.解:2x(a2﹣1)﹣2y(a2﹣1)=2(a2﹣1)(x﹣y)=2(a﹣1)(a+1)(x﹣y)=2(x﹣y)(a+1)(a﹣1)结果呈现的密码信息可能是:我爱定西故选:A.二、填空题11.解:原式=﹣n(m2﹣6m+9)=﹣n(m﹣3)2.故答案为:﹣n(m﹣3)2.12.解:0.000000102=1.02×10﹣7.故答案为:1.02×10﹣713.解:(18a3﹣9a2﹣3a)÷3a=18a3÷3a﹣9a2÷3a﹣3a÷3a=6a2﹣3a﹣1.故答案为:6a2﹣3a﹣1.14.解:x2﹣6x+k=x2﹣2×3x+k∴k=32=9.故答案为:9.15.解:(a+b)0=1,系数为1,20=1(a+b)1=a+b,系数和为2,21=2(a+b)2=a2+2ab+b2,系数和为4,22=4(a+b)3=a3+3a2b+3ab2+b3,系数和为8,23=8...(a+b)n展开式的系数和为:2n故答案为:2n.三、解答题16.解:(1)由题可得,3m+n=3m•3n=ab;(2)由题可得,32m+3n=32m•33n=(3m)2•(3n)3=a2b3;(3)由题可得,32m+33n=(3m)2+(3n)3=a2+b3.17.解:(1)原式=﹣9+1+8+3=3;(2)原式=3a2﹣3ab+ab﹣b2+2ab=3a2﹣b2.18.解:原式=(﹣x9y12+x3y6)÷(﹣x3y6)=x6y6﹣当x=﹣2,y=时,原式=1﹣=.19.解:(1)2x2y+4xy2+2y3=2y(x2+2xy+y2)=2y(x+y)2;(2)9a2(x﹣y)+4b2(y﹣x)=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).20.解:(1)用两种方法表示出图2的总面积为(a+b)2和a2+2ab+b2关于a,b的等式(a+b)2=a2+2ab+b2故答案为:(a+b)2,a2+2ab+b2,(a+b)2=a2+2ab+b2;(2)由题意得,(a+b)2=a2+2ab+b2=49,a2+b2=25∴ab====12;(3)由题意得图3中阴影部分的面积为:+a2﹣==∴当a+b=8,ab=15时图3中阴影部分的面积为:==.21.解:(1)a3+b3=a3+a2b﹣a2b+b3=(a3+a2b)﹣(a2b﹣b3)=a2(a+b)﹣b(a2﹣b2)=a2(a+b)﹣b(a+b)(a﹣b)=(a+b)(a2﹣ab+b2);(2)∵a+b=2,ab=﹣4∴(a+b)2=4∴a2+b2+2ab=4∴a2+b2=12∴a3+b3=(a+b)(a2﹣ab+b2)=2×[12﹣(﹣4)]=2×16=32.。

初中数学:因式分解强化练习(含答案)

初中数学:因式分解强化练习(含答案)

因式分解知识讲解1、因式分解的概念:把一个多项式分解成几个整式的积的形式,叫做因式分解.注:因式分解和整式乘法互为逆运算.2、常用的因式分解方法:(1)提取公因式法:)(c b a m mc mb ma ++=++(2)运用公式法: 平方差公式:))((22b a b a b a -+=-;完全平方公式:222)(2b a b ab a ±=+±(3)十字相乘法:))(()(2b x a x ab x b a x ++=+++3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提公因式;(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;(3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法;(4)最后考虑用分组分解法.4、因式分解的原则(1)分解因式必须要分解到不能分解为止.(2)有公因式的一定要先提取公因式.(一)提公因式法提取公因式法:)(c b a m mc mb ma ++=++公因式:一个多项式每一项都含有的相同的因式,叫做这个多项式各项的公因式;找公因式的方法:1、系数为各系数的最大公约数;2、字母是相同字母;3、字母的次数:相同字母的最低次数.总结:把公有的因式提出来,剩下的照着抄下来.一、填空题(1)因式分解:am-3a= a (m-3) .(2)因式分解:ax ²-ax= ax (x-1) .(3)因式分解:3ab ²+a ²b= ab (3b+a ) .(4)因式分解:x 2﹣xy= x (x ﹣y ) .(5)因式分解:(x+y )²-(x+y )= (x+y )(x+y-1) .(6)因式分解:a (a-b )-a+b= (a-b )(a-1) .(7)因式分解:2m(a -b)-3n(b -a)= (a -b)(2m +3n) .二、因式分解的解答题1、直接提取公因式(1)3ab 2+a 2b ; (2)2a 2-4a ; (3)20x ³y-15x ²y 解:原式=ab(3b +a) 解:原式=2a(a -2) 解:原式=)34(52-x y x(4)x 4+x 3+x ; (5)3x 3+6x 4; (6)4a 3b 2-10ab 3c ;解:原式=x(x 3+x 2+1). 解:原式=3x 3(1+2x). 解:原式=2ab 2(2a 2-5bc).(7)-3ma 3+6ma 2-12ma ; (8)ab b a b a 264222-+- (9) y x y x y x 332232-- 解:原式=-3ma(a 2-2a +4) 解:原式=-2ab (2ab-3a+1) 解:原式=)321(22x y y x --2、变符号,再提取公因式(1)a (3-b )+3(b-3) (2)2a (x-y )-3b (y-x ) (3)x(x -y)+y(y -x) 解:原式=(3-b )(a-3) 解:原式=(x-y )(2a+3b ) 解:原式=(x -y)2.(4)m(5-m)+2(m -5); (5))93()3(2-+-x x解:原式=(m -2)(5-m). 解:原式=x (x-3);3、稍微复杂的提取公因式(1)6x (a-b )+4y (b-a ) (2)6p(p +q)-4q(p +q).解:原式=2(a-b )(3x-2y ) 解:原式=2(p +q)(3p -2q).(3)4q(1-p)3+2(p -1)2. (4)5x(x -2y)3-20y(2y -x)3.解:原式=2(1-p)2(2q -2pq +1) 解:原式=5(x -2y)3(x +4y).(5)(a 2-ab)+c(a -b); (6)22)2(20)2(5a b b b a a --- 解:原式=(a +c)(a -b). 解:原式=5(a-2b )2(a-4b )4、用简便方法计算:(1)213×255-213×55. (2)1571215711576⨯-⨯-⨯. 解:(1)原式=42600; 解:(2)原式=-15.(二)平方差公式因式分解1、平方差公式 ))((22b a b a b a -+=-2、平方减平方等于平方差,等于两个数的和乘以两个数的差.3、有公因式的,先提公因式,再因式分解.一、填空题(1)因式分解:a ³-a= a (a+1)(a-1) .(2)因式分解:x 2﹣4= (x+2)(x ﹣2) .(3)因式分解:16x 2-64= 16(x +2)(x -2) .(4)因式分解:a 3﹣ab 2= a (a+b )(a ﹣b ) .二、在实数范围内分解因式:1、(1)4x 2-y 2 (2)-16+a 2b 2 (3)100x 2-9y 2解:(2x +y)(2x -y) 解:(ab +4)(ab -4) 解:(10x +3y)(10x -3y)(4)4x ²-9y ² (5)x 2-3解:原式=(2x+3y )(2x-3y ) 解:原式=(x -3)(x +3)(6)4x 2-25 (7)(x 2+9)2-36x 2解:原式=(2x +5)(2x -5) 解:原式=(x +3)2(x -3)22、将下列式子因式分解.(1)(m+n )²-(m-n )² (2)(x +2y)2-(x -y)2 (3)(a +3)2-(a +b)2 解:原式=4mn 解:原式=3y(2x +y) 解:原式=(2a +b +3)(3-b)3、先提公因式再因式分解.(1)a 3-9a (2)2416x x - (3)224364b a a -解:原式=a(a +3)(a -3) (2)原式=x ²(x+4)(x-4) (3)原式=4a ²(a+3b )(a-3b )(4)3m(2x -y)2-3mn 2 (5)(a -b)b 2-4(a -b) 解:原式=3m(2x -y +n)(2x -y -n) 解:原式=(a -b)(b +2)(b -2)4、四次的因式分解.(1)16-b 4 (2)x 4-4解:原式=(2+b)(2-b)(4+b 2) 解:原式=(x 2+2)(x +2)(x -2) (三)完全平方公式因式分解完全平方式 222)(2b a b ab a ±=+± 等于(首-尾)2或者(首+尾)2一、填空题(1)因式分解:x 2y 2-2xy +1= (xy -1)2 .(2)因式分解:-4a 2+24a -36= -4(a -3)2 .(3)因式分解:x 2﹣6x+9= (x ﹣3)2 .(4)因式分解:ab 2﹣4ab+4a= a (b ﹣2)2 .(5)因式分解:= ﹣(3x ﹣1)2 .二、解答题1、分解因式.(1)a 2+4a +4 (2)4x 2+y 2-4xy (3)9-12a +4a 2 解:原式=(a +2)2 解:原式=(2x -y)2 解:原式=(3-2a)22、因式分解.(1)9)1(6)1(222+---x x (2)16)4(8)4(222+-+-m m m m 解:原式=(x+2)²(x-2)² 解:原式=4)2(-m(4)(a +b)2-4(a +b)+4 (3)(m +n)2-6(m +n)+9解:原式=(a +b -2)2 解:原式=(m +n -3)23、利用因式分解计算.(1)202²+98²+202×196 (2)800²-1600×798+798²解:(1)原式=90000; 解:(2)原式=4.4、利用因式分解计算:992+198+1.解:原式=992+2×99×1+1=(99+1)2=1002=10000. (四)十字相乘法方法步骤:第一步:拆分,拆分二次项次数和常数项.第二步:交叉相乘,然后相加,加出来的得数若等于中间的一次项系数则配对成功,可以横着写.十字相乘法专项练习题(1)=--1522x x (x-5)(x+3) (2)=+-652x x (x-2)(x-3)(2)=--3522x x (2x+1)(x-3) (4)=-+3832x x (3x-1)(x+3)(5)=+-672x x (x-1)(x-6) (6)=-+1232x x (3x-1)(x+1)(7)=--9542x x (4x-9)(x+1) (8)=--2142x x (x-7)(x+3)(9)2x 2+3x+1= (2x+1)(x+1) (10)=-+22x x (x-1)(x+2)(11)20-9y -20y 2 =-(4y+5)(5y-4) (12)=-+1872m m (m-2)(m+9)(13)=--3652p p (p-9)(p+4) (14)=--822t t (t-4)(t+2)(15)=++342x x (x+1)(x+3) (16)=++1072a a (a+2)(a+5)(17)=+-1272y y (y-3)(y-4) (18)q 2-6q+8=(q-2)(q-4)(19)=-+202x x (x-4)(x+5) (20)=++232x x (x+1)(x+2)(21)18x 2-21x+5=(3x-1)(6x-5) (22)=-+1522x x (x-3)(x+5)(23)2y 2+y -6= (2y-3)(y+2) (24)6x 2-13x+6= (2x-3)(3x-2)(25)3a 2-7a -6= (3a+2)(a-3) (26)6x 2-11x+3= (2x-3)(3x-1)(27)4m 2+8m+3= (2m+3)(2m+1) (28)10x 2-21x+2= (10x-1)(x-2)(29)8m 2-22m+15= (2m-3)(4m-5) (30)4n 2+4n -15= (2n+5)(2n-3)(31)6a 2+a -35= (2a+5)(3a-7) (32)5x 2-8x -13= (5a-13)(a+1)(33)4x 2+15x+9=(4x+3)(x+3) (34)8x 2+6x -35=(4x-7)(2x+5)因式分解中考真题专项练习(一)1、(云南)因式分解:3x 2﹣6x+3= 3(x-1)2 .2、(宜宾)分解因式:3m 2﹣6mn+3n 2= 3(m-n)2 .3、(仙桃天门潜江江汉)分解因式:3a 2b+6ab 2= 3ab(a+b) .4、(湘潭)因式分解:m 2﹣mn= m(m-n) .5、(绥化)分解因式:a 3b ﹣2a 2b 2+ab 3= ab(a-b)2 .6、(潍坊)分解因式:x 3﹣4x 2﹣12x= x(x-6)(x+2) .7、(威海)分解因式:3x 2y+12xy 2+12y 3= 3y(x+2y)2 .8、(沈阳)分解因式:m 2﹣6m+9= (m-3)2 .9、(黔西南州)分解因式:a 4﹣16a 2= a 2(a+4)(a-4) .10、(南充)分解因式:x 2﹣4x ﹣12= (x-6)(x+2) . 11、(六盘水)分解因式:2x 2+4x+2= 2(x+1)2 . 12、(临沂)分解因式:a ﹣6ab+9ab 2= a(1-3b)2 .13、(呼伦贝尔)分解因式:27x 2﹣18x+3= 3(3x-1)2 . 14、(黄石)分解因式:x 2+x ﹣2= (x+2)(x-1) .15、(哈尔滨)把多项式a 3﹣2a 2+a 分解因式的结果是 a(a-1)2 .16、(乐山)下列因式分解:①x 3﹣4x=x (x 2﹣4);②a 2﹣3a+2=(a ﹣2)(a ﹣1);③a 2﹣2a ﹣2=a (a ﹣2)﹣ 2;④.其中正确的是 ②④ (只填序号). 17、(江津区)把多项式x 2﹣x ﹣2分解因式得 (x-2)(x+1) .18、(荆州)分解因式:x (x ﹣1)﹣3x+4= (x-2)2 .19、(莱芜)分解因式:﹣x 3+2x 2﹣x= -x(x-1)2 .20、(菏泽)将多项式a 3﹣6a 2b+9ab 2分解因式得 a(a-3b)2 .21、(抚顺)分解因式:ax 2﹣4ax+4a= a(a-2)2 .22、(巴中)把多项式3x 2+3x ﹣6分解因式的结果是 3(x+2)(x-1) .23、(鞍山)因式分解:ab 2﹣a= a(b+1)(b-1) .24、(中山)分解因式:x 2﹣y 2﹣3x ﹣3y= (x+y)(x-y-3) .25、(安顺)将x ﹣x 2+x 3分解因式的结果为 x(1-0.5x)2 .26、(湘潭)已知m+n=5,mn=3,则m 2n+mn 2= 15 .27、(潍坊)分解因式:27x 2+18x+3= 3(3x+1)2 .28、(威海)分解因式:(x+3)2﹣(x+3)= (x+3)(x+2) .29、(陕西)分解因式:a 3﹣2a 2b+ab 2= a(a-b)2 .30、(泉州)因式分解:x 2﹣6x+9= (x-3)2 .31、(攀枝花)因式分解:ab 2﹣6ab+9a= a(b-3)2 .32、(内江)分解因式:﹣x 3﹣2x 2﹣x= -x(x+1)2.33、(临沂)分解因式:xy 2﹣2xy+x= x(y-1)2 .34、(嘉兴)因式分解:(x+y )2﹣3(x+y )= (x+y)(x+y-3) .35、(赤峰)分解因式:3x 3﹣6x 2+3x= 3x(x-1)2 .36、(泰安)将x+x 3﹣x 2分解因式的结果是 x(x-21)2 . 37、(绍兴)分解因式:x 3y ﹣2x 2y 2+xy 3= xy(x-y)2 .38、(黔东南州)分解因式:x3+4x2+4x= x(x+2)2.39、(聊城)分解因式:ax3y+axy3﹣2ax2y2= axy(x-y)2.40、(莱芜)分解因式:(2a+b)2﹣8ab= (2a-b)2.41、(巴中)把多项式x3﹣4x2y+4xy2分解因式,结果为 x(x-2y)2.42、(潍坊)在实数范围内分解因式:4m2+8m﹣4= 4(m2+2m-1) .43、(雅安)分解因式:2x2﹣3x+1= (2x-1)(x-1) .44、(芜湖)因式分解:(x+2)(x+3)+x2﹣4= (2x+1)(x+2) .45、(深圳)分解因式:﹣y2+2y﹣1= -(y-1)2.46、(广元)分解因式:3m3﹣18m2n+27mn2= 3m(m-3n)2.47、(广东)分解因式:2x2﹣10x= 2x(x-5) .48、(大庆)分解因式:ab﹣ac+bc﹣b2= (a-b)(b-c) .49、(广西)分解因式:2xy﹣4x2= 2x(y-2x) .50、(本溪)分解因式:9ax2﹣6ax+a= a(3a-1)2.51、(北京)分解因式:mn2+6mn+9m= m(n+3)2.52、(珠海)分解因式:ax2﹣4a= a(x+2)(x-2) .53、(张家界)因式分解:x3y2﹣x5= x3(y+x)(y-x) .54、(宜宾)分解因式:4x2﹣1= (2x-1)(2x+1) .55、(岳阳)分解因式:a4﹣1= (a+1)(a-1)(a2+1) .56、(扬州)因式分解:x3﹣4x2+4x= x(x-2)2.57、(潍坊)分解因式:a3+a2﹣a﹣1= (a+1)2(a-1) .58、(威海)分解因式:16﹣8(x﹣y)+(x﹣y)2= (4-x+y)2.59、(淄博)分解因式:8(a2+1)﹣16a=8(a﹣1)2.60、(遵义)分解因式:x3﹣x=x(x+1)(x﹣1).因式分解中考真题专项练习(二)1、(泸州)分解因式:3a2﹣3=3(a+1)(a﹣1).2、(泸州)分解因式:2m2﹣8=2(m+2)(m﹣2).3、(泸州)分解因式:2a2+4a+2=2(a+1)2.4、(泸州)分解因式:2m2﹣2=2(m+1)(m﹣1).5、(泸州)分解因式:3a2+6a+3= 3(a+1)2.6、(泸州)分解因式:x2y﹣4y=y(x+2)(x﹣2).7、(泸州)分解因式:x3﹣6x2+9x=x(x﹣3)2.8、(泸州)分解因式:3x 2+6x+3= 3(x+1)2 .9、(泸州)分解因式:ax ﹣ay= a (x ﹣y ) .10、(泸州)分解因式:3a 2﹣6a+3= 3(a ﹣1)2 .11、(泸州)分解因式:ax 2﹣4ax+4a= a (x 2﹣4x+4)=a (x ﹣2)2 .12、(南充)分解因式:2a 3﹣8a = 2a (a+2)(a ﹣2) .13、(德阳)分解因式:2xy 2+4xy+2x = 2x (y+1)2 .14、(眉山)分解因式:x 3﹣9x = x (x+3)(x ﹣3) .15、(绵阳)因式分解:x 2y ﹣4y 3= y (x ﹣2y )(x+2y ) .16、(内江)分解因式:a 3b ﹣ab 3= ab (a+b )(a ﹣b ) .17、(攀枝花)分解因式:x 3y ﹣2x 2y+xy = xy (x ﹣1)2 .18、(遂宁)分解因式3a 2﹣3b 2= 3(a+b )(a ﹣b ) .19、(宜宾)分解因式:2a 3b ﹣4a 2b 2+2ab 3= 2ab (a ﹣b )2 .20、(自贡)分解因式:ax 2+2axy+ay 2= a (x+y )2 .21、(广安)因式分解:3a 4﹣3b 4= 3(a 2+b 2)(a+b )(a ﹣b ) .22、(广元)分解因式:a 3﹣4a = a (a+2)(a ﹣2) .23、(眉山)分解因式:3a 3﹣6a 2+3a = 3a (a ﹣1)2 .24、(绵阳)因式分解:m 2n+2mn 2+n 3= n (m+n )2 .25、(内江)分解因式:xy 2﹣2xy+x = x (y ﹣1)2 .26、(攀枝花)分解因式:a 2b ﹣b = b (a+1)(a ﹣1) .27、(宜宾)分解因式:b 2+c 2+2bc ﹣a 2= (b+c+a )(b+c ﹣a ) .28、(泸州冲刺卷)(1)分解因式:2=-m m 83 2m(m+2)(m-2) .(2)分解因式:=-222m ()()112-+m m .(3)分解因式:=+-962x x ()23-x 29、(泸州模拟)(1)分解因式:2a 2﹣2= 2(a+1)(a ﹣1) .(2)分解因式:x 2﹣2x+1= ()21-x . 30、(泸州冲刺卷)(1)分解因式:3x 3﹣12x = 3x (x ﹣2)(x+2) .(2)分解因式:2x 2﹣8= 2(x+2)(x ﹣2) .(3)分解因式:3m 2﹣12= 3(m+2)(m ﹣2) .(4)分解因式:2m 2+4m+2= 2(m+1)2 .(5)分解因式:x 2﹣6x+9= (x ﹣3)2 .31、(南充)分解因式:x 2﹣4(x ﹣1)= (x ﹣2)2 .32、(巴中)分解因式:2a2﹣8=2(a+2)(a﹣2).33、(达州)分解因式:x3﹣9x=x(x+3)(x﹣3).34、(乐山)把多项式分解因式:ax2﹣ay2=a(x+y)(x﹣y).35、(绵阳)因式分解:x2y4﹣x4y2=x2y2(y﹣x)(y+x).36、(宜宾)分解因式:am2﹣4an2=a(m+2n)(m﹣2n).37、(广安)分解因式:my2﹣9m=m(y+3)(y﹣3).38、(株洲)分解因式:x2+3x(x﹣3)﹣9=(x﹣3)(4x+3).39、(眉山)分解因式:xy2﹣25x=x(y+5)(y﹣5).40、(宜宾)分解因式:x3﹣x=x(x+1)(x-1).41、(深圳)分解因式:2x2﹣8=2(x+2)(x﹣2).42、(绵阳)在实数范围内因式分解:x2y﹣3y=y(x﹣)(x+).。

浙教版七年级数学下册《因式分解》单元练习检测试卷及答案解析含有详细分析

浙教版七年级数学下册《因式分解》单元练习检测试卷及答案解析含有详细分析

浙教版七年级数学下册《因式分解》单元练习检测试卷及答案解析一、选择题1、下列等式从左到右的变形,属于因式分解的是()A.a(x-y)=ax-ay B.(x+1)(x+3)=x2+4x+3C.x3﹣x=x(x+1)(x-1) D.x2+2x+1=x(x+2)+12、下列因式分解正确的是()A.x2﹣4=(x+4)(x﹣4)B.x2﹣2x﹣15=(x+3)(x﹣5)C.3mx﹣6my=3m(x﹣6y)D.2x+4=2(x+4)3、如果二次三项式可分解为,那么a+b的值为( )A.-2 B.-1 C.1 D.24、边长为a,b的长方形,它的周长为14,面积为10,则a b+ab的值为( )A.35 B.70 C.140 D.2805、把多项式(a﹣2)+m(2﹣a)分解因式等于().A.(a﹣2)(+m)B.(a﹣2)(﹣m)C.m(a﹣2)(m﹣1)D.m(a﹣2)(m+1)6、能被下列数整除的是( )A.3 B.5 C.7 D.97、下列多项式中不能用公式进行因式分解的是()A.a2+a+B.a2+b2-2abC.D.8、把分解因式,其结果为( )A.()()B.()C.D.()9、将下列多项式因式分解,结果中不含有因式a+1的是()A.a2﹣1 B.a2+aC.(a+1)2-a-1 D.(a-2)2+2(a-2)+110、一次数学课堂练习,小明同学做了如下四道因式分解题.你认为小明做得不够完整的一题是( )A.4x2-4x+1=(2x-1)2B.x3-x=x(x2-1)C.x2y-xy2=xy(x-y) D.x2-y2=(x+y)(x-y)二、填空题11、因式分解:-x= .12、分解因式:x2+2(x﹣2)﹣4=______.13、在实数范围内分解因式:a3﹣5a= .14、多项式6x2y-2xy3+4xyz的公因式是__________.15、已知x+y=6,xy=4,则x2y+xy2的值为.16、把多项式ax2+2a2x+a3分解因式的结果是.17、利用整式乘法公式计算104×96时,通常将其变形为__________________时再计算18、若,且,则___.19、分解因:=______________________.20、已知58-1能被20--30之间的两个整数整除,则这两个整数是。

初中数学因式分解练习题(含答案)

初中数学因式分解练习题(含答案)

因式分解练习题一、填空题:2.(a-3)(3-2a)=_______(3-a)(3-2a);12.若m2-3m+2=(m+a)(m+b),则a=______,b=______;15.当m=______时,x2+2(m-3)x+25是完全平方式.二、选择题:1.下列各式的因式分解结果中,正确的是[ ]A.a2b+7ab-b=b(a2+7a)B.3x2y-3xy-6y=3y(x-2)(x+1)C.8xyz-6x2y2=2xyz(4-3xy)D.-2a2+4ab-6ac=-2a(a+2b-3c)2.多项式m(n-2)-m2(2-n)分解因式等于[ ]A.(n-2)(m+m2) B.(n-2)(m-m2) C.m(n-2)(m+1) D.m(n-2)(m-1) 3.在下列等式中,属于因式分解的是[ ]A.a(x-y)+b(m+n)=ax+bm-ay+bnB.a2-2ab+b2+1=(a-b)2+1C.-4a2+9b2=(-2a+3b)(2a+3b)D.x2-7x-8=x(x-7)-84.下列各式中,能用平方差公式分解因式的是[ ]A.a2+b2 B.-a2+b2C.-a2-b2 D.-(-a2)+b25.若9x2+mxy+16y2是一个完全平方式,那么m的值是[ ] A.-12 B.±24C.12 D.±12 6.把多项式a n+4-a n+1分解得[ ]A.a n(a4-a) B.a n-1(a3-1) C.a n+1(a-1)(a2-a+1) D.a n+1(a-1)(a2+a+1) 7.若a2+a=-1,则a4+2a3-3a2-4a+3的值为[ ]A.8 B.7C.10 D.128.已知x2+y2+2x-6y+10=0,那么x,y的值分别为[ ]A.x=1,y=3 B.x=1,y=-3 C.x=-1,y=3 D.x=1,y=-3 9.把(m2+3m)4-8(m2+3m)2+16分解因式得[ ]A.(m+1)4(m+2)2 B.(m-1)2(m-2)2(m2+3m-2) C.(m+4)2(m-1)2 D.(m+1)2(m+2)2(m2+3m-2)2 10.把x2-7x-60分解因式,得[ ]A.(x-10)(x+6) B.(x+5)(x-12)C.(x+3)(x-20) D.(x-5)(x+12)11.把3x2-2xy-8y2分解因式,得[ ]A.(3x+4)(x-2) B.(3x-4)(x+2)C.(3x+4y)(x-2y) D.(3x-4y)(x+2y)12.把a2+8ab-33b2分解因式,得[ ]A.(a+11)(a-3) B.(a-11b)(a-3b)C.(a+11b)(a-3b) D.(a-11b)(a+3b)13.把x4-3x2+2分解因式,得[ ]A.(x2-2)(x2-1) B.(x2-2)(x+1)(x-1)C.(x2+2)(x2+1) D.(x2+2)(x+1)(x-1)14.多项式x2-ax-bx+ab可分解因式为[ ]A.-(x+a)(x+b) B.(x-a)(x+b)C.(x-a)(x-b) D.(x+a)(x+b)15.一个关于x的二次三项式,其x2项的系数是1,常数项是-12,且能分解因式,这样的二次三项式是[ ]A.x2-11x-12或x2+11x-12B.x2-x-12或x2+x-12C.x2-4x-12或x2+4x-12D.以上都可以16.下列各式x3-x2-x+1,x2+y-xy-x,x2-2x-y2+1,(x2+3x)2-(2x+1)2中,不含有(x -1)因式的有[ ]A.1个B.2个C.3个D.4个17.把9-x2+12xy-36y2分解因式为[ ]A.(x-6y+3)(x-6x-3)B.-(x-6y+3)(x-6y-3)C.-(x-6y+3)(x+6y-3)D.-(x-6y+3)(x-6y+3)18.下列因式分解错误的是[ ]A.a2-bc+ac-ab=(a-b)(a+c)B.ab-5a+3b-15=(b-5)(a+3)C.x2+3xy-2x-6y=(x+3y)(x-2)D.x2-6xy-1+9y2=(x+3y+1)(x+3y-1)19.已知a2x2±2x+b2是完全平方式,且a,b都不为零,则a与b的关系为[ ]A.互为倒数或互为负倒数B.互为相反数C.相等的数D.任意有理数20.对x4+4进行因式分解,所得的正确结论是[ ]A.不能分解因式B.有因式x2+2x+2 C.(xy+2)(xy-8) D.(xy-2)(xy-8) 21.把a4+2a2b2+b4-a2b2分解因式为[ ]A.(a2+b2+ab)2 B.(a2+b2+ab)(a2+b2-ab) C.(a2-b2+ab)(a2-b2-ab) D.(a2+b2-ab)222.-(3x-1)(x+2y)是下列哪个多项式的分解结果[ ]A.3x2+6xy-x-2y B.3x2-6xy+x-2y C.x+2y+3x2+6xy D.x+2y-3x2-6xy 23.64a8-b2因式分解为[ ]A.(64a4-b)(a4+b) B.(16a2-b)(4a2+b) C.(8a4-b)(8a4+b) D.(8a2-b)(8a4+b) 24.9(x-y)2+12(x2-y2)+4(x+y)2因式分解为[ ]A.(5x-y)2 B.(5x+y)2C.(3x-2y)(3x+2y) D.(5x-2y)225.(2y-3x)2-2(3x-2y)+1因式分解为[ ]A.(3x-2y-1)2 B.(3x+2y+1)2C.(3x-2y+1)2 D.(2y-3x-1)226.把(a+b)2-4(a2-b2)+4(a-b)2分解因式为[ ]A.(3a-b)2 B.(3b+a)2C.(3b-a)2 D.(3a+b)227.把a2(b+c)2-2ab(a-c)(b+c)+b2(a-c)2分解因式为[ ]A.c(a+b)2 B.c(a-b)2C.c2(a+b)2 D.c2(a-b)28.若4xy-4x2-y2-k有一个因式为(1-2x+y),则k的值为[ ] A.0 B.1 C.-1 D.429.分解因式3a2x-4b2y-3b2x+4a2y,正确的是[ ]A.-(a2+b2)(3x+4y) B.(a-b)(a+b)(3x+4y) C.(a2+b2)(3x-4y) D.(a-b)(a+b)(3x-4y) 30.分解因式2a2+4ab+2b2-8c2,正确的是[ ]A.2(a+b-2c) B.2(a+b+c)(a+b-c) C.(2a+b+4c)(2a+b-4c) D.2(a+b+2c)(a+b-2c)三、因式分解:1.m2(p-q)-p+q;2.a(ab+bc+ac)-abc;3.x4-2y4-2x3y+xy3;4.abc(a2+b2+c2)-a3bc+2ab2c2;5.a2(b-c)+b2(c-a)+c2(a-b);6.(x2-2x)2+2x(x-2)+1;7.(x-y)2+12(y-x)z+36z2;8.x2-4ax+8ab-4b2;9.(ax+by)2+(ay-bx)2+2(ax+by)(ay-bx);10.(1-a2)(1-b2)-(a2-1)2(b2-1)2;11.(x+1)2-9(x-1)2;12.4a2b2-(a2+b2-c2)2;13.ab2-ac2+4ac-4a;14.x3n+y3n;15.(x+y)3+125;16.(3m-2n)3+(3m+2n)3;17.x6(x2-y2)+y6(y2-x2);18.8(x+y)3+1;19.(a+b+c)3-a3-b3-c3;20.x2+4xy+3y2;21.x2+18x-144;22.x4+2x2-8;23.-m4+18m2-17;24.x5-2x3-8x;25.x8+19x5-216x2;26.(x2-7x)2+10(x2-7x)-24;27.5+7(a+1)-6(a+1)2;28.(x2+x)(x2+x-1)-2;29.x2+y2-x2y2-4xy-1;30.(x-1)(x-2)(x-3)(x-4)-48;31.x2-y2-x-y;32.ax2-bx2-bx+ax-3a+3b;33.m4+m2+1;34.a2-b2+2ac+c2;35.a3-ab2+a-b;36.625b4-(a-b)4;37.x6-y6+3x2y4-3x4y2;38.x2+4xy+4y2-2x-4y-35;39.m2-a2+4ab-4b2;40.5m-5n-m2+2mn-n2.四、证明(求值):1.已知a+b=0,求a3-2b3+a2b-2ab2的值.2.求证:四个连续自然数的积再加上1,一定是一个完全平方数.3.证明:(ac-bd)2+(bc+ad)2=(a2+b2)(c2+d2).4.已知a=k+3,b=2k+2,c=3k-1,求a2+b2+c2+2ab-2bc-2ac的值.5.若x2+mx+n=(x-3)(x+4),求(m+n)2的值.6.当a为何值时,多项式x2+7xy+ay2-5x+43y-24可以分解为两个一次因式的乘积.7.若x,y为任意有理数,比较6xy与x2+9y2的大小.8.两个连续偶数的平方差是4的倍数.参考答案:一、填空题:7.9,(3a-1)10.x-5y,x-5y,x-5y,2a-b11.+5,-212.-1,-2(或-2,-1)14.bc+ac,a+b,a-c15.8或-2二、选择题:1.B 2.C 3.C 4.B 5.B 6.D 7.A 8.C 9.D 10.B 11.C 12.C 13.B 14.C 15.D 16.B 17.B 18.D 19.A 20.B 21.B 22.D 23.C 24.A 25.A 26.C 27.C 28.C 29.D 30.D三、因式分解:1.(p-q)(m-1)(m+1).8.(x-2b)(x-4a+2b).11.4(2x-1)(2-x).20.(x+3y)(x+y).21.(x-6)(x+24).27.(3+2a)(2-3a).31.(x+y)(x-y-1).38.(x+2y-7)(x+2y+5).四、证明(求值):2.提示:设四个连续自然数为n,n+1,n+2,n+36.提示:a=-18.∴a=-18.。

湘教版初一数学下册《因式分解》单元试卷检测练习及答案解析

湘教版初一数学下册《因式分解》单元试卷检测练习及答案解析

湘教版初一数学下册《因式分解》单元试卷检测练习及答案解析一、选择题1、下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4 B.x2﹣4=(x+2)(x﹣2)C.x2﹣4+3x=(x+2)(x﹣2)+3x D.x2+4=(x+2)22、若x2+ax-24=(x+2)(x-12),则a的值为( )A.-10 B.±10 C.14 D.-143、多项式分解因式,结果正确的是()A.B.C.D.4、把多项式提取公因式后,余下的部分是()A.B.C.D.5、计算22012+(-2)2013的结果是()A.2201B.-22012C.2 D.-26、下列因式分解正确的是()A.x2+9=(x+3)2B.a2+2a+4=(a+2)2C.a3-4a2=a2(a-4)D.1-4x2=(1+4x)(1-4x)7、因式分解2x2-8的结果是()A.(2x+4)(x-4)B.(x+2)(x-2)C.2 (x+2)(x-2)D.2(x+4)(x-4)8、一次数学课堂练习,小明同学做了如下四道因式分解题.你认为小明做得不够完整的一题是( )A.4x2-4x+1=(2x-1)2B.x3-x=x(x2-1)C.x2y-xy2=xy(x-y) D.x2-y2=(x+y)(x-y)9、下列各式能用完全平方式进行分解因式的是()A.B.C.D.10、已知x2+y2+4x-6y+13=0,则代数式x+y的值为()A.-1 B.1 C.25 D.36二、填空题11、多项式10m2-25mn的公因式是_________。

12、若多项式x−mx−21可以分解为(x+3)(x−7),则m=________。

13、因式分解:____________________。

14、分解因式:5x2﹣20=_____。

15、在实数范围内分解因式:x3-5x=____________________。

16、若x+y=2,则代数式x2+xy+y2=________。

初中数学因式分解(分组分解法)练习100题及答案

初中数学因式分解(分组分解法)练习100题及答案

初中数学因式分解(分组分解法)练习100题及答案(1) 1027014ax ay bx by +--(2) 224981981848x y x y --++ (3) 22285132535a b ab bc ca --+-(4) 222712272015x y xy yz zx --+- (5) 60106010mn m n +--(6) 801006480xy x y -+-+(7) 22872124x y xy yz zx -++-(8) 22283251520a b ab bc ca +-+-(9) 20282535xy x y ----(10) 222141939x y xy yz zx ++--(11) 1070428xy x y -++-(12) 221510313521x y xy yz zx +--+(13) 2220358103a c ab bc ca -+-+(14) 60501815xy x y ----(15) 22365452511a c ab bc ca ---+(16) 226123417x z xy yz zx +-+-(17) 754935ab a b -+-(18) 16884xy x y -++-(19) 945945mx my nx ny --+(20) 22201839a c ca ++(21) 22672824a b ab bc ca -+--(22) 2235121220a b ab bc ca --+-(23) 9327ax ay bx by +--(24) 8016204mx my nx ny +++(25) 2231024x z xy yz zx ---+(26) 15502480xy x y ----(27) 221535464935x y xy yz zx ++++(28) 222035154928a b ab bc ca --+-(29) 632412mx my nx ny +--(30) 49214218xy x y +++(31) 4085ax ay bx by +--(32) 16364090xy x y -++-(33) 2220619624x y xy yz zx -+-+(34) 368368mn m n --+(35) 45633549ax ay bx by -+-(36) 2244363217a b a b --++ (37) 25304554mn m n -+-(38) 104156xy x y +++(39) 2221126432x z xy yz zx ++--(40) 24286070ab a b --+(41) 2249281840a b a b -+++(42) 223625652016a b ab bc ca +-+-(43) 226464489m n m ---(44) 223664369m n m ---(45) 224936568433a b a b -++-(46) 22331039a b ab bc ca +-+-(47) 226513510a b ab bc ca +-+-(48) 2294937x z xy yz zx ++--(49) 754935mn m n -+-(50) 2291018447a c ab bc ca +--+(51) 227221272129x z xy yz zx ---+(52) 530636mx my nx ny +--(53) 2249241827a b a b -+-+(54) 312624xy x y --++(55) 225625529x z xy yz zx -++-(56) 242065xy x y +++(57) 2282836x y xy yz zx ++--(58) 2216202548a c ab bc ca ++++(59) 22925204x y y ---(60) 2230736637a c ab bc ca --++(61) 221412461035x y xy yz zx +-+-(62) 2245425733x z xy yz zx -+--(63) 486486mn m n +++(64) 2210530627a c ab bc ca +-+-(65) 205164xy x y --++(66) 2272524331x z xy yz zx ----(67) 2293021353a c ab bc ca -++-(68) 848040ab a b +++(69) 81451810ab a b -+-(70) 223014354952x z xy yz zx +-+-(71)22123574a b ab bc ca-+--(72)222020mx my nx ny-+-(73)153357ab a b-+-(74)18126342mn m n+--(75)99010ax ay bx by+--(76)24241616mn m n-+-(77)16144035xy x y-+-(78)728455mx my nx ny-+-(79)5401080mx my nx ny+++(80)2254221212x y xy yz zx++++ (81)20503280xy x y--+(82)552020ax ay bx by+--(83)22124236x y xy yz zx----(84)18244864mn m n-+-(85)9020276ax ay bx by+--(86)222418391232a b ab bc ca----(87)2292142866x z xy yz zx+-+-(88)222581101a b a---(89) 24361624ax ay bx by --+(90) 20104020mn m n -+-(91) 229961x y y ---(92) 226416647265x y x y ----(93) 229424209m n m n ----(94) 2245220813a c ab bc ca --+- (95) 22449325648m n m n --++(96) 22481412648x y x y -++-(97) 22634276103x z xy yz zx +--+(98) 223030202461x z xy yz zx ++--(99) 221012352126a c ab bc ca +--+(100) 24275663ax ay bx by --+初中数学因式分解(分组分解法)练习100题答案(1)2(7)(5)a b x y-+(2)(798)(796)x y x y+---(3)(75)(45)a b a b c-+-(4)(935)(34)x y z x y+--(5)10(1)(61)m n-+(6)4(54)(45)x y-+-(7)(87)(3)x y x y z-+-(8)(75)(43)a b c a b---(9)(45)(57)x y-++(10)(3)(743)x y x y z++-(11)2(52)(7)x y---(12)(527)(35)x y z x y-+-(13)(45)(527)a c ab c-++ (14)(103)(65)x y-++(15)(95)(45)a c ab c+--(16)(34)(23)x z x y z---(17)(7)(75)a b+-(18)4(21)(21)x y---(19)9()(5)m n x y--(20)(56)(43)a c a c++(21)(4)(67)a b c a b--+(22)(53)(744)a b a b c-+-(23)(3)(9)a b x y-+(24)4(4)(5)m n x y++(25)(325)(2)x y z x z--+ (26)(58)(310)x y-++(27)(357)(57)x y z x y+++(28)(557)(47)a b c a b+--(29)3(4)(2)m n x y-+(30)(76)(73)x y++(31)(8)(5)a b x y-+(32)2(25)(49)x y---(33)(4)(566)x y x y z-++ (34)4(1)(92)m n--(35)(97)(57)a b x y+-(36)(2217)(221)a b a b+---(37)(59)(56)m n+-(38)(23)(52)x y++(39)(32)(726)x z x y z-+-(40)2(25)(67)a b--(41)(234)(2310)a b a b++-+(42)(45)(954)a b a b c---(43)(883)(883)m n m n+---(44)(683)(683)m n m n+---(45)(763)(7611)a b a b+--+(46)(3)(33)a b a b c---(47)(355)(2)a b c a b---(48)(9)(4)x z x y z-+-(49)(7)(75)m n+-(50)(92)(25)a c ab c+-+ (51)(97)(833)x z x y z+--(52)(56)(6)m n x y-+(53)(239)(233)a b a b++-+ (54)3(2)(4)x y--+(55)(5)(56)x z x y z++-(56)(41)(65)x y++(57)(423)(2)x y z x y+-+(58)(84)(25)a b c a c+++ (59)(352)(352)x y x y++--(60)(6)(567)a c ab c--+ (61)(72)(265)x y x y z---(62)(57)(96)x z x y z-++ (63)6(1)(81)m n++(64)(265)(5)a b c a c---(65)(54)(41)x y--+ (66)(935)(8)x y z x z--+(67)(35)(376)a c ab c++-(68)4(10)(21)a b++(69)(92)(95)a b+-(70)(672)(57)x y z x z---(71)(35)(47)a b c a b--+ (72)2(10)()m n x y+-(73)(37)(51)a b+-(74)3(27)(32)m n-+(75)(10)(9)a b x y-+ (76)8(32)(1)m n+-(77)(25)(87)x y+-(78)(85)(9)m n x y+-(79)5(2)(8)m n x y++(80)(922)(6)x y z x y+++ (81)2(58)(25)x y--(82)5(4)()a b x y-+(83)(643)(2)x y z x y--+ (84)2(38)(34)m n+-(85)(103)(92)a b x y-+(86)(83)(364)a b a b c+--(87)(7)(943)x z x y z---(88)(591)(591)a b a b+---(89)4(32)(23)a b x y--(90)10(2)(21)m n+-(91)(331)(331)x y x y++--(92)(845)(8413)x y x y++--(93)(321)(329)m n m n++--(94)(94)(52)a b c a c-+-(95)(2712)(274)m n m n+---(96)(296)(298)x y x y+--+ (97)(76)(97)x z x y z+-+(98)(645)(56)x y z x z+--(99)(53)(274)a c ab c+-+ (100)(37)(89)a b x y--。

沪科版七年级数学下册 第八章 8.4因式分解 一课一练(含答案)

沪科版七年级数学下册 第八章 8.4因式分解 一课一练(含答案)

8.4因式分解一课一练一、选择题1.下列从左到右变形是因式分解的是()A.x2-3x+1=x(x-3)+1B.x2+2x-3=x(x+2-3 x )C.(x-y)2-(y-x)3=(x-y)2(x-y+1)D.(x+2y)(x-2y)=x2-4y22.下列各式:①x2-3xy+9y2;②x2+2xy-y2;③-x2-16y2;④-a2-4b2+4ab;⑤4x2-2xy+14y2;⑥-9a2+49b2.其中,能用公式法分解因式的个数有()A.2B.3C.4D.53.若二次三项式x2-ax-1可分解为(x-2)(x-b),则a+b的值等于()A.-1B.-2C.2D.14.计算2.854×4.362-4.362×1.8-0.054×4.362结果等于()A.4362B.436.2C.43.62D.4.3625.若a2+b2+4a-6b+13=0,则a、b的值分别是()A.a=2,b=3B.a=-2,b=3C.a=-2,b=-3D.a=2,b=-36.已知a+b=3,ab=2,则代数式-a2b-ab2的值为()A.2B.3C.-6D.67.多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式不可以是()A.4xB.-4xC.4x4D.-4x48.两个连续的奇数的平方差总可以被k整除,则k等于()A.4B.8C.4或-4D.8的倍数二、填空题9.若x2-my2=(x+4y)(x-4y),则m=.10.计算19×1012-992×19=.11.代数式x4-81,-x-3,x2+5x+6,x2-9的公因式是.12k为时,k-6x+9x2是一个完全平方式.13.一个矩形的面积为a3-2ab+a,其中一边的长为a2-2b+1,则矩形的另一边的长为.14.若ax 2+24x +b =(mx -3)2,则a = ,b = ,m = .三、解答题15.将下列各多项式分解因式:(1)4x 4-4x 3+x 2.(2)x 2(x +y )-y 2(x +y ).(3)(x -y )2-4(x +y -1).16.如图,在一块边长为a 厘米的正方形纸板四角,各剪去一个边长为 b (b <2a )厘米的正方形,利用因式分解计算当a =13.2,b =3.4时,剩余部分的面积.17.大小两个正方形的边长分别为a 和b ,它们的周长相差96厘米,面积相差960平方厘米.求:(1)a +b 的值;(2)ab 的值.18.试说明1110-1能被100整除的理由.19.(1)计算:1×2×3×4+1= . 2×3×4×5+1= .3×4×5×6+1= . 4×5×6×7+1= .(2)观察上述计算的结果,指出它们的共同特性.(3)以上特性,对于任意给出的四个连续正整数的积与1的和仍具备吗?试说明你的猜想,并验证你猜想的结论.参考答案1.C;2.C;3.D;提示:已知条件的右边展开后对应系数相等,即a=32,b=-12;4.D;提示:因为 2.854×4.362-4.362×1.8-0.054×4.362=4.362×(2.854-1.8-0.054)=4.362×1=4.362;5.B;提示:因为a2+b2+4a-6b+13=0,所以a2+4a+4+b2+-6b+9=0,即(a+2)2+(b -3)2=0,于是a=-2,b=3;6.C;7.D;8.B.提示:设连续两个奇数分别为2n+1和2n-1,则有(2n+1)2-(2n-1)2=8n.9.16;10.7600;11.x+3;12.1;13.a;14.16、9、-4;15.(1)x2(2x-1)2.(2)(x+y)2(x-y).(3)(x+y-2)2.16.剩余部分的面积=a2-4b2=(a+2b)(a-2b),当a=13.2,b=3.4时,原式=(13.2+2×3.4) (13.2-2×3.4)=20×6.4=128(平方厘米).17.(1)依题意,得4a-4b=96,且a2-b2=960,即a-b=24,且(a+b)(a-b)=960,所以a+b=40.(2)分别将a-b=24和a+b=40平方,得a2-2ab+b2=242,a2+2ab+b2=402,两式相减,得4ab=402-242=64×16=1024,即ab=256.18.因为1110-1=(11-1)(119+118+117+116+…+11+1),又11n的末位上数是1,而119+118+117+116+…+11+1的和的末位数必为0,所以1110-1=10×10k(k为整数),即1110-1能被100整除.19.(1)经计算,易得结果分别25,121,361,841.(2)25,121,361,841都是完全平方数.(3)任意四个连续正整数的积与1的和是一个完全平方数.理由如下:设最小的正整数为n,则四个连续正整数的积与1的和表示成n(n+1)(n+2)(n+3)+1.即n(n+1)(n+2)(n+3)+1=[n(n+3)][(n+1) (n+2)]+1=(n2+3n)[(n2+3n)+2]+1=(n2+3n)2+2(n2+3n)+1=(n2+3n+1)2.。

初中数学因式分解经典测试题附答案

初中数学因式分解经典测试题附答案
15.将下列多项式因式分解,结果中不含有因式 的是()
A. B. C. D.
【答案】D
【解析】
【分析】
先把各个多项式分解因式,即可得出结果.
【详解】
解: ,


结果中不含有因式 的是选项D;
故选:D.
【点睛】
本题考查了因式分解的意义与方法;熟练掌握因式分解的方法是解决问题的关键.
16.把多项式分解因式,正确的结果是( )
3.把代数式 分解因式,结果正确的是()
A. B.
C. D.
【答案】D
【解析】
此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.
解答:解: ,
=3x(x2-2xy+y2),
=3x(x-y)2.
故选D.
4.设a,b,c是 的三条边,且 ,则这个三角形是
A.等腰三角形B.直角三角形
C、xy﹣x=x(y﹣1),故此选项正确;
D、2x+y无法因式分解,故此选项错误.
故选C.
【点睛】
本题考查因式分解.
2.若 ,则 的值为()
A.-2B.2C.8D.-8
【答案】B
【解析】
【分析】
利用十字相乘法化简 ,即可求出 的值.
【详解】


解得
故答案为:B.
【点睛】
本题考查了因式分解的问题,掌握十字相乘法是解题的关键.
【答案】B
【解析】
【分析】
因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.
【详解】
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学因式分解练习题及答案
一、选择
1.下列各式由左到右变形中,是因式分解的是
=ax+ayB. x-4x+4=x+4
C. 10x-5x=5xD. x-16+3x=+3x
2.下列各式中,能用提公因式分解因式的是
A. x-yB. x+2x C. x+y D. x-xy+1
3.多项式6xy-3xy-18xy分解因式时,应提取的公因式是

4.多项式x+x提取公因式后剩下的因式是
A. x+1 C. x D. x+1
5.下列变形错误的是
=- B.= - C. –x-y+z=-
D.=
6.下列各式中能用平方差公式因式分解的是
A. –+y +y
7.下列分解因式错误的是
A. 1-16a=B. x-x=x
=
8.下列多项式中,能用公式法分解因式的是
-xy
二、填空
+ab-ab=ab.
+14a-49ab=-7a.
+2=___________
=____________.
+b=
=___________
=________
22222B. x+xyC. x-y D. x+y2222
+x+____=
17.若a+b=1,x-y=2,则a+2ab+b-x+y=____。222
三、解答
18.因式分解:
①4x316x224x
②8a2123
③2am14am2am1
④2a2b2-4ab+2
⑤2-4x2y2
⑥2-4
19.已知a+b-c=3,求2a+2b-2c的值。
2
20、已知,2x-Ax+B=2,请问A、B的值是多少2
21、若2x2+mx-1能分解为,求m的值。
22.已知a+b=5,ab=7,求a2b+ab2-a-b的值。
23. 已知a2b2-8ab+4a2+b2+4=0,求ab的值。
24.请问9910-99能被99整除吗说明理由。
参考答案
一、选择1. C . B .C
.C. C7. B . C
二、填空
9. a+b-1; +7b11.
12.
13. b-a14. .解答题
18. 解:①原式=-4x211,17. -142
②原式=8a+12=4=4 ③原式=2a
④原式=2=2.
⑤原式==
⑥原式=-4+4=22m-122322
19. 解:2a+2b-2c=2=2×3=6.
20、解:2x-Ax+B=2=x+8x-2
所以A=-8,B=-2.
21、解:2x+mx-1==x-x-1所以mx=-x 即m=-1.
22. 解:ab+ab-a-b
=ab-
=
把a+b=5,ab=7代入上式,原式=30.
23. 解:将ab-8ab+4a+b+4=0变形得
ab-4ab+4+4a-4ab+b=0;+=0
所以ab=2,2a=b解得:a=±1,b=±2.
所以ab=2或ab= -2.
24. 解:99-99=99
所以99-99能被99整除,结果为99-1.
22
4
初一数学上因式分解练习题精选
一、填空:
1、若x22x16是完全平方式,则m的值等于_____。
2、x2xm2则m=____n=____
3、2x3y2与12x6y的公因式是_
4、若xmyn=,则m=_______,n=_________。
5、在多项式3y25y315y5中,可以用平方差公式分解
因式的
有________________________ ,其结果是
_____________________。
6、若x22x16是完全平方式,则m=_______。
7、x2x2
8、已知1xx2x2004x20050,则x2006________.
9、若162M25是完全平方式M=________。
10、x26x__2, x2___92
11、若9x2ky2是完全平方式,则k=_______。
12、若x24x4的值为0,则3x212x5的值是________。
13、若x2ax15则a=_____。
14、若xy4,x2y26则xy___。
15、方程x24x0,的解是________。
二、选择题:
1
1、多项式aab的公因式是
A、-a、 B、a C、aD、a
2、若mx2kx92,则m,k的值分别是
A、m=—2,k=6,B、m=2,k=12,C、m=—4,k=—12、
D m=4,k=12、
3、下列名式:x2y2,x2y2,x2y2,22,x4y4中能用平方差公
式分解因式的有
A、1个,B、2个,C、3个,D、4个
4、计算的值是11111B、,C.,
三、分解因式:
1 、x42x335x2
、x63x2
、 5242
4、x24xy14y2
5、x5x
6、x31
2
7、ax2bx2bxaxba
8、x418x281
、9x436y2
10、24
四、代数式求值
1、已知2xy1
3,xy2,求x4y3x3y4的值。
2、若x、y互为相反数,且224,求x、y的值
3、已知ab2,求28的值
五、计算:
3
4

1
21
2
22442
3
六、试说明:
1、对于任意自然数n,22都能被动24整除。
2、两个连续奇数的积加上其中较大的数,所得的数
就是夹在这两个连续奇数之间的偶数与较大奇数的积。
七、利用分解因式计算
1、一种光盘的外D=厘米,内径的d=厘米,求光盘的
面积。
2、正方形1的周长比正方形2的周长长96厘米,其
面积相差960平方厘米求这两个正方形的边长。
八、老师给了一个多项式,甲、乙、丙、丁四个同学
分别对这个多项式进行了描述:
甲:这是一个三次四项式
乙:三次项系数为1,常数项为1。
丙:这个多项式前三项有公因式
丁:这个多项式分解因式时要用到公式法
若这四个同学描述都正确请你构造一个同时满足这个
描述的多项式,并将它分解因式。
4
因式分解

一、因式分解
1.下列变形属于分解因式的是
A.2x2-4x+1=2x+1 B.m=ma+mb+mc
C.x2-y2= D.=
2.计算的结果,正确的是
A.m2-4B.m2+16C.m2-1 D.m2+4
3.分解因式mx+my+mz=
A.m+mz B.m C.m D.m3abc
4.20052-2005一定能被整除
A.00 B.004C.00 D.009
5.下列分解因式正确的是
A.ax+xb+x=xB.a2+ab+b2=2
C.a2+5a-24= D.a+b=a2b
6.已知多项式2x2+bx+c分解因式为2,则b,c的值

A.b=3,c=1 B.b=-c,c=2
C.b=-c,c=-4D.b=-4,c=-6
7.请写出一个二次多项式,再将其分解因式,其结果
为______.
8.计算:21×+62×+17×=_________.
二、提公因式法
9.多项式3a2b3c+4a5b2+6a3bc2的各项的公因式是
A.a2bB.12a5b3c C.12a2bc D.a2b2
10.把多项式m2+m分解因式等于
A. B.
C.m D.m
11.2001+2002等于
A.-22001B.-2200C.22001D.-2
12.-ab2+a2-ac2的公因式是
A.-a B.C.-a
15.分解下列因式:
56x3yz-14x2y2z+21xy2z2
2+2n
m-n+p
a+b
D.-a2
三、
16.若x2+y=·B,则B=_______.
17.已知a-2=b+c,则代数式a-b-c=______
18.利用分解因式计算:197的5%,减去897的5%,
差是多少
四、创新应用
19.利用因式分解计算:
0042-4×004;9×37-13×34
121×+×-12×
20 06006×008-20 08008×006
2n422n
20.计算:2n3
24.设n为整数,求证:2-25能被4整除.
杨老师对同学们说:“我能猜出你们每一位同学的年
龄,不信的话,你们就按下面方法试试:先把你的年龄
乘以5,再加5,然后把结果扩大2倍,最后把算得的
结果告诉老师,老师就知道你的年龄了.”杨老师又说:“雨
晴,你算出的是多少”雨晴答:“130”.杨老师马上说:“你12
岁”.如果你是杨老师,当李强同学算出的结果是140时,你
会说李强多少岁
答案:

1.C .C .B .B .C .D
7.4a2-4ab+b2=.314
9.A 10.C 11.C 12.D 13.C 14.D
15.7xyz

相关文档
最新文档