三角形的必备知识和典型例题及详解
新人教版八年级上数学第十一章三角形知识点考点典型例题含答案

第十一章三角形【学问要点】一.相识三角形1.关于三角形的概念及其按角的分类定义:由不在同始终线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类:①三角形按内角的大小分为三类:锐角三角形、直角三角形、钝角三角形。
②三角形按边分为两类:等腰三角形和不等边三角形。
2.关于三角形三条边的关系〔推断三条线段能否构成三角形的方法、比较线段的长短〕依据公理“两点之间,线段最短〞可得:三角形随意两边之和大于第三边。
三角形随意两边之差小于第三边。
3.及三角形有关的线段..:三角形的角平分线、中线和高三角形的角平分线:三角形的一个角的平分线及对边相交形成的线段;三角形的中线:连接三角形的一个顶点及对边中点的线段,三角形随意一条中线将三角形分成面积相等的两个部分;三角形的高:过三角形的一个顶点做对边的垂线,这条垂线段叫做三角形的高。
留意:①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②随意一个三角形都有三条角平分线,三条中线和三条高;③随意一个三角形的三条角平分线、三条中线都在三角形的内部。
但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部;直角三角形有一条高在三角形的内部,另两条高恰好是它两条直角边;钝角三角形一条高在三角形的内部,另两条高在三角形的外部。
④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。
〔三角形的三条高〔或三条高所在的直线〕交及一点,锐角三角形高的交点在三角形的内部,直角三角形高的交点是直角顶点,钝角三角形高〔所在的直线〕的交点在三角形的外部。
〕4.三角形的内角及外角〔1〕三角形的内角和:180°引申:①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。
〔2〕三角形的外角和:360°〔3〕三角形外角的性质:①三角形的一个外角等于及它不相邻的两个内角的和;——常用来求角度②三角形的一个外角大于任何一个及它不相邻的内角。
解三角形知识点汇总和典型例题

文成教育学科辅导教案讲义授课对象授课教师徐老师 授课时间 3月11日 授课题目 解三角形复习总结 课 型 复习课使用教具人教版教材教学目标 熟练掌握三角形六元素之间的关系,会解三角形教学重点和难点 灵活解斜三角形 参考教材人教版必修5第一章教学流程及授课详案解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
(1)三边之间的关系:a 2+b 2=c 2。
(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba。
2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。
(1)三角形内角和:A +B +C =π。
(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R Cc B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。
3.三角形的面积公式: (1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);根据正弦定理, 0sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A(2)根据正弦定理, 0sin 28sin40sin 0.8999.20==≈b A B a 因为00<B <0180,所以064≈B ,或0116.≈B①当064≈B 时, 00000180()180(4064)76=-+≈-+=C A B ,②当0116≈B 时,180()180(40116)24=-+≈-+=C A B ,0sin 20sin2413().sin sin40==≈a C c cm A 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器 题型2:三角形面积例2.在∆ABC 中,sin cos A A +=22,AC =2,3=AB ,求A tan 的值和∆ABC 的面积。
高中数学-解三角形知识点汇总情况及典型例题1

实用标准解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
(1)三边之间的关系:a 2+b 2=c 2。
(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba。
2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。
(1)三角形内角和:A +B +C =π。
(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R Cc B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。
3.三角形的面积公式:(1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)∆S =21ab sin C =21bc sin A =21ac sin B ;4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)例1.(1)在∆ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形;(2)在∆ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。
解:(1)根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=;根据正弦定理, 0sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A(2)根据正弦定理, 0sin 28sin40sin 0.8999.20==≈b A B a 因为00<B <0180,所以064≈B ,或0116.≈B①当064≈B 时,00000180()180(4064)76=-+≈-+=C A B ,sin 20sin7630().sin sin40==≈a C c cm A ②当0116≈B 时,180()180(40116)24=-+≈-+=C A B ,0sin 20sin2413().sin sin40==≈a C c cm A 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器 题型2:三角形面积例2.在∆ABC 中,sin cos A A +=22,AC =2,3=AB ,求A tan 的值和∆ABC 的面积。
三角形知识总结及典型例题

三角形知识总结及典型例题【由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。
组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点,相邻两边所组成的角叫做三角形的 内角,简称三角形的角.】 例1.如图:⑴已知:如图,试回答下列问题:(1)图中有______个三角形,它们分别是_____________________ (2)以线段AD 为公共边的三角形是_________________________________,CE 边所对的角是__________.不等腰三角形三角形底预与腰不相等的等腰三角形 等腰三角形等边三角形【注意:凡涉及到等腰三角形边或角时一定要分成两种情况边分为腰或底边;角分为顶角或底角】 【三角形三边关系定理:三角形的任意两边之和大于第三边,任意两边之差小于第三边】 应用1:给出三条线段的长度或者三条线段的比值,要求判断这三条线段能否组成三角形【方法:最小边+较小边>最大边 不用比较三遍,只需比较一遍即可】应用2:已知三角形两边的长度,求第三边长度的范围 【方法:第三边长度的范围:两边之差<第三边<两边之和】例2.下列各组线段能组成一个三角形的是( ).A.3cm ,3cm ,6cmB.2cm ,3cm ,6cmC.5cm ,8cm ,12cmD.4cm ,7cm ,11cm 例3.若三角形两边长分别为6cm,2cm,第三边长为偶数,则第三边长为( ) A 、2cm B 、4cm C 、6cm D 、8cm例4.一个等腰三角形,周长为20cm ,一边长6cm ,求其他两边长。
1. 三角形的高【注意:三角形的三条高的交于一点,这一点叫做“三角形的垂心”锐角三角形的三条高相交于三角形内部一点;钝角三角形的三条高相交于三角形外部的一点;直角三角形的三条高相交于直角顶点处。
】 2. 三角形的中线C【注意:三角形三条中线的交于一点,这一点叫做“三角形的重心” 三角形的中线可以将三角形分为面积相等的两个小三角形。
解三角形知识点总结及典型例题

解三角形知识点总结及典型例题三角形作为几何学的基础概念之一,是学习几何学不可或缺的部分。
在解三角形的过程中,我们需要掌握一些基本的知识点和技巧。
本文将对解三角形的相关知识点进行总结,并配以典型例题进行说明。
一、三角形的基本概念三角形由三条边和三个角组成。
根据边的长度,三角形可以分为等边三角形、等腰三角形和普通三角形。
根据角的大小,三角形可以分为钝角三角形、直角三角形和锐角三角形。
二、重要的定理1. 三角形内角和定理:三角形的内角和等于180°。
利用这个定理,我们可以求解一些已知角的三角形问题。
2. 角平分线定理:角平分线将一个角分为两个大小相等的角。
利用这个定理,我们可以求解一些已知角平分线的三角形问题。
3. 直角三角形的性质:直角三角形的两个直角边平方和等于斜边的平方。
这个定理被广泛应用于解决直角三角形的各类问题。
三、解三角形的方法1. 已知两边和夹角如果我们已知三角形的两边和夹角,我们可以利用余弦定理求解第三边的长度。
余弦定理的数学表达式如下:c² = a² + b² - 2abcosC其中,c为第三边的长度,a和b为已知边的长度,C为已知夹角的度数。
2. 已知两边和对应的角如果我们已知三角形的两边和对应的角,我们可以利用正弦定理求解第三角的长度。
正弦定理的数学表达式如下:a/sinA = b/sinB = c/sinC其中,a、b、c为三角形的边长,A、B、C为对应的角度。
3. 已知三边如果我们已知三角形的三边,我们可以利用余弦定理或正弦定理求解其中一个角的大小。
然后,再利用三角形的内角和定理求解其他角的大小。
四、典型例题1. 已知三角形ABC,AB = 8 cm,BC = 6 cm,AC = 10 cm。
求角A、角B和角C的度数。
解:根据余弦定理,cosA = (8² + 10² - 6²) / (2 × 8 × 10) = 0.6cosB = (6² + 10² - 8²) / (2 × 6 × 10) = 0.8cosC = (8² + 6² - 10²) / (2 × 8 × 6) = 0.7通过查表或使用计算器,我们可以得到:角A ≈ 53.13°,角B ≈ 36.87°,角C ≈ 90°2. 在直角三角形ABC中,∠B = 90°,AB = 5 cm,BC = 12 cm。
解三角形知识点总结及典型例题

因为 ,所以
[例2 ] 若 、 、 是 的三边, ,则函数 的图象与 轴( )
A、有两个交点 B、有一个交点 C、没有交点 D、至少有一个交点
【解析】由余弦定理得 ,所以 = ,因为 1,所以 0,因此 0恒成立,所以其图像与 轴没有交点。
题型2 三角形解的个数
[例3]在 中,分别根据下列条件解三角形,其中有两解的是( )
A、 , , ;B、 , , ;
C、 , , ;D、 , , 。
题型3 面积问题
[例4] 的一个内角为 ,并且三边构成公差为 的等差数列,则 的面积为
【解析】设△ABC的三边分别: ,
∠C=120°,∴由余弦定理得: ,解得: ,
∴ 三边分别为6、10、14,
.
题型4 判断三角形形状
[例5] 在 中,已知 ,判断该三角形的形状。
【解析】把已知等式都化为角的等式或都化为边的等式。
方法一:
由正弦定理,即知
由 ,得 或 ,
即 为等腰三角形或直角三角形.
方法二:同上可得
由正、余弦定理,即得:
即
或 ,
即 为等腰三角形或直角三角形.
【点拨】判断三角形形状问题,一是应用正弦定理、余弦定理将已知条件转化为边与边之间的关系,通过因式分解等方法化简得到边与边关系式,从而判断出三角形的形状;(角化边)
二是应用正弦定理、余弦定理将已知条件转化为角与角之间三角函数的关系,通过三角恒等变形以及三角形内角和定理得到内角之间的关系,从而判断出三角形的形状。(边化角)
题型5 正弦定理、余弦定理的综合运用
[例6]在 中, 分别为角 的对边,且 且
(1)当 时,求 的值;
(2)若角 为锐角,求 的取值范围。
人教版七年级下数学三角形知识点归纳、典型例题及考点分析

BC三角形知识点归纳、典型练习题及考点分析一、三角形相关概念 1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形 要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示通常用三个大写字母表示三角形的顶点,如用A 、B 、C 表示三角形的三个顶点时,此三角形可记作△ABC ,其中线段AB 、BC 、AC 是三角形的三条边,∠A 、∠B 、∠C 分别表示三角形的三个内角.3.三角形中的三种重要线段三角形的角平分线、中线、高线是三角形中的三种重要线段.(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线. 注意:①三角形有三条中线,且它们相交三角形内部一点.②画三角形中线时只需连结顶点及对边的中点即可.(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.注意:①三角形的三条高是线段②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.练习题:1、图中共有( A :5 B :6 C :7 D :82、如图,AE ⊥BC ,BF ⊥AC ,CD ⊥AB ,则△ABC 中AC 边上的高是( ) A :AE B :CD C :BF D :AF 3、三角形一边上的高( )。
A :必在三角形内部B :必在三角形的边上C :必在三角形外部D :以上三种情况都有可能 4、能将三角形的面积分成相等的两部分的是( )。
(完整版)全等三角形知识总结和经典例题

全等三角形复习[ 知识要点 ]一、全等三角形1.判定和性质一般三角形直角三角形边角边( SAS)、角边角( ASA)具备一般三角形的判定方法判定斜边和一条直角边对应相等( HL )角角边( AAS)、边边边( SSS)对应边相等,对应角相等性质对应中线相等,对应高相等,对应角平分线相等注:①判定两个三角形全等必须有一组边对应相等;② 全等三角形面积相等.2.证题的思路:找夹角( SAS)已知两边找直角( HL )找第三边( SSS)若边为角的对边,则找任意角( AAS)找已知角的另一边(SAS)已知一边一角边为角的邻边找已知边的对角(AAS)找夹已知边的另一角(ASA)找两角的夹边(ASA)已知两角找任意一边(AAS)性质1、全等三角形的对应角相等、对应边相等。
2、全等三角形的对应边上的高对应相等。
3、全等三角形的对应角平分线相等。
4、全等三角形的对应中线相等。
5、全等三角形面积相等。
6、全等三角形周长相等。
( 以上可以简称 : 全等三角形的对应元素相等)7、三边对应相等的两个三角形全等。
(SSS)8、两边和它们的夹角对应相等的两个三角形全等。
(SAS)9、两角和它们的夹边对应相等的两个三角形全等。
(ASA)10、两个角和其中一个角的对边对应相等的两个三角形全等。
(AAS)11、斜边和一条直角边对应相等的两个直角三角形全等。
(HL)运用1、性质中三角形全等是条件,结论是对应角、对应边相等。
而全等的判定却刚好相反。
2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。
在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。
3,当图中出现两个以上等边三角形时,应首先考虑用 SAS找全等三角形。
4、用在实际中,一般我们用全等三角形测等距离。
以及等角,用于工业和军事。
有一定帮助。
5、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上做题技巧一般来说考试中线段和角相等需要证明全等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
(1)三边之间的关系:a 2+b 2=c 2。
(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba。
2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。
(1)三角形内角和:A +B +C =π。
(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R Cc B b A a 2sin sin sin === (R 为外接圆半径) 公式的变形:______________________ ______________ _________________ (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。
3.三角形的面积公式:(1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)∆S =21ab sin C =21bc sin A =21ac sin B ;4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题:第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:第1、已知三边求三角.第2、已知两边和他们的夹角,求第三边和其他两角.5.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。
(1)角的变换因为在△ABC 中,A+B+C=π,所以sin(A+B)=sinC ;cos(A+B)=-cosC ;tan(A+B)=-tanC 。
2sin 2cos ,2cos 2sinCB AC B A =+=+; (2)判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.6.求解三角形应用题的一般步骤:(1)分析:分析题意,弄清已知和所求;(2)建模:将实际问题转化为数学问题,写出已知与所求,并画出示意图; (3)求解:正确运用正、余弦定理求解; (4)检验:检验上述所求是否符合实际意义。
二、典例解析 题型1:正、余弦定理例1.(1)已知在B b a C A c ABC 和求中,,,30,45,1000===∆ (2)C B b a A c ABC ,,2,45,60和求中,===∆解:(1)解:∵21360sin 1sin sin ,sin sin 0=⨯==∴=b B c C C c B b00090,30,,60,==∴<∴=>B C C B C B c b 为锐角,∴222=+=c b a(2)23245sin 6sin sin ,sin sin 0=⨯==∴=aAc C C c A a0012060,sin 或=∴<<C c a A c1360sin 75sin 6sin sin ,75600+=====∴C B c b B C 时,当, 1360sin 15sin 6sin sin ,151200-=====∴C B c b B C 时,当或0060,75,13==+=∴C B b 00120,15,13==-=C B b点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;题型2:三角形面积例2.在∆ABC 中,sin cos A A +=22,AC =2,3=AB ,求A ta n 的值和∆ABC 的面积。
解法一:先解三角方程,求出角A 的值。
.21)45cos(,22)45cos(2cos sin =-∴=-=+ A A A A又0180 <<A , 4560,105.A A ∴-==tan tan(4560)2A ∴=+==- .46260sin 45cos 60cos 45sin )6045sin(105sin sin +=+=+==A S AC AB A ABC ∆=⨯=⨯⨯⨯+=+1212232643426sin ()。
题型3:三角形中的三角恒等变换问题例3.在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边长,已知a 、b 、c 成等比数列,且a 2-c 2=ac -bc ,求∠A 的大小及cBb sin 的值。
分析:因给出的是a 、b 、c 之间的等量关系,要求∠A ,需找∠A 与三边的关系,故可用余弦定理。
由b 2=ac 可变形为c b 2=a ,再用正弦定理可求cBb sin 的值。
解法一:∵a 、b 、c 成等比数列,∴b 2=ac 。
又a 2-c 2=ac -bc ,∴b 2+c 2-a 2=bc 。
在△ABC 中,由余弦定理得:cos A =bc a c b 2222-+=bc bc 2=21,∴∠A =60°。
在△ABC 中,由正弦定理得sin B =aAb sin ,∵b 2=ac , ∠A =60°,∴ac b c B b ︒=60sin sin 2=sin60°=23。
解法二:在△ABC 中, 由面积公式得21bc sin A =21ac sin B 。
∵b 2=ac ,∠A =60°,∴bc sin A =b 2sin B 。
∴cB b sin =sin A =23。
评述:解三角形时,找三边一角之间的关系常用余弦定理,找两边两角之间的关系常用正弦定理。
题型4:正、余弦定理判断三角形形状例4.在△ABC 中,若2cos B sin A =sinC ,则△ABC 的形状一定是( ) A.等腰直角三角形 B.直角三角形 C.等腰三角形D.等边三角形答案:C解析:2sin A cos B =sin C =sin (A +B )=sinAcosB+cosAsinB ∴sin (A -B )=0,∴A =B 另解:角化边点评:本题考查了三角形的基本性质,要求通过观察、分析、判断明确解题思路和变形方向,通畅解题途径 题型5:三角形中求值问题例5.ABC ∆的三个内角为A B C 、、,求当A 为何值时,cos 2cos 2B CA ++取得最大值,并求出这个最大值。
解析:由A+B+C=π,得B+C 2=π2 -A 2,所以有cos B+C 2 =sin A2。
cosA+2cosB+C 2 =cosA+2sin A 2 =1-2sin 2A2 + 2sin A 2=-2(sin A 2 - 12)2+ 32; 当sin A 2 = 12,即A=π3时, cosA+2cos B+C 2取得最大值为32。
点评:运用三角恒等式简化三角因式最终转化为关于一个角的三角函数的形式,通过三角函数的性质求得结果。
题型6:正余弦定理的实际应用例6.(2009辽宁卷文,理)如图,A,B,C,D 都在同一个与水平面垂直的平面内,B ,D 为两岛上的两座灯塔的塔顶。
测量船于水面A 处测得B 点和D 点的仰角分别为075,030,于水面C 处测得B 点和D 点的仰角均为060,AC=0.1km 。
试探究图中B ,D 间距离与另外哪两点间距离相等,然后求B ,D 的距离(计算结果精确到0.01km ,≈1.414,≈2.449)解:在△ABC 中,∠DAC=30°, ∠ADC=60°-∠DAC=30, 所以CD=AC=0.1 又∠BCD=180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,所以BD=BA , 在△ABC 中,,AB Csin CB C A sin ∠=∠A AB 即AB=,2062315sin ACsin60+=因此,BD=。
km 33.020623≈+ 故B ,D 的距离约为0.33km 。
点评:解三角形等内容提到高中来学习,又近年加强数形结合思想的考查和对三角变换要求的降低,对三角的综合考查将向三角形中问题伸展,但也不可太难,只要掌握基本知识、概念,深刻理解其中基本的数量关系即可过关。
三、思维总结1.解斜三角形的常规思维方法是:(1)已知两角和一边(如A 、B 、C ),由A +B +C = π求C ,由正弦定理求a 、b ; (2)已知两边和夹角(如a 、b 、c ),应用余弦定理求c 边;再应用正弦定理先求较短边所对的角,然后利用A +B +C = π,求另一角;(3)已知两边和其中一边的对角(如a 、b 、A ),应用正弦定理求B ,由A +B +C = π求C ,再由正弦定理或余弦定理求c 边,要注意解可能有多种情况;(4)已知三边a 、b 、c ,应余弦定理求A 、B ,再由A +B +C = π,求角C 。
2.三角学中的射影定理:在△ABC 中,A c C a b cos cos ⋅+⋅=,…3.两内角与其正弦值:在△ABC 中,B A B A sin sin <⇔<,…4.解三角形问题可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大角定理及几何作图来帮助理解”。
三、课后跟踪训练1.(2010上海文数18.)若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =,则△ABC ( )(A )一定是锐角三角形. (B )一定是直角三角形.(C )一定是钝角三角形. (D)可能是锐角三角形,也可能是钝角三角形. 解析:由sin:sin :sin 5:11:13A B C =及正弦定理得a:b:c=5:11:13由余弦定理得0115213115cos 222<⨯⨯-+=c ,所以角C 为钝角2.(2010天津理数7)在△ABC 中,内角A,B,C 的对边分别是a,b,c ,若22ab -=,sin C B =,则A=( )(A )030 (B )060 (C )0120 (D )0150 【答案】A【解析】本题主要考查正弦定理与余弦定理的基本应用,属于中等题。