分式计算练习题
分式练习计算练习试题(超全)

分式练习题一 填空题1.下列有理式中是分式的有 (1)-3x ;(2)y x ;(3)22732xy y x -;(4)-x 81;(5) 35+y ; (6)112--x x ;(7)-π-12m ; (8)5.023+m ; 2.(1)当a 时,分式321+-a a 有意义;(2)当_____时,分式4312-+x x 无意义; (3)当______时,分式68-x x 有意义;(4)当_______时,分式534-+x x 的值为1; (5)当______时,分式51+-x 的值为正;(6)当______时分式142+-x 的值为负. (7)分式36122--x x 有意义,则x (8)当x = 3时,分式b x a x +-无意义,则b ______ 3.(1)若分式0)1x )(3x (1|x |=-+-,则x 的值为_________________; (2)若分式33x x --的值为零,则x = ; (3)如果75)13(7)13(5=++a a 成立,则a 的取值范围是__________; (4)若)0(54≠=y y x ,则222y y x -的值等于________; (5)分式392--x x 当x __________时分式的值为零; (6)当x __________时分式xx 2121-+有意义; (7)当x=___时,分式22943x x x --+的值为0; (8)当x______时,分式11x x +-有意义; (10)当a=_______时,分式2232a a a -++ 的值为零; (11)当分式44x x --=-1时,则x__________;(12)若分式11x x -+的值为零,则x 的值为 (13)当x________时,1x x x -- 有意义. 4.①())0(,10 53≠=a axy xy a ②()1422=-+a a 。
5.约分:①=ba ab 2205__________,②=+--96922x x x __________。
初二50道分式方程练习题

初二50道分式方程练习题1. 解方程:(3x + 2)/(5 - x) = 7/92. 解方程:(2x - 1)/(x + 3) = 4/53. 解方程:(5x + 1)/(2x - 3) = 3/44. 解方程:(4 - 2x)/(7x + 1) = 2/35. 解方程:(3x - 4)/(4 - x) = 2/56. 解方程:(x + 1)/(2x - 3) = 5/87. 解方程:(3x - 2)/(x + 5) = 1/28. 解方程:(2x - 5)/(x + 1) = 3/49. 解方程:(4x - 3)/(7x + 2) = 2/510. 解方程:(3x + 1)/(2 - x) = 7/911. 解方程:(5x - 4)/(3x - 2) = 1/212. 解方程:(x - 2)/(4x + 3) = 3/513. 解方程:(3 - 4x)/(5x + 2) = 2/714. 解方程:(2x - 3)/(x + 4) = 1/215. 解方程:(4x + 1)/(3 - 2x) = 5/716. 解方程:(9 - 2x)/(6x - 1) = 3/418. 解方程:(3x + 4)/(5 + x) = 1/319. 解方程:(2x - 5)/(3x + 1) = 4/920. 解方程:(4x + 3)/(7 - x) = 2/521. 解方程:(7x - 1)/(x - 3) = 5/922. 解方程:(3x + 2)/(4 - 2x) = 1/323. 解方程:(x - 1)/(2x + 3) = 2/524. 解方程:(4 - 3x)/(x + 2) = 1/425. 解方程:(5x + 1)/(3x - 4) = 7/826. 解方程:(3 - 5x)/(x + 2) = 2/327. 解方程:(2x + 1)/(3 - 4x) = 1/528. 解方程:(4 - 3x)/(2 + x) = 5/729. 解方程:(5x + 2)/(7x - 3) = 3/430. 解方程:(3x - 2)/(5x + 1) = 5/731. 解方程:(6 - 2x)/(5x - 3) = 1/232. 解方程:(3x + 2)/(2 - 4x) = 1/733. 解方程:(x - 3)/(4x - 1) = 3/535. 解方程:(2x + 1)/(3 - 5x) = 7/836. 解方程:(4 - 2x)/(3x + 1) = 3/537. 解方程:(3x - 1)/(2x + 5) = 1/238. 解方程:(2x + 3)/(x - 4) = 7/939. 解方程:(3 - 2x)/(x + 3) = 4/540. 解方程:(4x - 1)/(2x + 3) = 3/441. 解方程:(5 - 3x)/(x + 4) = 2/542. 解方程:(2x + 1)/(5x - 2) = 3/743. 解方程:(3x - 2)/(4x + 1) = 1/344. 解方程:(x + 3)/(2 - 3x) = 2/545. 解方程:(5x - 1)/(2x + 3) = 4/946. 解方程:(4 - 3x)/(3x - 2) = 1/247. 解方程:(2x - 1)/(7x + 3) = 5/948. 解方程:(3x + 4)/(5 - x) = 7/849. 解方程:(x + 2)/(3x - 5) = 4/750. 解方程:(5x - 2)/(4 + 3x) = 1/2以上是初二50道分式方程练习题,请根据题目逐一解答,求出每道题的x值。
100道分式解方程练习题

100道分式解方程练习题一、基础练习题1. 解方程:$\frac{x}{3} - 4 = 7$2. 解方程:$\frac{2}{5}y + 1 = 4$3. 解方程:$2 - \frac{3}{x} = 5$4. 解方程:$3x - \frac{1}{2} = 6$5. 解方程:$\frac{x}{4} + \frac{2}{3} = \frac{5}{6}$二、整数系数练习题6. 解方程:$\frac{3}{2}x - 1 = 2$7. 解方程:$2 - \frac{4}{3}x = -1$8. 解方程:$\frac{1}{4}x + \frac{2}{5} = \frac{3}{10}$9. 解方程:$3x - \frac{5}{2} = \frac{1}{2}$10. 解方程:$-2 - \frac{3}{4}x = -\frac{1}{2}$三、含有分数项的练习题11. 解方程:$\frac{1}{2}x - \frac{3}{4} = \frac{x}{3}$12. 解方程:$y + \frac{2y}{3} = \frac{5}{2}$13. 解方程:$2 - \frac{1}{x} = \frac{x}{2}$14. 解方程:$\frac{3}{x} - \frac{x}{2} = 1$15. 解方程:$3 - \frac{x}{2} = \frac{5}{6} - \frac{1}{3}x$四、复杂分式练习题16. 解方程:$\frac{x+1}{x} - \frac{1}{x+1} = \frac{1}{2}$17. 解方程:$\frac{2x-1}{x-1} - \frac{x+1}{x} = \frac{1}{3}$18. 解方程:$\frac{3}{2x-1} - \frac{x}{x+1} = \frac{1}{4}$19. 解方程:$\frac{2}{x+1} + \frac{1}{x-1} = 1$20. 解方程:$\frac{1}{2x} + \frac{1}{x+2} = \frac{5}{4}$五、含有根式的练习题21. 解方程:$2\sqrt{x} - 3 = 5$22. 解方程:$\frac{1}{\sqrt{x}} + 5 = 3$23. 解方程:$\sqrt{x+1} + \sqrt{x-2} = 5$24. 解方程:$\frac{6}{\sqrt{x}} - 4 = 2$25. 解方程:$\sqrt{x} - \frac{1}{\sqrt{x}} = 2$六、含有二次项的练习题26. 解方程:$x^2 - \frac{1}{4} = \frac{3}{2}$27. 解方程:$\frac{5x}{2} + 3x^2 = 7x$28. 解方程:$x^2 - 6x + 9 = 4$29. 解方程:$(2x-1)(x+\frac{1}{3}) = 0$30. 解方程:$x^2 - 4x + 4 = 0$七、混合练习题31. 解方程:$\frac{1}{2}x - \frac{3}{4} = \frac{x}{3}$32. 解方程:$y + \frac{2y}{3} = \frac{5}{2}$33. 解方程:$2 - \frac{1}{x} = \frac{x}{2}$34. 解方程:$\frac{3}{x} - \frac{x}{2} = 1$35. 解方程:$3 - \frac{x}{2} = \frac{5}{6} - \frac{1}{3}x$36. 解方程:$\frac{x+1}{x} - \frac{1}{x+1} = \frac{1}{2}$37. 解方程:$\frac{2x-1}{x-1} - \frac{x+1}{x} = \frac{1}{3}$38. 解方程:$\frac{3}{2x-1} - \frac{x}{x+1} = \frac{1}{4}$39. 解方程:$\frac{2}{x+1} + \frac{1}{x-1} = 1$40. 解方程:$\frac{1}{2x} + \frac{1}{x+2} = \frac{5}{4}$41. 解方程:$2\sqrt{x} - 3 = 5$42. 解方程:$\frac{1}{\sqrt{x}} + 5 = 3$43. 解方程:$\sqrt{x+1} + \sqrt{x-2} = 5$44. 解方程:$\frac{6}{\sqrt{x}} - 4 = 2$45. 解方程:$\sqrt{x} - \frac{1}{\sqrt{x}} = 2$46. 解方程:$x^2 - \frac{1}{4} = \frac{3}{2}$47. 解方程:$\frac{5x}{2} + 3x^2 = 7x$48. 解方程:$x^2 - 6x + 9 = 4$49. 解方程:$(2x-1)(x+\frac{1}{3}) = 0$50. 解方程:$x^2 - 4x + 4 = 0$以上是100道分式解方程的练习题,通过这些题目的练习,可以加深对分式解方程的理解和掌握。
分式的乘除加减法练习题(打印版)

分式的乘除加减法练习题(打印版)### 分式的乘除加减法练习题#### 一、分式的乘法1. 计算以下分式的乘积:\[\frac{3}{4} \times \frac{5}{6}\]2. 计算以下分式的乘积:\[\frac{2}{3} \times \frac{7}{8}\]3. 计算以下分式的乘积:\[\frac{1}{2} \times \frac{4}{9}\]#### 二、分式的除法1. 计算以下分式的商:\[\frac{3}{5} \div \frac{2}{3}\]2. 计算以下分式的商:\frac{4}{7} \div \frac{1}{3} \]3. 计算以下分式的商:\[\frac{5}{8} \div \frac{5}{2} \]#### 三、分式的加法1. 计算以下分式的和:\[\frac{1}{3} + \frac{2}{3}\]2. 计算以下分式的和:\[\frac{3}{4} + \frac{1}{4}\]3. 计算以下分式的和:\[\frac{5}{6} + \frac{1}{6}\]#### 四、分式的减法1. 计算以下分式的差:\[\frac{4}{5} - \frac{1}{5}2. 计算以下分式的差:\frac{7}{8} - \frac{3}{8}3. 计算以下分式的差:\[\frac{9}{10} - \frac{2}{5}\]#### 五、混合运算1. 计算以下混合运算的结果:\[\left(\frac{2}{3} + \frac{1}{6}\right) \times \frac{3}{4} \]2. 计算以下混合运算的结果:\[\frac{5}{6} \div \left(\frac{2}{3} \times\frac{3}{4}\right)\]3. 计算以下混合运算的结果:\[\left(\frac{3}{5} - \frac{1}{10}\right) \div \frac{1}{2} \]通过以上练习题,可以有效地提高对分式运算的理解和计算能力。
分式练习计算练习题(超全)

分式练习题一 填空题1.下列有理式中是分式的有 (1)-3x ;(2)y x ;(3)22732xy y x -;(4)-x 81;(5) 35+y ; (6)112--x x ;(7)-π-12m ; (8)5.023+m ; 2.(1)当a 时,分式321+-a a 有意义;(2)当_____时,分式4312-+x x 无意义; (3)当______时,分式68-x x 有意义;(4)当_______时,分式534-+x x 的值为1; (5)当______时,分式51+-x 的值为正;(6)当______时分式142+-x 的值为负. (7)分式36122--x x 有意义,则x (8)当x = 3时,分式b x a x +-无意义,则b ______ 3.(1)若分式0)1x )(3x (1|x |=-+-,则x 的值为_________________; (2)若分式33x x --的值为零,则x = ; (3)如果75)13(7)13(5=++a a 成立,则a 的取值范围是__________; (4)若)0(54≠=y y x ,则222y y x -的值等于________; (5)分式392--x x 当x __________时分式的值为零; (6)当x __________时分式xx 2121-+有意义; (7)当x=___时,分式22943x x x --+的值为0; (8)当x______时,分式11x x +-有意义; (10)当a=_______时,分式2232a a a -++ 的值为零; (11)当分式44x x --=-1时,则x__________;(12)若分式11x x -+的值为零,则x 的值为 (13)当x________时,1x x x -- 有意义. 4.①())0(,10 53≠=a axy xy a ②()1422=-+a a 。
5.约分:①=ba ab 2205__________,②=+--96922x x x __________。
小学数学分式解法练习题

小学数学分式解法练习题随着学生们在数学学习中的深入,分式成为了他们接触的一个重要概念。
分式不仅仅是数学中的一种运算形式,更是解决实际问题的有效工具。
在本篇文章中,我将为大家提供一些小学数学分式解法的练习题,并给出详细解答,帮助大家更好地理解和掌握分式的运用。
1. 将以下分数化成整数:a) 3/1b) 9/3c) 12/4d) 27/9解答:a) 3/1 = 3b) 9/3 = 3c) 12/4 = 3d) 27/9 = 32. 简化以下分数:a) 6/8b) 15/25c) 20/30解答:a) 6/8 = 3/4b) 15/25 = 3/5c) 20/30 = 2/3d) 45/60 = 3/43. 求以下分数的和:a) 1/3 + 1/3b) 2/5 + 3/5c) 1/4 + 2/4d) 3/8 + 4/8解答:a) 1/3 + 1/3 = 2/3b) 2/5 + 3/5 = 5/5 = 1c) 1/4 + 2/4 = 3/4d) 3/8 + 4/8 = 7/84. 求以下分数的差:a) 4/5 - 1/5b) 3/4 - 2/4d) 5/6 - 3/6解答:a) 4/5 - 1/5 = 3/5b) 3/4 - 2/4 = 1/4c) 7/8 - 1/8 = 6/8d) 5/6 - 3/6 = 2/6 = 1/35. 求以下分数的积:a) 2/3 × 1/2b) 3/4 × 2/3c) 4/5 × 3/4d) 5/6 × 4/5解答:a) 2/3 × 1/2 = 2/6 = 1/3b) 3/4 × 2/3 = 6/12 = 1/2c) 4/5 × 3/4 = 12/20 = 3/5d) 5/6 × 4/5 = 20/30 = 2/36. 求以下分数的商:a) 3/4 ÷ 2/3c) 5/6 ÷ 3/4d) 6/7 ÷ 5/6解答:a) (3/4) ÷ (2/3) = (3/4) × (3/2) = 9/8b) (4/5) ÷ (1/2) = (4/5) × (2/1) = 8/5c) (5/6) ÷ (3/4) = (5/6) × (4/3) = 20/18 = 10/9d) (6/7) ÷ (5/6) = (6/7) × (6/5) = 36/35通过以上练习题,我们可以更好地理解和掌握小学数学中分式的应用。
分式方程练习题及答案

分式方程练习题及答案一、填空题1. 将分式 $\frac{3}{4}$ 化为小数,计算结果保留两位小数。
解答:0.752. 若 $\frac{a}{3} = \frac{2}{5}$,求 $a$ 的值。
解答:$a = \frac{6}{5}$3. 已知 $\frac{x}{4} = \frac{5}{12}$,求 $x + 2$ 的值。
解答:$x + 2 = \frac{5}{3}$4. 若 $\frac{2}{x} = \frac{7}{16}$,求 $x$ 的值。
解答:$x = \frac{32}{7}$5. 解方程 $\frac{1}{2x} - \frac{3}{4} = \frac{1}{8}$,求 $x$ 的值。
解答:$x = \frac{5}{2}$二、选择题1. 若 $\frac{2}{3}x - 1 = \frac{5}{6}$,则 $x =$A. $-\frac{1}{4}$B. $\frac{1}{2}$C. $\frac{7}{9}$D.$\frac{9}{7}$解答:C. $\frac{7}{9}$2. 若 $x - \frac{2}{3} = \frac{x}{5}$,则 $x =$A. $-\frac{1}{4}$B. $\frac{3}{2}$C. $\frac{15}{17}$D.$\frac{5}{7}$解答:B. $\frac{3}{2}$3. 若 $\frac{x}{3} = \frac{2}{5x}$,则 $x =$A. $-2$B. $-\frac{1}{2}$C. $\frac{1}{2}$D. 2解答:D. 24. 若 $\frac{3}{2} - \frac{4}{x} = \frac{5}{6}$,则 $x =$A. $-\frac{8}{3}$B. $\frac{24}{15}$C. $\frac{35}{2}$D.$\frac{6}{5}$解答:B. $\frac{24}{15}$5. 若 $2 - \frac{3}{x} = \frac{1}{4}$,则 $x =$A. 4B. 5C. 6D. 8解答:C. 6三、解答题1. 解方程 $\frac{x}{4} + \frac{1}{3} = \frac{5}{6}$,求 $x$ 的值。
分式练习题(含答案)

1.式子32x ,4x y -,x y +,21πx +,53ba 中是分式的有A .1个B .2个C .3个D .4个2.下列分式约分,正确的是A .623a a a =B .2222163ab a b = C .21m n m mn m +=+ D .0x y x y -=- 3.下列分式2x x ,424m m +,πx x +,242b b -+,a bb a --中,最简分式的个数是A .1个B .2个C .3个D .4个4.下列各式变形正确的是A .11a a b b -=-B .2b b a ab =C .(0)n na a m ma =≠D .n n am m a+=+5.张萌将分式372244x yx y x y+-和进行通分,则这两个分式的最简公分母为A .2()()x y x y +-B .4()()x y x y +-C .()()x y x y +-D .24()x y +6.约分:2322515a bc ab c -=__________. 7.化简:2239a ba b +=-__________. 8.分式223x x -与249xx -的最简公分母是__________.9.通分:(1)26x ab ,29ya bc ;(2)2116x -,128x -.10.已知分式2(1)(3)32m m m m ---+,试问: (1)当m 为何值时,分式有意义? (2)当m 为何值时,分式值为0?11.化简22x y y x--的结果是A .-x -yB .y -xC .x -yD .x +y12.当分式||33x x -+的值为0时,x 的值为 A .0B .3C .-3D .±313.如果分式2282x x --的值为0,则x 的值应为__________.14.给定下面一列分式:2x y ,43x y -,65x y ,87x y-,,根据这列分式的规律,请写出第7个分式__________,第n 个分式__________. 15.已知当2x =-时,分式x bx a-+无意义:当4x =时,分式的值为零,求a b +的值.16.若11x y -=3,求2322x xy y x xy y+---的值.17.(2018·辽宁葫芦岛)若分式211x x -+的值为0,则x 的值为A .0B .1C .-1D .±118.(2018·浙江宁波)要使分式11x -有意义,x 的取值应满足__________. 19.(2018·广西贵港)若分式21x +的值不存在,则x 的值为__________.1.【答案】B2.【答案】C【解析】根据题意可得:633a a a =,2222163ab a b a=,21m n m mn m +=+,1x y x y -=-.故选C . 3.【答案】A【解析】2x x =1x ,424m m +=2m m +,242b b -+=(2)(2)2b b b +-+=b -2,a b b a --=a b a b ---=-1. 所以最简分式共有1个.故选A . 4.【答案】C【解析】A 项,在原分式的分子分母上加上一个整式,等式不一定成立,故A 项错误; B 项,由于b 的值可能为0,故B 项错误;C 项,(0)n na a m ma=≠)成立,故C 项正确; D 项,在原分式的分子分母上加上一个整式,等式不一定成立,故D 项错误.故选C . 5.【答案】B【解析】∵两个分式的分母分别是:2x +2y =2(x +y ),4x -4y =4(x -y ),∴最简公分母是4(x +y )(x -y ). 故选B .∴222336318x ac acxab ac a b c ⨯=, 222229218y b bya bcb a b c⨯=. (2)两分式的分母为:(4)(4)x x -+、2(4)x -, ∴最简公分母为:2(4)(4)x x -+, ∴122(4)(4)22(4)(4)x x x x ⨯=-++-,1442(4)42(4)(4)x x x x x x ++⨯=-+-+.10.【解析】(1)由题意得,232=(1)(2)0m x m m -+--≠,解得,1m ≠且2m ≠.(2)由题意得,(1)(3)0m m --=且2320m x -+≠, 解得,3m =,则当3m =时,此分式的值为零.11.【答案】A【解析】22()()()x y x y x y x y x y y x x y-+-=-=-+=----.故选A . 12.【答案】B【解析】根据题意得,||3030x x -=⎧⎨+≠⎩,解得,x =3.故选B .∴20a -+=,解得2a =, ∵4x =时,分式x bx a-+的值为零, ∴40b -=,则4b =, ∴246a b +=+=, 即a b +的值是6.16.【解析】∵11x y-=3,∴y -x =3xy ,∴x -y =-3xy ,∴2322x xy y x xy y +---=2()32(3)333()23255x y xy xy xy xy x y xy xy xy xy -+⨯-+-===-----. 17.【答案】B【解析】∵分式211x x -+的值为零,∴21010x x ⎧-=⎨+≠⎩,解得:x =1,故选B .。