中国海上风电发展前景及展望

合集下载

海上风电的开发和利用

海上风电的开发和利用


2、投资成本高 为适应海上恶劣的环境,海上风电机组必须采取气密、 干燥、换热和防腐等各项技术措施,且机组的单机容量较大,需配备安装 维修的专用设施(登机平台、起吊机等),这些都增加了海上风电机组的成 本。有资料显示,我国陆上风电工程造价为8000元/千瓦左右,而海上风电 则为1.6万~2万元/千瓦。工程建设和维护成本占据了海上风电开发中的大 部分投资。
3
• 二、发展海上风电的优势与困难
优势: 海上风电由于其资源丰富、风速稳定、对环境的负面影响较少;风电 机组距离海岸较远,噪声、视觉干扰很小;单机容量大,年利用小时数高; 海上风电靠近经济发达地区,距离电力负荷中心近,风电并网和消纳容易; 不占用土地资源;海上风电场是以风速高、风功率密度大、湍流强度小占 优势。与陆地风电相比,海上风电风能资源的能量效益比陆地风电场高 20%~40%,还具有不占地、风速高、沙尘少、电量大、运行稳定以及粉尘 零排放等优势,同时能够减少机组的磨损,延长风力发电机组的使用寿命, 适合大规模开发。例如,浙江沿海安装1.5兆瓦风机,每年陆上可发电 1800~2000小时,海上则可以达到2000~2300小时,海上风电一年能多发电 45万千瓦时。另外,海上风电还能减少电力运输成本。由于海上风能资源 最丰富的东南沿海地区,毗邻用电需求大的经济发达地区,可以实现就近 消化,降低输送成本,所以发展潜力巨大。
13
• 四、我国海上风电发展现状及发展规划
1、发展现状:我国海上风电起步较晚,2006年开始海上测风,2008年投资 23.6亿元建设了我国第一座大型海上风电项目,上海东海大桥海上风电项目, 该项目安装了34台国产单机容量3MW的离岸型风电机组,总装机容量 102MW,该项目拉开了中国海上风电开发的帷幕。我国拥有18000多公里长 的大陆海岸线,可利用海域面积多达300多万平方公里,是世界上海上风能 资源最丰富的国家之一。 我国拥有十分丰富的近海风资源,有数据显示,我国近海10m水深的风 能资源约1亿kW,近海20m水深的风能资源约3亿kW,近海30m水深的风能资 源约49亿kW。此外,由于我国东部沿地区经济发达,能源紧缺,开发丰富 的海上风能资源将有效改善能源供应情况。开发海上风电已经成为我国能源 战略的一个重要内容。我国已建及正在规划建设中的海上风电场主要有上海 东海大桥近海风电场、山东威海风电场、浙江岱山近海风电场、浙江杭州湾 近海风电场、江苏如东和江苏东台风电场等。预计2015年中国海上风力电装 机500万千瓦,业内预计将带来800亿元海上风电蛋糕,未来几年我国海上风 电将进入加速发展期。

我国海上风能资源情况和海上风电发展前景

我国海上风能资源情况和海上风电发展前景

我国海上风能资源情况和海上风电发展前景当前,海上风电已成为全球风电发展的研究热点,世界各国都把海上风电作为可再生能源发展的重要方向,我国也将其划入战略性新兴产业的重要组成部分。

我国海上风能资源情况我国海岸线长约18000多公里,岛屿6000多个。

近海风能资源主要集中在东南沿海及其附近岛屿,风能密度基本都在300瓦/平方米以上,台山、平潭、大陈、嵊泗等沿海岛屿可达500瓦/平方米以上,其中台山岛风能密度为534瓦/平方米,是我国平地上有记录的风能资源最大的地方。

根据风能资源普查成果,我国5~25米水深、50米高度海上风电开发潜力约2亿千瓦;5~50米水深、70米高度海上风电开发潜力约5亿千瓦。

我国海上风能资源丰富主要受益于夏、秋季节热带气旋活动和冬、春季节北方冷空气影响。

各沿海省、市由于地理位置、地形条件的不同,海上风能资源也呈现不同的特点。

从全国范围看,垂直于海岸的方向上,风速基本随离岸距离的增加而增大,一般在离岸较近的区域风速增幅较明显,当距离超过一定值后风速基本不再增加,平行于海岸方向上,我国风能资源最丰富的区域出现在台湾海峡,由该区域向南、北两侧大致呈递减趋势。

台湾海峡年平均风速基本在7.5~10米/秒之间,局部区域年平均风速可达10米/秒以上。

该区域也是我国受台风侵袭最多的地区之一,风电场以IECⅠ或Ⅰ+类为主。

从台湾海峡向南的广东、广西海域,90米高度年平均风速逐渐降至6.5~8.5米/秒之间,风电场大多属于IEC 或Ⅱ类。

从台湾海峡向北的浙江、上海、江苏海域,90米高度年平均风速逐渐降至7~8米/秒之间,浙江和上海海域风电场大多属于IEC Ⅱ至Ⅰ+类,江苏海域风电场大多属于IEC Ⅲ或Ⅱ类。

位于环渤海和黄海北部的辽宁、河北海域90米高度年平均风速基本在6.5~8米/秒之间,该海域风电场大多属于IEC Ⅲ类。

我国沿海各省风资源统计见表1综上所述,我国大部分近海海域90米高度年平均风速在7~8.5米/秒之间,具备较好的风能资源条件,适合大规模开发建设海上风电场。

海上风力发电的现状及展望

海上风力发电的现状及展望

海上风力发电的现状及展望摘要:随着社会不断向前发展,经济水平不断提高,用电需求的保证成为各国必须确保的基本问题。

然而,传统的火力发电所造成的煤炭资源大量开采以致储量不足和大气污染以及全球变暖等诸多问题亦接踵而至。

为了可持续发展,减轻这些困扰全球的问题,新型分布式清洁能源并入配电网逐渐成为世界各国的研究重点。

在所有清洁能源之中,风能是最常见的,拥有着极大的发展潜力。

相比陆上风电而言,海上风力发电的发展较为落后,但有着天然的优势。

研究结果表明,海上风力发电在减少碳排放、保证可持续发展、提高发电效率、保障用电需求等方面的优势十分显著。

关键词:海上风力发电;发展现状;相关政策;发展前景引言作为一种新兴的海上新能源,海上风电具有风速更高、风能资源更丰富、单机容量高、靠近东部用电负荷中心,就地消纳方便、噪音污染小的优点。

经过连续多年的高速增长,我国海上风电装机总量已居世界第一。

因此,大力发展海上风电成为实现“碳达峰、碳中和”目标的主要手段之一。

1影响海上风力发电发展的一些因素目前正处于海上风力发电发展的黄金时期,影响海上风力发电的因素主要有:海上风电机组的单机容量更大,制造技术变得复杂,工程建设成本较高,海上风电机组的运行和维护成本也很高。

对海上风场成本影响较高的因素有:离岸距离、水域深度、升压站的位置、风机等基础造价及人工费用等。

此外,海上风电处于强腐蚀性的海洋环境,组件长期暴露在外,防腐蚀防护问题面临巨大挑战。

而且,海上气候环境恶劣且复杂多变,风电机组的吊装、项目施工及运行难度大,需要加强气候监测能力,科学制定吊装和施工方案等应对措施。

2我国海上风力发电的发展2.1漂浮式海上风电目前我国海上风电的开发主要集中在浅水滩涂海域,在近海即水深在5~50m 的海域海上风能储量约为5亿kW,据统计,水深大于50m的深水海域风能储量约为13亿kW,这一储量远远高于浅水区域。

但是当水深大于60m时,固定式海上风机建造以及维护的成本会急剧上升,且难以保证其安全性。

海洋风力发电的可行性与发展前景

海洋风力发电的可行性与发展前景

海洋风力发电的可行性与发展前景在全球能源需求不断增长和对环境保护日益重视的背景下,寻找可持续、清洁的能源来源成为了当务之急。

海洋风力发电作为一种新兴的可再生能源技术,正逐渐引起人们的关注。

那么,海洋风力发电究竟是否可行?它的未来发展前景又如何呢?海洋风力发电的可行性,首先体现在其丰富的资源优势上。

与陆地相比,海洋上的风力更为强劲、稳定且持续时间长。

据科学研究,海上的平均风速通常比陆地上高出 20%至 70%。

这意味着在相同的风力发电机装机容量下,海洋风力发电能够产生更多的电能。

此外,海洋面积广阔,可利用的风能资源几乎是无限的。

从技术角度来看,海洋风力发电技术在近年来取得了显著的进步。

风机的设计和制造技术不断提升,使得风机能够在恶劣的海洋环境中稳定运行。

叶片材料的改进、塔筒的加固以及智能控制系统的应用,都大大提高了风机的可靠性和发电效率。

同时,海上风电的安装和维护技术也在逐步成熟。

虽然海洋环境复杂,施工难度较大,但通过使用专业的安装船只和先进的施工方法,这些问题正在逐步得到解决。

在经济方面,虽然海洋风力发电的初始投资较高,但随着技术的进步和规模的扩大,成本正在逐渐降低。

而且,一旦风电场建成并投入运行,其运营成本相对较低,且风能是免费的,长期来看具有良好的经济效益。

此外,政府对可再生能源的支持政策,如补贴、税收优惠等,也为海洋风力发电的发展提供了有力的经济保障。

然而,海洋风力发电也面临一些挑战。

首先是海洋环境的复杂性,包括高盐度、强风浪、海底地质条件等,这对风机的设计、安装和维护都提出了更高的要求。

其次,海上风电的输电问题也是一个难点。

由于风电场通常位于远离陆地的海域,需要建设长距离的海底电缆进行输电,这不仅增加了成本,还存在一定的技术难题。

再者,海洋生态保护也是不容忽视的问题。

风电场的建设可能会对海洋生物的栖息地、迁徙路线等造成影响,需要采取有效的措施进行保护。

尽管存在挑战,但海洋风力发电的发展前景依然广阔。

未来海上风电的发展前景与挑战

未来海上风电的发展前景与挑战

未来海上风电的发展前景与挑战随着可再生能源技术的不断发展,海上风电作为一种新兴的清洁能源在全球范围内得到了越来越多的关注和支持。

截至目前,海上风电已经成为全球最快增长的新型能源。

海上风电是指在海上建立的风力发电设备,它利用海上强风来驱动风力涡轮机,通过转动风力涡轮机产生电能,将电能传输到陆地上供人们使用。

海上风电具有清洁、可再生、稳定、可预测等诸多优点,是一种非常有前景的清洁能源。

海上风电的发展前景首先,海域广阔,风力资源丰富。

全球大部分的风能都存在于海洋上,海域的面积比陆地更广阔,而且由于没有障碍物的阻挡,海上的风能更加充沛。

据研究,全球海上风电的潜在容量将超过3500GW,其中,欧盟的容量最大,达到了1300GW,而美国、中国等国家和地区也具有巨大的海上风电潜力。

其次,海上风电能够为人们提供绿色低碳的电力。

目前,全球温室气体排放量的60%以上来自于化石燃料的燃烧,这对全球环境和社会造成了巨大的压力。

而海上风电是一种绿色清洁的能源,其发电过程中不会产生二氧化碳等有害气体,对于减缓气候变化和改善环境具有重要意义。

第三,海上风电可以促进能源结构的调整。

海上风电不仅具有稳定的供电能力,而且也可以与其他可再生能源相结合,如太阳能和潮汐能。

这有助于减少对于燃煤、燃油等传统能源的依赖,从而促进能源结构的调整和优化。

第四,海上风电建设可以带来经济效益。

海上风电需要在海上建立大型的风电设备,这既需要大量的投资,也需要大量的技术和人力资源。

因此,海上风电建设可以带来就业机会和经济效益,为当地人们带来可观的财富收入。

海上风电的发展挑战尽管海上风电发展前景广阔,但其发展也面临着一些挑战。

首先,海上风电的建设成本高。

相比于陆上风电,海上风电的成本要高得多。

它需要在海上建设大规模的风电系统,需要大量的投资和技术支持。

而且海上环境的恶劣和复杂性也增加了海上风电建设的难度和成本。

其次,海上风电的稳定性需要进一步提高。

虽然海上风能更加充沛,但是其存在着较大的风力波动和不稳定性,这就给电力系统带来了一定的压力。

海上漂浮式风电基础的发展现状和趋势-概述说明以及解释

海上漂浮式风电基础的发展现状和趋势-概述说明以及解释

海上漂浮式风电基础的发展现状和趋势-概述说明以及解释1.引言1.1 概述海上漂浮式风电基础作为一种新型的风能利用技术,具有巨大的发展潜力和广阔的应用前景。

随着全球对可再生能源需求的不断增长和对传统能源资源的逐渐枯竭,海上风电逐渐成为了重要的替代能源选择之一。

相比于陆上风电场,海上风电场能够充分利用海上风速更大、稳定性更高的特点,提供更为可靠的能源供应。

海上漂浮式风电基础作为海上风电发展的重要组成部分,其与传统的固定式基础不同,采用了浮动的结构设计,可以在深海等复杂环境下进行建设和运营。

相比于固定式基础,漂浮式基础具有施工便利、适应多种海底地质条件的优势,大大降低了建设和运维成本。

目前,海上漂浮式风电基础已经在一些发达国家和地区得到了广泛应用和推广。

特别是在欧洲地区,已经建成了若干座海上漂浮式风电场,取得了较好的经济效益和环境效益。

这些成功案例为海上漂浮式风电基础的发展奠定了坚实的基础,并为其未来的发展提供了宝贵的经验和参考。

然而,海上漂浮式风电基础还存在一些挑战和问题,包括技术成熟度不高、运维难度大、经济投资回报周期较长等。

解决这些问题,提高海上漂浮式风电基础的性能和可靠性,是当前研究的重点和挑战之一。

未来,随着技术的不断进步和创新,海上漂浮式风电基础将会迎来更为广阔的发展空间。

一方面,技术上将采取更加高效、可靠的设计和施工方法,提高基础的稳定性和抗风能力;另一方面,经济上将加大投资力度,降低建设和运维成本,提高经济效益,进一步推动海上漂浮式风电基础的应用和推广。

总之,海上漂浮式风电基础作为海上风电发展的重要组成部分,具有广阔的发展前景。

在克服一些技术和经济上的挑战后,相信海上漂浮式风电基础将为人类提供更加清洁和可持续的能源供应,并在全球能源转型中发挥重要作用。

文章结构部分的内容如下:文章结构:本文主要分为引言、正文和结论三个部分。

1. 引言1.1 概述在引言部分,我们将对海上漂浮式风电基础的发展现状和趋势进行综述。

2024年风电行业发展研究报告

一、行业概况2024年,风电行业在我国能源结构调整和环境保护政策的推动下,继续保持较快的增长态势。

随着技术的不断进步和成本的下降,风电发电已经成为我国清洁能源的重要组成部分。

根据数据统计,2024年我国新增风电装机容量已经超过了去年的增长水平,达到了历史新高。

二、市场情况分析1.发电容量根据国家能源局发布的数据,2024年我国新增风电装机容量达到了XXX万千瓦。

其中,陆上风电装机容量达到了XXX万千瓦,海上风电装机容量突破了XXX万千瓦。

这种快速增长主要得益于政府的支持政策和技术的进步。

2.装机分布我国风电装机容量分布不均匀,主要集中在东北、华北和西北地区。

其中,内蒙古、辽宁、河北等地区是我国风电装机容量最大的地区。

另外,近年来,我国海上风电发展迅猛,尤其是在沿海地区如广东、福建等地。

3.发电效益随着技术的进步和成本的下降,风电发电效益逐渐提高。

根据数据统计,近年来,我国风电的利用小时数逐年增加,达到了XXX小时。

这意味着风电能源的利用效率不断提高,对于替代传统能源起到了重要的作用。

三、政策环境1.国家政策2024年,国家加大了对清洁能源的支持力度,出台了一系列的扶持政策。

其中,对于风电行业而言,鼓励新建风电场并降低上网电价。

此外,国家还加大了对风电设备制造商的支持,提高了设备购置补贴。

2.地方政策除了国家政策的支持外,各地方政府也纷纷出台了相关的政策。

例如,一些地方将风电项目列为重点扶持项目,并提供土地和税收优惠等支持措施,吸引了更多的投资者进入该领域。

四、技术进步1.装机技术随着技术的进步,在我国风电行业中,使用的风力发电机组的装机容量不断提高。

新一代的大容量风力发电机组已经可以达到XMW以上的装机容量,提高了风电项目的经济性和发电效果。

2.储能技术随着风电装机容量的不断增加,我国也开始关注风电发电的可靠性和稳定性问题。

储能技术的应用成为研究的热点之一,通过储能设备的使用,可以解决风电发电的间歇性问题,提高电网的稳定性。

海上风电和海洋牧场融合发展现状与展望


02
海上风电发展现状
全球海上风电概况
01
发展规模
全球海上风电在近年来得到了迅速发展,总装机 容量不断增长,成为清洁能源领域的重要组成部
分。
02
地域分布
欧洲是全球海上风电发展的先驱和主要市场,亚 洲、北美等地区也在积极布局和推进海上风电项
目。
中国海上风电发展现状
01 政策支持
中国政府近年来大力推动清洁能源发展,海上风 电成为战略重点之一,出台了一系列鼓励和支持 政策。
海上风电与海洋牧场融合发
04

融合发展意义
01
02
03
资源充分利用
海上风电与海洋牧场融合 发展能够实现海洋空间资 源的多层次、多元化利用 ,提高资源利用效率。
生态环境改善
通过海洋牧场的建设,可 以促进海洋生态环境的修 复与改善,为海上风电提 供更加稳定的生态环境。
经济效益提升
融合发展能够发挥产业间 的互补优势,降低单一产 业的风险,提高整体经济 效益。
海上风电和海洋牧场 融合发展现状与展望
汇报人:
日期:
目录
• 引言 • 海上风电发展现状 • 海洋牧场发展现状 • 海上风电与海洋牧场融合发展 • 融合发展展望 • 结论与建议
01
引言
主题背景介绍
能源需求与环境压力
随着社会经济的发展,能源需求不断增加,同时环境保 护意识也日益增强,发展清洁能源成为迫切需求。
发展成果总结
技术创新
在海上风电和海洋牧场融合领域,已经取得了一系列技术创新,包括海上风机设计、海洋养殖技术、海洋能源存储技 术等,这些技术为融合发展提供了有力支持。
产业规模增长
通过融合发展,海上风电和海洋牧场产业规模得到了快速增长,不仅提高了能源利用效率,也为沿海地区的经济发展 注入了新的活力。

风电发展现状与未来展望

中国风电发展现状与未来展望一、风能资源风能储量我国幅员辽阔,海岸线长,风能资源比较丰富;根据全国900多个气象站陆地上离地10m高度资料进行估算,全国平均风功率密度为100W/m2,风能资源总储量约亿kW,可开发和利用的陆地上风能储量有亿kW,近海可开发和利用的风能储量有亿kW,共计约10亿kW;如果陆上风电年上网电量按等效满负荷2000小时计,每年可提供5000亿千瓦时电量,海上风电年上网电量按等效满负荷2500小时计,每年可提供万亿千瓦时电量,合计万亿千瓦时电量;风能资源分布我国面积广大,地形条件复杂,风能资源状况及分布特点随地形、地理位置不同而有所不同;风能资源丰富的地区主要分布在东南沿海及附近岛屿以及北部地区;另外,内陆也有个别风能丰富点,海上风能资源也非常丰富;北部东北、华北、西北地区风能丰富带;北部东北、华北、西北地区风能丰富带包括东北三省、河北、内蒙古、甘肃、青海、西藏和新疆等省/自治区近200km宽的地带;三北地区风能资源丰富,风电场地形平坦,交通方便,没有破坏性风速,是我国连成一片的最大风能资源区,有利于大规模的开发风电场,但是当地电网容量较小,限制了风电的规模,而且距离负荷中心远,需要长距离输电;沿海及其岛屿地区风能丰富带;沿海及其岛屿地区包括山东、江苏、上海、浙江、福建、广东、广西和海南等省/市沿海近10km宽的地带,冬春季的冷空气、夏秋的台风,都能影响到沿海及其岛屿,加上台湾海峡狭管效应的影响,东南沿海及其岛屿是我国风能最佳丰富区;沿海地区经济发达,沿海及其岛屿地区风能资源丰富,风电场接入系统方便,与水电具有较好的季节互补性;然而沿海岸的土地大部份已开发成水产养殖场或建成防护林带,可以安装风电机组的土地面积有限;内陆风能丰富点;在内陆一些地区由于湖泊和特殊地形的影响,形成一些风能丰富点,如鄱阳湖附近地区和湖北的九宫山和利川等地区;海上风能丰富区;我国海上风能资源丰富,东部沿海水深2m到15m的海域面积辽阔,按照与陆上风能资源同样的方法估测,10m高度可利用的风能资源约是陆上的3倍,即7亿多kW,而且距离电力负荷中心很近;随着海上风电场技术的发展成熟,经济上可行,将来必然会成为重要的可持续能源;二、风电的发展建设规模不断扩大,风电场管理逐步规范1986年建设山东荣成第一个示范风电场至今,经过近20多年的努力,风电场装机规模不断扩大截止2004年底,全国建成43个风电场,安装风电机组1292台,装机规模达到万kW,居世界第10位,亚洲第3位位于印度和日本之后;另外,有关部门组织编制有关风电前期、建设和运行规程,风电场管理逐步走向规范化;专业队伍和设备制造水平提高,具备大规模发展风电的条件经过多年的实践,培养了一批专业的风电设计、开发建设和运行管理队伍,大型风电机组的制造技术我国已基本掌握,主要零部件国内都能自己制造;其中,600kW及以下机组已有一定数量的整机厂,初步形成了整机试制和小批量生产;截止2004年底,本地化风电机组所占市场份额已经达到18%,设备制造水平不断提高,目前,我国已经具备了设计和制造750kW定桨距定转速机型的能力,相当于国际上二十世纪90年代中期的水平;与国外联合设计的1200千瓦和独立设计的1000千瓦变桨距变转速型样机于2005年安装,进行试验运行;风力发电成本逐步降低随着风电产业的形成和规模发展,通过引进技术,加速风电机组本地化进程以及加强风电场建设和运行管理,我国风电场建设和运行的成本逐步降低,初始投资从1994年的约12000元/kW降低到目前的约9000元/kW;同时风电的上网电价也从超过元/kWh降低到约元/kWh;2003年国务院电价改革方案规定风电暂不参与市场竞争,电量由电网企业按政府定价或招标价格优先购买;国家发展改革委从2003年开始推行风电特许权开发方式,通过招投标确定风电开发商和上网电价,并与电网公司签订规范的购电协议,保证风电电量全部上网,风电电价高出常规电源部分在全省范围内分摊,有利于吸引国内外各类投资者开发风电;2005年2月28日通过的中华人民共和国可再生能源法中规定了“可再生能源发电项目的上网电价,由国务院价格主管部门根据不同类型可再生能源发电的特点和不同地区的情况,按照有利于促进可再生能源开发利用和经济合理的原则确定”,“电网企业为收购可再生能源电量而支付的合理的接网费用以及其他合理的相关费用,可以计入电网企业输电成本,并从销售电价中回收;”和“电网企业依照本法第十九条规定确定的上网电价收购可再生能源电量所发生的费用,高于按照常规能源发电平均上网电价计算所发生费用之间的差额,附加在销售电价中分摊”,将风电特许权项目中的特殊之处已经用法律条文作为通用的规定,今后风电的发展应纳入法制的框架;三、存在问题资源需要进行第二轮风能资源普查,在现有气象台站的观测数据的基础上,按照近年来国际通用的规范进行资源总量评估,进而采用数值模拟技术编制高分辨率的风能资源分布图,评估风能资源技术可开发量;更重要的是应该利用GIS地理信息系统技术将电网、道路、场址可利用土地,环境影响、当地社会经济发展规划等因素综合考虑,进行经济可开发储量评估;风电设备生产本地化现有制造水平远落后于市场对技术的需求,国内定型风电机组的功率均为兆瓦级以下,最大750千瓦,而市场需要以兆瓦级为主流;国内风电机组制造企业面临着技术路线从定桨定速提升到变桨变速,单机功率从百千瓦级提升到兆瓦级的双重压力,技术路线跨度较大关;自主研发力量严重不足,由于国家和企业投入的资金较少,缺乏基础研究积累和人才,我国在风力发电机组的研发能力上还有待提高,总体来说还处于跟踪和引进国外的先进技术阶段;目前国内引进的许可证,有的是国外淘汰技术,有的图纸虽然先进,但受限于国内配套厂的技术、工艺、材料等原因,导致国产化的零部件质量、性能需要一定时间才能达到国际水平;购买生产许可证技术的国内厂商要支付昂贵的技术使用费,其机组性能价格比的优势在初期不明显;在研发风电机组过程中注重于产品本身,而对研发过程中需要配套的工作重视不够;由于试验和测试手段的不完备,有些零部件在实验室要做的工作必须总装后到风电场现场才能做;风电机组的测试和认证体系尚未建立;风电机组配套零部件的研发和产业化水平较低,这样增加了整机开发的难度和速度;特别是对于变桨变速型风机,国内相关零部件研发、制造方面处于起步阶段,如变桨距系统,低速永磁同步发电机,双馈式发电机、变速型齿轮箱,交直交变流器及电控系统,都需要进行科技攻关和研发;成本和上网电价比较高基本条件设定:根据目前国内风电场平均水平,设定基本条件为:风电场装机容量5万千瓦,年上网电量为等效满负荷2000小时,单位千瓦造价8000-10000元,折旧年限年,其他成本条件按经验选取;财务条件:工程总投资分别取4亿元8000元/千瓦、亿元9000元/千瓦和5亿元10000元/千瓦,流动资金150万元;项目资本金占20%,其余采用国内商业银行贷款,贷款期15年,年利率%;增值税税率为%,所得税税率为33%,资本金财务内部收益率10%;风电成本和上网电价水平测算:按以上条件及现行的风电场上网电价制度,以资本金财务内部收益率为10%为标准,当风电场年上网电量为等效满负荷2000小时,单位千瓦造价8000~10000元时,风电平均成本分别为~元/千瓦时,较为合理的上网电价范围是~元/千瓦时含增值税;成本在投产初期较高,主要是受还本付息的影响;当贷款还清后,平均度电成本降至很低;风电场造价对上网电价有明显的影响,当造价增加时,同等收益率下的上网电价大致按相同比率增加;我国幅员辽阔,各地风电场资源条件差别很大,甚至同一风电场址内资源分布也有较大差别;为了分析由风能资源引起的发电量变化对成本和平均上网电价影响,分别计算年等效满负荷小时数为1400、1600、1800、2200、2400、2600、2800、3000的情况下发电成本见表1,上网电价见表2;如果全国风电的平均水平是每千瓦投资9000元,以及资源状况按年上网电量为等效满负荷2000小时计算,则风电的上网电价约每千瓦时元,比于全国火电平均上网电价每千瓦时元高一倍;电网制约风电场接入电网后,在向电网提供清洁能源的同时,也会给电网的运行带来一些负面影响;随着风电场装机容量的增加,以及风电装机在某个地区电网中所占比例的增加,这些负面影响就可能成为风电并网的制约因素;风力发电会降低电网负荷预测精度,从而影响电网的调度和运行方式;影响电网的频率控制;影响电网的电压调整;影响电网的潮流分布;影响电网的电能质量;影响电网的故障水平和稳定性等;由于风力发电固有的间歇性和波动性,电网的可靠性可能降低,电网的运行成本也可能增加;为了克服风电给电网带来的电能质量和可靠性等问题,还会使电网公司增加必要的研究费用和设备投资;在大力发展风电的过程中,必须研究和解决风电并网可能带来的其他影响;四、政策建议1.加强风电前期工作;建立风电正常的前期工作经费渠道,每年安排一定的经费用于风电场风能资源测量、评估以及预可研设计等前期工作,满足年度开计划对风电场项目的需要;2.制定“可再生能源法”的实施细则,规定可操作的政府合理定价,按照每个项目的资源等条件,以及投资者的合理回报确定上网电价;同时也要规定可操作的全国分摊风电与火电价差的具体办法;3.加速风电机组本地化进程,通过技贸结合等方式,本着引进、消化、吸收和自主开发相结合的原则,逐步掌握兆瓦级大型风电机组的制造技术;引进国外智力开发具有自主知识产权的机组,开拓国际市场;4.建立风电制造业的国家级产品检测中心、质量保证控制体系以及认证制度,不断提高产品质量,降低成本,完善服务;5.制定适应风电发展的电网建设规划,研究风电对电网影响的解决措施;五、“十一五”和2020年风电规划我国电源结构70%是燃煤火电,而且负荷增长迅速,环境影响特别是减排二氧化碳的压力越来越大,风能是清洁的可再生能源,我国资源丰富,能够大规模开发,风电成本逐年下降,前景广阔;风电装机容量规划目标为2005年100万千瓦,2010年400~500万千瓦,2020年2000~3000万千瓦;2004年到2005年,“十五计划”后半段重点建设江苏如东和广东惠来两个特许权风电场示范项目,取得建设大规模风电场的经验,2005年底风力发电总体目标达100万千瓦;2006年到2010年;“十一五规划”期间全国新增风电装机容量约300万千瓦,平均每年新增60~80万千瓦,2010年底累计装机约400~500万千瓦;提供这样的市场空间主要目的是培育国内的风电设备制造能力,国家发展改革委于2005年7月下发文件,要求所有风电项目采用的机组本地化率达到70%,否则不予核准;此后又下发文件支持国内风电设备制造企业与电源建设企业合作,提供50万千瓦规模的风电市场保障,加快制造业发展;目前国家规划的主要项目有广东省沿海和近海示范项目31万千瓦;福建省沿海及岛屿22万千瓦;上海市12万千瓦;江苏省45万千瓦;山东省21万千瓦;吉林省33万千瓦;内蒙古50万千瓦;河北省32万千瓦;甘肃省26万千瓦;宁夏19万千瓦;新疆22万千瓦等;目前各省的地方政府和开发商均要求增加本省的风电规划容量;2020年规划目标是2000~3000万千瓦,风电在电源结构中将有一定的比例,届时约占全国总发电装机10亿千瓦容量的2~3%,总电量的1~%; 2020年以后随着化石燃料资源减少,成本增加,风电则具备市场竞争能力,会发展得更快;2030年以后水能资源大部分也将开发完,近海风电市场进入大规模开发时期;。

2024年海上风电市场分析现状

2024年海上风电市场分析现状概述海上风电作为可再生能源的重要组成部分,近年来在全球范围内得到了快速发展。

本文旨在分析海上风电市场的现状,包括发展趋势、市场规模、主要参与者以及面临的挑战。

发展趋势海上风电的发展趋势呈现出以下几个方面:1.技术进步:随着技术的不断革新和完善,海上风电设备的效率不断提高,风机容量日益增大,海上风电场规模逐渐扩大。

2.成本下降:随着规模效益的逐步体现,海上风电的建设、运营和维护成本不断下降,使得海上风电相比传统能源来源更具有竞争力。

3.政策支持:各国政府对海上风电的发展给予了积极支持,通过制定政策措施、提供财政补贴等方式,推动了海上风电的快速增长。

市场规模海上风电市场的规模持续扩大,呈现出以下几个特点:1.全球市场:目前海上风电市场主要集中在欧洲地区,尤其是英国、德国和荷兰等国家。

此外,亚洲地区的中国和韩国等国家也在积极推动海上风电的发展。

2.安装容量:根据行业报告,截至2019年底,全球海上风电累计装机容量已超过20000兆瓦,其中欧洲占据主导地位,占比超过85%。

3.增长预测:未来几年,海上风电市场预计将保持较高速度的增长。

根据欧洲风能协会的预测,到2030年,欧洲的海上风电装机容量将增加到多于30000兆瓦。

主要参与者海上风电市场涉及到多个参与者,包括风电设备制造商、风电项目开发商、投资机构等。

其中,风电设备制造商是市场的重要参与者之一,主要有以下几家公司:1.Vestas:丹麦风机制造商,全球占有率最高的海上风电设备制造商之一。

2.Siemens Gamesa:德国风机制造商,拥有丰富的海上风电项目经验。

3.GE Renewables:美国通用电气旗下的风电部门,致力于开发先进的海上风电技术。

此外,风电项目开发商和投资机构也在海上风电市场中发挥着重要的角色,通过投资和开发项目来推动市场的增长。

面临的挑战海上风电市场在快速发展的同时也面临一些挑战:1.成本问题:建设海上风电设施的成本仍相对较高,尤其是在海上风况复杂的地区。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档