第13讲 图论模型
图论模型(最优连线问题最短路问题)PPT课件

(3)当(2)不能继续执行时停止。
(其思想是:在剩余边集中找边权最小的边添加到生成树中,同时又 不能产生回路即以局部的最优谋求全局的最优。)
上述的描述实际上是最小生成树的逐 步生长过程,上例的最小生成树如下:
A 5
1 3
D
8 E
水厂
9
B 7
6 10
著名数学家欧拉
七桥问题
图的基本概念
无 向 图
1 定义:由顶点和边组成的图形称为图。 有 向 图
赋
权
图
2 边e与顶点u、v相关联。顶点u与v相邻。
e
u
边e1与e2相邻。
e1
v
e2
u=v时,边e称为环。
3度
定义:与顶点v关联的边的数目称为顶点的度数, 记为d(v)。(注:环算2度。)
对于有向图的顶点的度数,还可分为出度 d ( v ) 和 入度 d ( v ) 。
u3
u6
0 8
1
6
u8
5
10
5
2
6
1
1
u4
10
u7
第五步:min{8,11,11,9,8,12,7,11,11},u3。
u2
1
2
u5
3
2
7
5
3
9
u1
u3
u6
0
8
7
1
6
u8
5
10
5
2
6
1
1
u4
10
u7
第六步:min{11,12,11,11,9},u7。
u2
1
2
图论模型及其解答

各种图论模型及其解答摘要:本文用另一种思路重新组织《图论及其应用》相关知识。
首先,用通俗化语言阐述了如何对事物间联系的问题进行图论建模;接着从现实例子出发,给出各种典型图论模型,每种图论模型对应于图论一个重要内容;再者,介绍相关知识对上述提到的图论模型涉及的问题进行解答;最后,补充一些图论其他知识,包括图论分支、易混概念。
符号约定:Q(Question)表示对问题描述,M(Modeling)表示数学建模过程,A(Answer)表示原问题转化为何种图论问题。
一、引言图论是研究点、线间关系的一门学科,属于应用数学的一部分。
现实生活中,凡是涉及到事物间的关系,都可以抽象为图论模型。
点表示事物,连线表示事物间的联系。
整个求解过程如下:原问题——>图论建模——>运用图论相关理论求解——>转化为原问题的解整个过程关键在于图论建模,所谓图论建模,就是明确点表示什么,连线表示什么,原问题转化为图论中的什么问题。
存在以下两种情况:①若事物间联系是可逆的(比如双行道,朋友),则抽象成无向图②若事物间联系是不可逆的(比如单行道,状态转化不可逆),则抽象成有向图如果需要进一步刻画事物间的联系(比如城市间的距离),就给连线赋一个权值,从而抽象成赋值图。
综上,根据实际问题,可建模成下列图论模型的一种:无向赋权图、有向赋权图、无向非赋权图、有向非赋权图。
例1.宴会定理:任何一宴会中,一定存在两个人有相同的数量朋友M:点表示人,连线表示当且仅当该两个人是朋友A:问题转化为任何一个图一定存在两个顶点的度相等二、图论模型接下来介绍若干典型的图论模型,每种模型几乎对应于图论的一个重要内容,这些内容将在第三章进行讨论,也就给出了这些模型的解答思路。
2.1 偶图模型凡涉及两类事物间的联系(即只考虑两类事物间的联系,而不考虑同类事物间的联系),均可抽象成偶图模型。
作图时,将两类事物分成两行或者两列。
这类模型通常被包含在后续的模型中,但因许多现实问题可抽象成该模型,所以单列出来讨论。
图论模型-Dijkstra算法

主讲人:泰山教育 小石老师
v2 2 v1 1 v4 8 v3 7 6
1 5
v5 3
2 9
v8 7 2 v9 3 1 v1
0
9 v11 4
1 v6 2 9 v7 4 1 6
Dijkstra算法简介
Dijkstra算法能求一个顶点到另一顶点最短路径。 它是由Dijkstra于1959年提出的。实际它能出始点到 其它所有顶点的最短路径。 Dijkstra算法是一种标号法:给赋权图的每一个 顶点记一个数,称为顶点的标号(临时标号,称T标 号,或者固定标号,称为P标号)。T标号表示从始顶 点到该标点的最短路长的上界;P标号则是从始顶点 到该顶点的最短路长。 Dijkstra算法步骤如下:
10
Inf Inf 5 0 Inf Inf Inf Inf Inf Inf Inf
Inf Inf 6 1 0 2 Inf Inf 7 Inf 10
Inf Inf Inf Inf 2 0 9 Inf Inf Inf Inf
7 Inf 5 Inf Inf 9 0 Inf Inf Inf Inf
8 Inf Inf Inf Inf Inf7 ∞ v9 1 9 2 v11 ∞ 4
1 ∞ 2 9 10 v7
6 4 3
1 ∞ v1
0
2 v2 2 0 v1 1 1 v4 8 8 v3 7 6
v 1 3 5 5 1 6 v6 2 9 10 v7 4 3
2 5 v8 9 7 1 2 v 9 3 1 ∞ v1
0
9 2 v11 ∞ 4
6
1
2 v2 2 0 v1 1 1 v4 8 8 v3 7 6
v 1 3 5 5 1 6 v6 2 9 10 v7 4 3
《图论的介绍》课件

图论的介绍
汇报人:
目录
PART One
添加目录标题
PART Three
图论的应用领域
PART Two
图论的基本概念
PART Four
图论的基本问题
PART Five
图论的算法和数据 结构
PART Six
图论的扩展知识
单击添加章节标题
图论的基本概念
图论的发展历程
18世纪末,欧拉提出“七桥问题”,开启了图论的先河
匹配问题
匹配问题定义:在图论中,匹配问 题是指在图中找到一组边,使得每 个顶点恰好有一条边。
最小匹配问题:在图中找到一组边, 使得边的数量最少。
添加标题
添加标题
添加标题
添加标题
最大匹配问题:在图中找到一组边, 使得边的数量最多。
完美匹配问题:在图中找到一组边, 使得每个顶点恰好有一条边,并且 边的数量最多。
图论的扩展知识
欧拉路径和欧拉回路
欧拉路径:通过图中所有边且仅通过一次的路径
欧拉回路:通过图中所有边且仅通过一次的回路
欧拉定理:一个无向图存在欧拉回路当且仅当每个顶点的度数都是偶数
应用:欧拉路径和欧拉回路在计算机科学、数学、物理等领域有广泛应用,如电路设计、网络 拓扑、图论算法等
哈密顿路径和哈密顿回路
应用
生物技术:图 论在生物工程、 生物制造和生 物能源等领域
的应用
图论的发展趋势和未来展望
应用领域:图 论在计算机科 学、物理学、 生物学等领域 的应用越来越
广泛
研究方向:图 论在算法设计、 网络优化、数 据挖掘等领域 的研究不断深
入
技术发展:图 论与机器学习、 深度学习等技 术的结合越来
图论模型

65
2 3 4 2 2 3 4 5 70 2 3 4 2 4 2 3 4 5 1 3 4 5
1 80
50 2 30
5
100
20
3
第三次迭代后得到:
130 0 50 0 80 ( 3) 30 0 20 110, D 0 70 65 115 100 120 0
2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5
2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 1 3 4 5
3
第二次迭代后得到:
1 0 50 130 1 0 80 ( 2) ( 2) 30 0 20 110, P 1 D 0 70 1 0 65 115 100 1
1 1 ( 3) 1 P 1 1
2 3 4 2 2 3 4 5 2 3 4 2 2 3 4 5 1 3 3 5
第四次迭代后得到:
130 0 50 0 80 ( 4) 30 0 20 90 , D 0 70 65 115 100 120 0
65
1 1 ( 4) 1 P 1 1 2 3 4 2 2 3 4 5 2 3 4 4 2 3 4 5 1 3 3 5
1 80
50 2 30
5 70 4
100
20
3
第五次迭代后得到:
50 230 250 130 0 145 0 180 200 80 (5) 155 30 0 20 90 , D 135 185 170 0 70 65 115 100 120 0
数模培训图论模型

根据此图便可找到渡河方法.
2020/11/21
数模培训图论模型
(1,1,1,1) (1,1,1,0) (1,1,0,1) (1,0,1,1) (1,0,1,0) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,1,0,0) (0,1,0,1)
2020/11/21
数模培训图论模型
图的定义
图论中的“图”并不是通常意义下的几何图形或物 体的形状图, 而是以一种抽象的形式来表达一些确定的 事物之间的联系的一个数学系统.
定义1 一个有序二元组(V, E ) 称为一个图, 记为G = (V, E ), 其中
① V称为G的顶点集, V≠, 其元素称为顶点或结点,
例 一摆渡人欲将一只狼,一头羊,一篮菜从河西渡过 河到河东.由于船小,一次只能带一物过河,并且狼与羊, 羊与菜不能独处.给出渡河方法.
解:用四维0-1向量表示(人,狼,羊,菜)在河西岸的 状态(在河西岸则分量取1,否则取0),共有24 =16 种状态. 在河东岸的状态类似记作.
由题设,状态(0,1,1,0),(0,0,1,1),(0,1,1,1)是不允许的, 从而对应状态(1,0,0,1), (1,1,0,0), (1,0,0,0)也是不允许的.
数模培训图论模型
2020/11/21
数模培训图论模型
图论模型
1. 图论基本概念 2. 最短路径算法 3. 最小生成树算法 4. 遍历性问题 5. 二分图与匹配
6. 网络流问题 7. 关键路径问题 8. 系统监控模型 9. 着色模型
2020/11/21
数模培训图论模型
1、图论的基本概念
数学建模图论讲

第2页1 /共86页
2024年8月3日
数学建模-图论
一、图的基本概念
如果图的二顶点间有边相连,则称此顶点相邻,每一对顶点
都相邻的图称为完全图,否则称为非完全图,完全图记为 K V 。
若V (G) X Y, X Y , X Y 0 ,且 X 中 无相邻的顶点对,Y 中亦然,则称图 G 为二分图.
第1行 1 A1i 第i行 1
11,A1i 2
2 2
22,A1i3
4 4
4 4
其中i=2,3,4,5,显然y1=1+(4+4+4+4-1) 4=61. 同理,计算y2时应考虑槽高只有2,21,23,24,25,
26时的情形,类似计算可得 y2=1+(4+4+4+4-1)×5=76.
于是,s=61×2+76×4=426,x=6306426=5880.
计算y1可分别考虑槽高只有1,12,13,14,15的 情形.若只有1,这样的锁具效只有1个, 若只有1和i(i=2,3,4,5),这样的锁具数=G中以1和i为 顶点,长度为3的道路数,此数可通过A的子矩阵A1i计 算得到.
第18页/共86页
数学建模-图论
二、图的矩阵表示(应用实例解法分析)
事实上,因为
间最短的路线。定义T*T=(t(2)ij),
3
4
t(2)ij=min{min1<=k<=5{tik+tkj},tij}, t(2)ij表示 从站点i到站点j的至多换乘一次的最短时间。
5
第22页/共86页
数学建模-图论
二、图的矩阵表示(应用实例及解法分析)
图论建模课件

例如,对于右图所示 的有向图G(V,E),V(G)= {0, 1, 2, 3, 4, 5, 6}, E(G)= {<0,1>,<1,2>,<1,4>,<1,5>, <2,4>,<3,2>,<4,1>,<4,3>,<5,6>}。 1.3 完全图 任何一对顶点都有一条边的图称为完 全图;任何一对顶点u,v都有<u,v>和<v,u> 两条有向边的图称为完全有向图。
v i X k v 'X k
X k v s , v1 , v 2 ,..., v k ,
Xk V \ Xk
使上式达到最小值的点v’ 可取为vk+1。 计算过程中可采用标号方法。 Xk中的点,ui 值是vs 到vi 的最短路长度,相应的 点记“永久”标号; XK中的点,ui值是vs到vi的最短路长度的上界, 相应的点记“临时”标号,供进一步计算使用。
u1 u2
u3 u4
0 3 7 8 u1 0 u 2 A 6 0 u3 4 0 u 4
对于无向赋权图的邻接矩阵可类似定义.
注意:如果图中存在环(连接某个顶点自身的边) 和重边(多条边的起点一样,终点也一样)的情形, 则无法用邻接矩阵存储。
图论的基本概念
问题1:七桥问题 能否从任一陆地出发通过每座桥恰好一次而 回到出发点?
C
A
B
D
哥尼斯堡七桥示意图
图论的基本概念
七桥问题模拟图: C
A
B
D
欧拉指出:如果每块陆地所连接的桥都是偶数座,则 从任一陆地出发,必能通过每座桥恰好一次而回到出 发地。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
顶点的次数
定义 (1)在无向图中,与顶点 v 关联的边的数目(环算两次) 称为 v 的次数,记为 d(v). (2)在有向图中,从顶点 v 引出的边的数目称为 v 的出度, 记为 d+(v),从顶点 v 引入的边的数目称为的入度,记为 d-(v), d(v)=d+(v)+d-(v) 称为 v 的次数.
wij aij 0
若(vi , v j ) E , 且wij为其权 若i j 若(vi , v j ) E
无向赋权图的邻接矩阵可类似定义.
v1 v2 v3 v4 0 2 7 v1 A= 2 0 8 3 v2 8 0 5 v 3 7 3 5 0 v 4
若vi 与e j 相关联 若vi 与e j 不关联
注:假设图为简单图
e1 1 M= 1 0 0
e 2 e3 e 4 e 5 0 0 0 1 v1 1 0 1 0 v2 0 1 1 0 v3 1 1 0 1 v4
对有向图G,其关联矩阵M=(mij ) ,其中:
vk 到
Wv 0 v k 的通路,记为
Tv0vk (2)边不重复但顶点可重复的通路称为道路,记为 Pv 0 v k (3)边与顶点均不重复的通路称为路径,记为
通路 W v1v4 v1 e 4 v 4 e5 v 2 e1 v1 e 4 v 4 道路 Tv1v4 v1 e1 v 2 e5 v 4 e 6 v 2 e 2 v 3 e3 v 4 路径 Pv1v4 v1 e1 v 2 e5 v 4
v1 v2 v3 v4 0 1 0 1 v1 1 0 1 1 v2 0 1 0 1 v3 1 1 1 0 v4
对有向图G=(V,E) ,其邻接矩阵 A (aij ) ,其中:
1 aij 0
若( vi,v j) E 若( vi,v j) E
对有向赋权图G,其邻接矩阵 A (aij ) ,其中:
例 求下图中加权图的任意两点间的距离与路径.
TO MATLAB (road2(floyd))
0 7 D 5 3 9 7 0 2 4 6 5 2 0 2 4 3 4 2 0 6 9 1 6 3 4 , R 4 6 1 4 0 4 2 2 3 3 4 3 3 3 3 4 3 4 4 3 4 3 5 3 5
( 0)
(2)D(2)= (d ij ) ,其中 d ij …
( 2)
( 2)
(1) 1) (1) min{ d ij , d i(2 d2 j}
( 2) d ij 是从 vi 到 vj 的只允许以 v1 、 v2 作为中间点的路径中最短路的长度.
( ) ( )D = ( d ij ) ,其中 d ij
e E1 时,1 (e)= (e),则称 G1 是 G 的子图. V,E (1) 若 V1 E,且当 1 特别的,若 V1=V,则 G1 称为 G 的生成子图.
V,且 V1 ,以 V1 为顶点集、两个端点都在 V1 中的 (2) 设 V1 图 G 的边为边集的图 G 的子图,称为 G 的由 V1 导出的子图,记为 G[V1].
d (v4 ) 4
d (v4 ) 2 d (v4 ) 3 d (v4 ) 5
定理1
vV (G )
d (v) 2 (G)
推论1 任何图中奇次顶点的总数必为偶数.
例 在一次聚会中,认识奇数个人的人数一定是偶数。
子图
定义 设图 G=(V,E, ),G1=(V1,E1, 1 )
(k ) ij
k r ( k 1) ij
( k 1) ( k 1) ( k 1) 若d ij d ik d kj 否则
即当vk被插入任何两点间的最 短路径时,被记录在R(k)中,依 次求D( ) 时求得 R( ) ,可由 R( ) 来查 找任何点对之间最短路的路 径.
算法原理—— 求距离矩阵的方法
(dij ) =W 把带权邻接矩阵 W 作为距离矩阵的初值,即 D(0)=
(1) (1) (0) (0) (0) (1)D(1)= ( d ij ) ,其中 d ij min{d ij , d i1 d1 j } (1) d ij 是从 vi 到 vj 的只允许以 v1 作为中间点的路径中最短路的长度.
d51 9 ,故从 v5 到 v1 的最短路为9. 由 v4 向 v5 追朔: r54 3, r53 3 ; r51 =4. 由 v4 向 v1 追朔:r41 1 所以从 v5 到 v1 的最短路径为: 5 3 4 1 .
行 遍 性 问 题
一、欧拉图
二、哈密尔顿图
欧 拉 图
( )
( )
( 1) 1) min{d ij , d i( d(j 1) }
( ) v d ij 是从 vi 到 vj 的只允许以 v1 、 v2、… 、
作为中间点的路径中最短路
的长度.即是从 vi 到 vj 中间可插入任何顶点的路径中最短路的长,因此 D( )即是距离矩阵.
定义1 设 G=(V,E)是连通无向图 (1)经过 G 的每边至少一次的闭通路称为巡回. (2)经过 G 的每边正好一次的巡回称为欧拉巡回. (3)存在欧拉巡回的图称为欧拉图. (4)经过 G 的每边正好一次的道路称为欧拉道路.
v1 e4 v4
e1 e5 e3
v2 e2 v3
v1
e1
v2 e2
v4
e4 e e5 6 e图的顶点数和边数. 规定用记号
常用术语: (1) 端点相同的边称为环. (2) 若一对顶点之间有两条以上的边联结,则这些边称为重边. (3) 有边联结的两个顶点称为相邻的顶点,有一个公共端点的边 称为相邻的边. (4) 边和它的端点称为互相关联的. (5) 既没有环也没有平行边的图,称为简单图. (6) 任意两顶点都相邻的简单图,称为完备图,记为 Kn,其中 n 为顶点的数目. ( 7)若 V=X Y,X Y= ,X 中任两顶点不相邻,Y 中任两顶 点不相邻,称 G 为二元图;若 X 中每一顶点皆与 Y 中一切顶点 相邻,称为完备二元图,记为 Km,n,其中 m,n 分别为 X 与 Y 的顶 点数目.
G 的图解如图.
定义 在图 G 中,与 V 中的有序偶(vi, vj)对应的边 e,称为图的有向
边(或弧) ,而与 V 中顶点的无序偶 vivj 相对应的边 e,称为图 的无向边 .每一条边都是无向边的图,叫无向图;每一条边都是 有向边的图,称为有向图;既有无向边又有有向边的图称为混 合图.
定义 若将图 G 的每一条边 e 都对应一个实数 w(e),称 w(e)为边的权,
v3
欧拉道路:v1e1v2e2v3e5v1e4v4e3v3 巡回:v1e1v2e2v3e5v1e4v4e3v3e5v1
欧拉巡回: v1e1v2e2v3e5v1e4v4e3v3e6v1
定理1 对于非空连通图 G,下列命题等价: (1)G 是欧拉图. (2)G 无奇次顶点. (3)G 的边集能划分为圈.
(1)赋初值: j, k 1 对所有 i,j, d(i,j) w(i,j), r(i,j)
(2) 更新 d(i,j), r(i,j) d(i,k)+d(k,j), r(i,j) 对所有 i,j,若 d(i,k)+d(k,j)<d(i,j),则 d(i,j) k
,停止.否则 k k+1,转(2) (3) 若 k= .
算法原理—— 求路径矩阵的方法
在建立距离矩阵的同时可建立路径矩阵R.
R= (rij ) , rij 的含义是从 vi 到 vj 的最短路要经过点号为 rij 的点.
R(0) (rij(0) ) , rij(0) j
每求得一个 D(k)时,按下列方式产生相应的新的 R(k)
r
定义2 (1)任意两点均有路径的图称为连通图. (2)起点与终点重合的路径称为圈. (3)连通而无圈的图称为树.
定义3 (1)设 P(u,v)是赋权图 G 中从 u 到 v 的路径, 则称 w( P )
eE ( P )
w(e) 为路径 P 的权.
(2)
在赋权图 G 中,从顶点 u 到顶点 v 的具有最小权的路
算法原理—— 查找最短路路径的方法
( ) 若 rij p1 ,则点 p1 是点 i 到点 j 的最短路的中间点.
然后用同样的方法再分头查找.若:
( ) ( ) ( ) rip p r (1)向点 i 追朔得:rip1 p 2 , , … , 3 ipk p k 2 ( ) ( ) ( ) r q r q r (2)向点 j 追朔得: p1 j 1 , q1 j 2 ,…, q m j j
最短路问题及其算法
一、 基 本 概 念
二、每 对 顶 点 之 间 的 最 短 路
基 本 概 念
定义1 在无向图 G=(V,E, )中: (1) 顶点与边相互交错且 (ei ) v i 1 v i (i=1,2,…k)的有限非空序列
w (v 0 e1 v1 e 2 v k 1 e k v k ) 称为一条从 v0
则由点i到j的最短路的路径为: i, pk ,, p2 , p1, q1 , q2 ,, qm , j
i
pk
p3
p2
p1
q1
q2
qm
j
算法步骤
Floyd 算法:求任意两点间的最短路.
D(i,j):i 到 j 的距离. R(i,j):i 到 j 之间的插入点. 输入: 带权邻接矩阵 w(i,j)
(3)设 E1 E,且 E1 ,以 E1 为边集,E1 的端点集为顶点集的图 G 的子图, 称为 G 的由 E1 导出的子图,记为 G[E1].
G