2018版数学人教A版选修4-4课件:第一讲 坐标系 二
第一讲 坐标系 知识归纳 课件(人教A选修4-4)

返回
[解]
如图:令 A(ρ,θ),
θ △ABC 内,设∠B=θ,∠A= , 2 又|BC|=10,|AB|=ρ. 10 由正弦定理,得 = θ, 3θ sinπ- sin2 2 化简,得 A 点轨迹的极坐标方程为 ρ=10+20cos θ. ρ
返回
互化的前提依旧是把直角坐标系的原点作为极点,x 轴 的正半轴作为极轴并在两种坐标系下取相同的单位长度. 互化公式为 x=ρcos θ,y=ρsin θ y ρ2=x2+y2,tan θ=xx≠0
直角坐标方程化极坐标方程可直接将x=ρcos θ,y= ρsin θ代入即可,而极坐标方程化为直角坐标方程通常将极 坐标方程化为ρcos θ,ρsin θ的整体形式,然后用x,y代替 较为方便,常常两端同乘以ρ即可达到目的,但要注意变形 的等价性.
返回
[例4]
已知圆的极坐标方程ρ=2cos θ,直线的极坐标
返回
[解]
π (1)∵直线 l 过点 M(2, )和极点, 3
π ∴直线 l 的直角坐标方程是 θ= (ρ∈R). 3 π ρ=2 2sin(θ+ )即 ρ=2(sin θ+cos θ), 4 两边同乘以 ρ 得 ρ2=2(ρsin θ+ρcos θ), ∴曲线 C 的直角坐标方程为 x2+y2-2x-2y=0.
返回
解析:在直线 l 上任取点 P(ρ,θ),在△OPM 中,由正弦定 OM OP 2 ρ 理得 = ,即 = ,化简得 ρ π 5π sin∠OPM sin∠OMP sin -θ sin 6 6 1 1 = ,故 f(θ)= . π π sin -θ sin -θ 6 6
1 答案: π sin -θ 6
方程,这里要求至少有一组能满足极坐标方程. 返回
高中数学人教A版选修4-4课件:平面直角坐标系 (共31张PPT)

例1 在直角坐标系中,求下列方程所对应 x 2 x 的图形经过伸缩变换: 后的图形。
y 3 y
x 2 x x 解:(1)由伸缩变换 y 3 y 得到 ; y
x (2)将 y 1 x 2 代入x2+y2=1, 1 y 3
例1 说出下 图中各点的极坐标 标出(2, π/6), (4, 3π/4),
2
5 6
C E D O B A
4
4 3
X
(3.5, 5π/3)
F
G
所在位置。
5 3
练习: 在图中标出点
5 H ( 3, ), P (4, ), Q(6, ) 6 2 3
2
5 6
P
C E D B A
四、课堂练习
4 1.已知极坐标 M (5, 3 ),下列所给出的
不能表示点M的坐标的是( C )
10 2 A、 (5, ) B、 ( 5, ) C、 (5, ) 3 3 3
8 D(5, ) 3
3 2.已知三点的极坐标为 A( 2, ), B( 2 , ), 2 4 O(0,0) ,则 ABO 为( D )
3 y tan , 4 x
。
即y x( y 0)
4 把极坐标方程 =sin+2cos 化为直角坐标方程。
解:因给定的不恒等于零, 得 = sin 2 cos
2
化成直角坐标方程为 x2 y2 y 2x
1 2 5 即( x 1) ( y ) 2 4
例2:下图是某校园的平面示意图,点 A,B,C,D,E分别表示教学楼,体育馆,图 书馆,实验楼,办公楼的位置,建立适当 的极坐标系,写出各点的极坐标。
高中数学第一讲坐标系本讲整合课件新人教A版选修4_4

1234567
知识建构
综合应用
真题放送
(2)设点B的极坐标为(ρB,α)(ρB>0).
由题设知|OA|=2,ρB=4cos α,
于是△OAB
面积
S=
1 2
|������������|·ρB·sin∠AOB
由直线与圆相切,可知
|1+0-������| 1+1
=
1,
即|1-a|= 2, 解得a=1± 2.
∵a>0,∴a= 2 + 1.
答案: 2 + 1
1234567
知识建构
综合应用
真题放送
3(2017·北京高考,理11)在极坐标系中,点A在圆ρ2-2ρcos θ-4ρsin
θ+4=0上,点P的坐标为(1,0),则|AP|的最小值为
在直线 x− 3������ − 1 = 0 上,故|AB|=2.
答案:2
知识建构
综合应用
真题放送
1234567
6(2018·全国Ⅰ高考,理22)在直角坐标系xOy中,曲线C1的方程为
y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线
C2的极坐标方程为ρ2+2ρcos θ-3=0. (1)求C2的直角坐标方程; (2)若C1与C2有且仅有三个公共点,求C1的方程. 解:(1)由x=ρcos θ,y=ρsin θ得C2的直角坐标方程为(x+1)2+y2=4. (2)由(1)知C2是圆心为A(-1,0),半径为2的圆. 由题设知,C1是过点B(0,2)且关于y轴对称的两条射线.记y轴右边的 射线为l1,y轴左边的射线为l2,由于B在圆C2的外面,故C1与C2有且仅 有三个公共点等价于l1与C2只有一个公共点且l2与C2有两个公共点, 或l2与C2只有一个公共点且l1与C2有两个公共点. 当l1与C2只有一个公共点时,A到l1所在直线的距离为2,
人教版高中数学选修4-4课件:第一讲二极坐标

4.写出下图中各点的极坐标:
A________,B________,C________. 答案:(4,0) 2,π4 3,π2
5.极坐标系中,与点3,-π3关于极轴所在直线对 称的点的极坐标是________.
答案:3,π3
类型 1 极坐标系与点的极坐标(自主研析) [典例 1] (1)写出下图中各点的极坐标(ρ>0,0≤ θ<2π,且各线之间间距相等).
法二 将点 A 化为直角坐标为( 3,1),点 B 化为直 角坐标为( 3,-1).所以 A、B 两点间的距离
d= ( 3- 3)2+[1-(-1)]2=2. (2)如下图所示:
关于极轴的对称点为 B2,-π3. 关于直线 l 的对称点为 C2,23π. 关于极点 O 的对称点为 D2,-23π.
归纳升华 1.点(ρ,θ)关于极轴的对称点是(ρ,-θ)或(ρ,2π- θ),关于极点的对称点是(ρ,π+θ),关于过极点且垂直 于极轴的直线的对称点是(ρ,π-θ).
2.求极坐标系中两点间的距离应通过由这两点和极 点 O 构成的三角形求解,也可以运用两点间距离公式|AB| = ρ21+ρ22-2ρ1ρ2cos(θ1-θ2)求解,其中 A(ρ1,θ1), B(ρ2,θ2).注意当 θ1+θ2=2kπ(k∈Z)时,|AB|=|ρ1-ρ2|; 当 θ1+θ2=2kπ+π(k∈Z)时,|AB|=|ρ1+ρ2|.
2.点的极坐标
一般地,极坐标(ρ,θ)与(ρ,θ+2kπ)(k∈Z)表示同一 个点.特别地,极点 O 的坐标为(0,θ)(θ∈R).和直角坐 标不同,平面内一个点的极坐标有无数种表示方法.
如果规定 ρ>0,0≤θ<2π,那么除极点外,平面内的 点可用唯一的极坐标(ρ,θ)表示;同时,极坐标(ρ,θ)表 示的点也是唯一确定的.
2018学年高中数学选修4-4课件:第1讲 坐标系 本讲高效整合1 精品

5.极坐标方程分别为ρ=2cos θ和ρ=sin θ的两个圆的圆心 距为________.
解析: 两圆方程分别为 x2+y2=2x,x2+y2=y,
两圆圆心分别为 C1(1,0),C20,12,
所以|C1C2|=
答案:
5 2
12+122=
5 2.
6.已知点 M 的柱坐标为23π,23π,23π,则点 M 的直角坐 标为______,球坐标为________.
解析: 设点 M 的直角坐标为(x,y,z),柱坐标为(ρ,θ, z),球坐标为(r,φ,θ),
由xy= =ρρcsions
θ, θ,
z=z,
x=23πcos 23π=-π3, 得y=23πsin 23π= 33π,
z=23π,
r= x2+y2+z2,
由 cos
φ=zr,
r=2 得
32π,
cos φ= 22,
4.能在极坐标系中给出简单图形(如过极点的直线、过极 点和圆心在极点的圆)的方程.通过比较这些图形在极坐标系 和平面直角坐标系中的方程,体会在用方程刻画平面图形时选 择适当坐标系的意义.
5.借助具体实例(如圆形体育场看台的座位、地球的经纬 度等)了解在柱坐标系、球坐标系中刻画空间中点的位置的方 法,并与空间直角坐标系中刻画点的位置的方法相比较,体会 它们的区别.
[命题探究]
本章知识在高考中主要以直角坐标系的应用为主,并且主 要以解答题为主,在历年的高考中均有体现,预测今后的高考 中,仍将会出现以建立直角坐标系来解决实际问题的类型,并 且还会有平移变换和直角坐标与极坐标、柱坐标、球坐标等的 互化问题.
热点考点例析
[热点题型]
平面直角坐标系
解析法解决几何问题 1.运用坐标方法研究曲线(含直线)的形状与性质是曲型的 数形结合思想的体现,坐标系的建立,在代数与几何之间架起 了一座桥梁,使直观的几何图形一些性质的证明通过数量运算 得以完美实现. 2.对于一些用纯平面几何知识难以证明的几何性质、定 理等,如果要用坐标法,转化为代数运算,往往给解决问题带 来极大的方便.
2018年数学(人教版选修4-4)课件:第1讲 2 极坐标系

• 2.点的极坐标 • 每一个有序实数对(ρ,θ)确定一个点的位置. 其中,ρ是点M的极径,θ是点M的极角. • 平面上给定一点,可以写出这个点的无数多 个极坐标.根据点的极坐标(ρ,θ)的定义,对 于给定的点(ρ,θ)有无数个极坐标,可分为两 类,一类为(ρ,θ+2kπ)(k∈Z),另一类为(- ρ,θ+2kπ+π)(k∈Z).
求点的极坐标
•
写出图中A、B、C、D、E、F、G各 点的极坐标(ρ>0,0≤θ<2π),最内层圆的半径 为1,且各圆半径相差1.
• [思路点拨 ]确定极径、极角即可. 解:对每个点我们先看它的极径的长,再确定它的极角,
因此这些点的极坐标为
π 3π 7π 7π A7,6, B4, 4 , C5, 6 , D6, 4 ,
• 在极坐标(ρ,θ)中,一般限定ρ≥0.当ρ=0时, 就与极点重合,此时θ不确定.给定点的极坐 标(ρ,θ),就唯一地确定了平面上的一个点. 但是,平面上的一个点的极坐标并不是唯一 的,它有无穷多种形式.由此可见,平面上 的点与它的极坐标不是一一对应关系.这是 极坐标与直角坐标的不同之处.如果限定ρ> 0,0≤θ<2π,那么除极点外,平面上的点就与 它的极坐标构成一一对应的关系.
第一讲 坐标系
二
极坐标系
• 1.理解极坐标系的概念,理解极坐标的多值 性.(难点、易错点) • 2.掌握极坐标与直角坐标的互化.(重点) • 3.掌握极坐标系的简单应用.(难点)
• 1.极坐标系的概念 • (1)极坐标系的建立:在平面内取一个定点O 极轴 ,叫做极点;自极点O 引一条射线Ox长度单位 ,叫做 ______;再选定一个________、一个角度单 位(通常取弧度)及其正方向(通常取逆时针方 向),这样就建立了一个极坐标系.
2018-2019学年高二数学人教A版选修4-4讲义:第一讲 一 平面直角坐标系.ppt

一平面直角坐标系1.平面直角坐标系(1)平面直角坐标系的作用:使平面上的点与坐标(有序实数对)、曲线与方程建立了联系,从而实现数与形的结合.(2)坐标法解决几何问题的三步骤:第一步:建立适当坐标系,用坐标和方程表示问题中涉及的几何元素,将几何问题转化为代数问题;第二步:通过代数运算解决代数问题; 第三步:把代数运算结果翻译成几何结论. 2.平面直角坐标系中的伸缩变换(1)平面直角坐标系中方程表示图形,那么平面图形的伸缩变换就可归纳为坐标伸缩变换,这就是用代数方法研究几何变换.(2)平面直角坐标系中的坐标伸缩变换的定义:设点P (x ,y )是平面直角坐标系中任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x (λ>0)y ′=μ·y (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.[例1] |2).[思路点拨] 首先在平行四边形ABCD 所在的平面内建立平面直角坐标系,设出点A ,B ,C ,D 的坐标,再依据两点间的距离公式即可证得结论.[证明] 如图,以A 为坐标原点,AB 所在的直线为x 轴,建立平面直角坐标系.设B (a,0),C (b ,c ),则AC 的中点E 的坐标为⎝⎛⎭⎫b 2,c 2,由对称性知D (b -a ,c ), 所以|AB |2=a 2,|AD |2=(b -a )2+c 2, |AC |2=b 2+c 2,|BD |2=(b -2a )2+c 2,|AC |2+|BD |2=4a 2+2b 2+2c 2-4ab =2(2a 2+b 2+c 2-2ab ), |AB |2+|AD |2=2a 2+b 2+c 2-2ab , 所以|AC |2+|BD |2=2(|AB |2+|AD |2).根据图形的几何特点选择适当的直角坐标系的规则 (1)如果图形有对称中心,选对称中心为原点; (2)如果图形有对称轴,可以选对称轴为坐标轴; (3)使图形上的特殊点尽可能多地在坐标轴上.1.已知在等腰梯形ABCD 中,AD ∥BC ,求证:|AC |=|BD |.证明:取BC 所在直线为x 轴,线段BC 的中垂线为y 轴, 建立如图所示的直角坐标系. 设A (-a ,h ),B (-b,0), 则D (a ,h ),C (b,0). ∴|AC |=(b +a )2+h 2, |BD |=(a +b )2+h 2.∴|AC |=|BD |,即等腰梯形ABCD 中,|AC |=|BD |.2.在△ABC 中,D 是BC 边上的任意一点(D 与B ,C 不重合),且|AB |2=|AD |2+|BD |·|DC |, 求证:△ABC 为等腰三角形.证明:作AO ⊥BC ,垂足为O ,以BC 所在的直线为x 轴,OA 所在的直线为y 轴,建立平面直角坐标系,如图所示.设A (0,a ),B (b,0),C (c,0),D (d,0), 因为|AB |2=|AD |2+|BD |·|DC |,所以由距离公式得b 2+a 2=d 2+a 2+(d -b )(c -d ), 即-(d -b )(b +d )=(d -b )(c -d ).因为d -b ≠0,所以-b -d =c -d ,即-b =c , 所以O 为线段BC 的中点. 又因为OA ⊥BC ,所以|AB |=|AC |. 所以△ABC 为等腰三角形.[例2] AB 为一条对角线的平行四边形区域建成农艺园,按照规划,围墙总长为8 km.(1)问农艺园的最大面积能达到多少;(2)该荒漠上有一条水沟l 恰好经过点A ,且与AB 成30°的角,现要对整条水沟进行加固改造,但考虑到今后农艺园的水沟要重新改造,所以对水沟可能被农艺园围进的部分暂不加固,问暂不加固的部分有多长.[解] (1)设平行四边形的另两个顶点为C ,D ,由围墙总长为8 km ,得|CA |+|CB |=4>|AB |=2,由椭圆的定义知,点C 的轨迹是以A ,B 为焦点,长轴长2a =4,焦距2c =2的椭圆(去除落在直线AB 上的两点).以AB 所在直线为x 轴,线段AB 的垂直平分线为y 轴,建立平面直角坐标系(如图所示),则点C 的轨迹方程为x 24+y 23=1(y ≠0).易知点D 也在此椭圆上,要使平行四边形ACBD 的面积最大,则C ,D 为此椭圆短轴的端点,此时,面积S =12×23×2=2 3 km 2.(2)因为修建农艺园的可能范围在椭圆x 24+y 23=1(y ≠0)内,故暂不需要加固水沟的长就是直线l :y =33(x +1)被椭圆截得的弦长,如图所示. 由⎩⎨⎧y =33(x +1),x 24+y 23=1得13x 2+8x -32=0,则x 1+x 2=-813,x 1x 2=-3213,那么弦长L =1+k 2|x 1-x 2|=1+⎝⎛⎭⎫332·⎝⎛⎭⎫-8132-4×⎝⎛⎭⎫-3213=4813,故暂不加固的部分长为4813km.运用解析法解决实际问题的步骤(1)建系——建立平面直角坐标系.建系原则是利于运用已知条件,使表达式简明,运算简便.因此,要充分利用已知点和已知直线作为原点和坐标轴.(2)设点——选取一组基本量,用字母表示出题目涉及的点的坐标和曲线的方程. (3)运算——通过运算,得到所需要的结果.3.已知B 村位于A 村的正西方向1 km 处,原计划经过B 村沿着北偏东60°的方向埋设一条地下管线l ,但在A 村的西北方向400 m 处,发现一古代文物遗址W .根据初步勘察的结果,文物管理部门将遗址W 周围100 m 范围划为禁区.试问:埋设地下管线l 的计划需要修改吗?解:建立如图所示的平面直角坐标系,则A (0,0),B (-1 000,0),由W 位于A 的西北方向及 |AW |=400,得W (-2002,2002).由直线l 过B 点且倾斜角为90°-60°=30°,得直线l 的方程是x -3y +1 000=0. 于是点W 到直线l 的距离为 |-2002-3×2002+1 000|2=100×(5-2-6)≈113.6>100. 所以埋设地下管线l 的计划可以不修改.4.如图所示,A ,B ,C 是三个观察站,A 在B 的正东,两地相距6 km ,C 在B 的北偏西30°,两地相距4 km ,在某一时刻,A 观察站发现某种信号,并知道该信号的传播速度为1 km/s,4 s 后B ,C 两个观察站同时发现这种信号,在以过A ,B 两点的直线为x 轴,以AB 的垂直平分线为y 轴建立的平面直角坐标系中,指出发出这种信号的P 的坐标.解:设点P 的坐标为(x ,y ), 则A (3,0),B (-3,0),C (-5,23).因为|PB |=|PC |,所以点P 在BC 的中垂线上. 因为k BC =-3,BC 的中点D (-4,3), 所以直线PD 的方程为y -3=13(x +4).① 又因为|PB |-|PA |=4,所以点P 必在以A ,B 为焦点的双曲线的右支上, 双曲线方程为x 24-y 25=1(x ≥2).②联立①②,解得x =8或x =-3211(舍去),所以y =5 3.所以点P 的坐标为(8,53).[例3] 伸缩变换的坐标表达式为⎩⎪⎨⎪⎧x ′=x ,y ′=4y ,曲线C 在此变换下变为椭圆x ′2+y ′216=1,求曲线C 的方程.[解] 设P (x ,y )为曲线C 上的任意一点.把⎩⎪⎨⎪⎧x ′=x ,y ′=4y代入x ′2+y ′216=1,得x 2+y 2=1,故曲线C 的方程为x 2+y 2=1.坐标伸缩变换φ:⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0)注意变换中的系数均为正数.在伸缩变换下,平面直角坐标系保持不变,即在同一坐标系下只对点的坐标进行伸缩变换.利用坐标伸缩变换φ可以求变换前和变换后的曲线方程.已知前换前后曲线方程也可求伸缩变换φ.5.求4x 2-9y 2=1经过伸缩变换⎩⎪⎨⎪⎧x ′=2x ,y ′=3y后的图形所对应的方程.解:由伸缩变换⎩⎪⎨⎪⎧x ′=2x ,y ′=3y ,得⎩⎨⎧x =12x ′,y =13y ′,将其代入4x 2-9y 2=1,得4·⎝⎛⎭⎫12x ′2-9·⎝⎛⎭⎫13y ′2=1. 整理得x ′2-y ′2=1.∴经过伸缩变换后图形所对应的方程为x ′2-y ′2=1.6.若函数y =f (x )的图象在伸缩变换φ:⎩⎪⎨⎪⎧x ′=2x ,y ′=3y 的作用下得到曲线的方程为y ′=3sin ⎝⎛⎭⎫x ′+π6,求函数y =f (x )的最小正周期. 解:由题意,把变换公式代入方程y ′=3sin ⎝⎛⎭⎫x ′+π6得3y =3sin ⎝⎛⎭⎫2x +π6,整理得y =sin ⎝⎛⎭⎫2x +π6,故f (x )=sin ⎝⎛⎭⎫2x +π6.所以y =f (x )的最小正周期为2π2=π.一、选择题1.将一个圆作伸缩变换后所得到的图形不可能是( ) A .椭圆 B .比原来大的圆 C .比原来小的圆D .双曲线解析:选D 由伸缩变换的意义可得.2.在同一平面直角坐标系中,经过伸缩变换⎩⎪⎨⎪⎧x ′=5x ,y ′=3y 后,曲线C 变为曲线x ′2+y ′2=1,则曲线C 的方程为( )A .25x 2+9y 2=0B .25x 2+9y 2=1C .9x 2+25y 2=0D .9x 2+25y 2=1解析:选B 把⎩⎪⎨⎪⎧x ′=5x ,y ′=3y代入方程x ′2+y ′2=1,得25x 2+9y 2=1,∴曲线C 的方程为25x 2+9y 2=1.3.圆x 2+y 2=1经过伸缩变换⎩⎪⎨⎪⎧x ′=2x ,y ′=3y后所得图形的焦距为( )A .4B .213C .2 5D .6解析:选C 由伸缩变换⎩⎪⎨⎪⎧x ′=2x ,y ′=3y ,得⎩⎪⎨⎪⎧x =x ′2,y =y ′3,代入x 2+y 2=1,得x ′24+y ′29=1,该方程表示椭圆,∴椭圆的焦距为29-4=2 5.4.在同一平面直角坐标系中,将曲线y =12sin 3x 变为曲线y ′=sin x ′的伸缩变换是( )A.⎩⎪⎨⎪⎧ x =3x ′y =12y ′B.⎩⎪⎨⎪⎧x ′=3x y ′=12y C.⎩⎪⎨⎪⎧x =3x ′y =2y ′ D.⎩⎪⎨⎪⎧x ′=3xy ′=2y 解析:选D 设伸缩变换公式为⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0),则μy = sin λx ,即y =1μsin λx ,∴⎩⎪⎨⎪⎧ λ=3,μ=2,∴伸缩变换公式为⎩⎪⎨⎪⎧x ′=3x ,y ′=2y .二、填空题5.y =cos x 经过伸缩变换⎩⎪⎨⎪⎧x ′=2x ,y ′=3y 后,曲线方程变为________.解析:由⎩⎪⎨⎪⎧x ′=2x ,y ′=3y ,得⎩⎨⎧x =12x ′,y =13y ′,代入y =cos x ,得13y ′=cos 12x ′,即y ′=3cos x ′2. 答案:y ′=3cos x ′26.将点P (-2,2)变换为P ′(-6,1)的伸缩变换公式为________.解析:设伸缩变换公式为⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0),则⎩⎪⎨⎪⎧-6=-2λ,1=2μ,解得⎩⎪⎨⎪⎧ λ=3,μ=12.所以伸缩变换公式为⎩⎪⎨⎪⎧x ′=3x ,y ′=12y .答案:⎩⎪⎨⎪⎧x ′=3x ,y ′=12y 7.已知f 1(x )=cos x ,f 2(x )=cos ωx (ω>0),f 2(x )的图象可以看作是把f 1(x )的图象在其所在的坐标系中的横坐标缩短到原来的13(纵坐标不变)而得到的,则ω为________.解析:函数f 2(x )=cos ωx ,x ∈R(ω>0,ω≠1)的图象可以看作把余弦曲线上所有点的横坐标缩短(当ω>1时)或伸长(当0<ω<1时)到原来的1ω(纵坐标不变)而得到的,所以13=1ω,即ω=3.答案:3 三、解答题8.在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换⎩⎨⎧x ′=12x ,y ′=13y后的图形.(1)5x +2y =0;(2)x 2+y 2=1.解:由伸缩变换⎩⎨⎧x ′=12x ,y ′=13y得到⎩⎪⎨⎪⎧x =2x ′,y =3y ′.①(1)将①代入5x +2y =0,得到经过伸缩变换后的图形的方程是5x ′+3y ′=0,表示一条直线.(2)将①代入x 2+y 2=1,得到经过伸缩变换后的图形的方程是x ′214+y ′219=1,表示焦点在x轴上的椭圆.9.已知△ABC 是直角三角形,斜边BC 的中点为M ,建立适当的平面直角坐标系,证明:|AM |=12|BC |.证明:以Rt △ABC 的直角边AB ,AC 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系.设B (b,0),C (0,c ), 则M 点的坐标为⎝⎛⎭⎫b 2,c 2. 由于|BC |=b 2+c 2,|AM |=b 24+c 24=12b 2+c 2,故|AM |=12|BC |.10.在同一平面直角坐标系中,求一个伸缩变换使其满足下列曲线的变换,并叙述变换过程.(1)曲线y =2sin x4变换为曲线y =sin 2x ;(2)圆x 2+y 2=1变换为椭圆x 29+y 24=1.解:(1)将变换后的曲线方程 y =sin 2x 改写为y ′=sin 2x ′,设伸缩变换为⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0),代入y ′=sin 2x ′得μy =sin 2λx , 即y =1μ sin 2λx ,与原曲线方程比较系数得⎩⎨⎧2λ=14,1μ=2,所以⎩⎨⎧λ=18,μ=12,所以伸缩变换为⎩⎨⎧x ′=18x ,y ′=12y .即先使曲线y =2sin x4上的点的纵坐标不变,将曲线上的点的横坐标缩短为原来的18,得到曲线y =2sin ⎣⎡⎦⎤14(8x )=2sin 2x ,再将其纵坐标缩短到原来的12,得到曲线y =sin 2x . (2)将变换后的椭圆方程x 29+y 24=1改写为x ′29+y ′24=1,设伸缩变换为⎩⎪⎨⎪⎧x ′=λx (λ>0),y ′=μy (μ>0),代入x ′29+y ′24=1得λ2x 29+μ2y 24=1,即⎝⎛⎭⎫λ32x 2+⎝⎛⎭⎫μ22y 2=1,与x 2+y 2=1比较系数得⎩⎨⎧⎝⎛⎭⎫λ32=1,⎝⎛⎭⎫μ22=1,所以⎩⎪⎨⎪⎧ λ=3,μ=2,所以伸缩变换为⎩⎪⎨⎪⎧x ′=3x ,y ′=2y .即先使圆x 2+y 2=1上的点的纵坐标不变,将圆上的点的横坐标伸长为原来的3倍,得到椭圆x 29+y 2=1,再将该椭圆的纵坐标伸长为原来的2倍,得到椭圆x 29+y 24=1.。
2018学年高中数学选修4-4课件:第1讲 坐标系 2 第1课时 精品

课标定位
1.了解极坐标系的意义. 2.理解点的极坐标的不唯一性. 3.能够建立适当的极坐标系解决数学问题.
1.利用坐标法解决几何问题.(重点) 2.常与三角函数和几何图形结合命题. 3.点的极坐标不唯一是易混点,准确理解极坐标系的概 念并用于解题.(难点)
预习学案
直角 坐标 系
极坐 标系
点的表示方法 点与对应坐标
(x,y),其中x 表示点的水平 位置,y表示点 的垂直高度
点与有序实数对, 即(x,y)是一一对 应的
(ρ,θ),其中ρ 表示该点到原 点的距离,θ表 示从x轴正半轴 开始逆时针旋 转的角度
一个有序实数对 (ρ,θ)对应着一个 点,而一个点却可 与无数多个(ρ,θ) 对应
解题过程 以点O为极点,OA所在的射线为极轴Ox(单位 长度为1 m),建立极坐标系,如图所示.
Байду номын сангаас
由|OC|=600 m,∠AOC=π6,∠OAC=π2, 得|AC|=300 m,|OA|=300 3 m, 又|AB|=|BC|,所以|AB|=150 m. 同理,得|OE|=2|OG|=300 2 m, 所以各点的极坐标分别为 O(0,0),A(300 3,0),C600,π6, D300,π2,E300 2,34π,F(300,π),G150 2,34π.
又由 A、B 两舰发现动物信号的时间差为 4 秒, 知|PB|-|PA|=4,于是知 P 应在双曲线x42-y52=1 的右支上. 直线 l 与双曲线的交点 P(8,5 3)即为动物的位置,至此问 题便可获解.
据已知两点的斜率公式,得直线PA的倾斜角为60°.于是 舰A发射炮弹的方位角应是北偏东30°.利用两点间的距离公 式,可得|PA|=10.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.极坐标与直角坐标的互化 (1)互化背景:把直角坐标系的原点作为 x轴的正半轴作为 , 极点
,并在两种坐标系中取相同的 极轴
,如图所示. 长度单位 (2)互化公式:设M是平面内任意一点,它的直角坐标是(x,y), 极坐标是(ρ,θ),于是极坐标与直角坐标的互化公式如表:
点M
直角坐标(x,y)
极坐标(ρ,θ ) ρ 2=
π 2 3 2 解 因为 = , y = 3sin - =3× 2 2 4 3 2 3 2 2 3 - =- .同理, , 所以 A 点的直角坐标为 ,- 2 2 2 2 2 3 B,C 两点的直角坐标分别为(-1, 3),- ,0. 2
规律方法 关键.
将点的极坐标(ρ,θ )化为点的直角坐标(x,y)时,运用到求角θ的正
弦值和余弦值,熟练掌握特殊角的三角函数值,灵活运用三角恒等变换公式是
跟踪演练2 分别把下列点的极坐标化为直角坐标:
π (1)2, 6
π ;(2)3, 2
;(3)(π
x2+y2
互化公式 tan θ =
y ( x 0) x
要点一 极坐标系的概念
π A2, 3 ,直线
例1
设点
l 为过极点且垂直于极轴的直线,
分别求点 A 关于极轴,直线 l,极点的对称点的极坐标(限定 ρ>0,-π <θ ≤π ).
解
如图所示,关于极轴的对称点为
2 C2,3π . 2 D2,-3π .
. 一般地,不作特殊说明时,
2.点与极坐标的关系 一般地,极坐标(ρ,θ)与 的坐标为(0,θ)(θ∈R). 如果规定ρ>0, ,那么除 外,平面内的点可用 0≤θ<2π 极点 θ)表示;同时,极坐标(ρ,θ)表示的点也是 确定的. 唯一 唯一 的 极 坐 标 (ρ , (ρ,θ+2kπ)(k∈ Z) 表示同一个点,特别地,极点 O
3.联系点的极坐标与直角坐标的互化公式的纽带是什么?
提示 任意角的三角函数的定义及其基本关系式是联系点的 极坐标与直角坐标的互化公式的纽带. y x 事实上,若 ρ>0,则 sin θ= ,cos θ= ,
ρ
ρ
y 所以 x=ρcos θ,y=ρsin θ,ρ =x +y ,tan θ=x(x≠0).
11 (k∈Z),只有2, 6 π不满足.
答案 C
要点二 极坐标化为直角坐标
π A 3,- 4 2π , B 2, 3 ,
例 2
C
已知点的极坐标分别为
3 ,求它们的直角坐标. , π 2
π x=3cos - 4 =3×
要点三 直角坐标化为极坐标
例 3 分别把下列点的直角坐标化为极坐标(限定 ρ≥0, 0≤θ <π ):
(1)( - 2 , 2 3 ) ; (2)( 6 , - 2 ) ;
3π (3) 2
3π . , 2
2 2 2 2
y 解 (1)∵ρ= x +y = (-2) +(2 3) =4,tan θ =x= 2π - 3, θ ∈[0, 2π ), 由于点(-2, 2 3)在第二象限, ∴θ = . 3 2 ∴点的直角坐标(-2,2 3)化为极坐标为4,3π .
2 2 2
[预习导引]
1.极坐标系的概念
(1)极坐标系的建立:在平面内取一个定点O,叫做 叫做 ;再选定一个 ;自极点 O极点 引一条射线Ox,
、一个角度单位 (通常取弧度)及其 长度单位 极轴 (通常取逆时针方向),这样就建立了一个极坐标系. 正方向 (2)极坐标:设M是平面内一点,极点O与点M的距离|OM|叫做点M的 , 记为ρ;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的 对 叫做点M的极坐标,记为 . 极角 M(ρ,θ) 任意实数 (ρ,θ) 我们认为ρ≥0,θ可取 极径 , 记 为 θ. 有 序 数
,π ).
π π 解 (1)∵x=ρcos θ =2cos 6 = 3,y=ρsin θ =2sin 6 π =1.∴点的极坐标2, 化为直角坐标为( 3,1). 6 π π (2)∵x=ρcos θ =3cos 2 =0,y=ρsin θ =3sin 2 =3. π ∴点的极坐标3, 化为直角坐标为(0,3). 2 (3)∵x=ρcos θ =π cos π =-π ,y=ρsin θ =π sin π =0.∴点的极坐标(π ,π )化为直角坐标为(-π ,0).
π 在极坐标系中,下列各点中与2, 6
不表示同一个
)
13 B.2, 6 π 23 D.2,- 6 π
11 A.2,- 6 π 11 C.2, 6 π
解析
π π 与极坐标 2, 相同的点可以表示为 2, +2kπ 6 6
π B2,- 3
.
关于直线 l 的对称点为
关于极点 O 的对称点为
规律方法
1.点的极坐标不是唯一的,但若限制 ρ>0,0≤θ
<2π,则除极点外,点的极坐标是唯一确定的. 2.写点的极坐标要注意顺序:极径 ρ 在前,极角 θ 在后,不 能颠倒顺序.
跟踪演练 1 点Biblioteka 是(提示直角坐标系中点的位置用有序数组来刻画.两者的联系是都通过数刻画点,
体现了数形结合思想.在这里,应该使用角和距离刻画点P位置更方便.
2.由极坐标的意义可判断平面上点的极坐标唯一吗?
提示 平面上点的极坐标不是唯一的 .如果限定ρ>0,θ∈[0,2π),平面上的
点(除去极点)与极坐标(ρ,θ)可建立一一对应关系.
二
极坐标系
[学习目标] 1.理解极坐标系的概念,理解极坐标的多值性. 2.掌握极坐标与直角坐标的互化. 3.掌握极坐标系的简单应用.
[知识链接] 1.在教材第2页思考中,我们以信息中心为基点,用角和距离刻画点P的位置,这种
刻画就是极坐标思想.这种方法与用直角坐标刻画点P的位置有什么区别和联系?
你认为哪种方法更方便?