第二章热力学性能4

合集下载

工程热力学 第2章 热力学第一定律

工程热力学 第2章 热力学第一定律
6
δWtot
δmi ei
δQ
E
δm j e j
E+dE
δQ = dE + ⎡Σ ( ej δmj ) −Σ ( eiδmi ) ⎤ + δWtot ⎣ ⎦

τ
τ + dτ
Q = ΔE + ∫ ⎡Σ( ej δmj ) −Σ( eiδmi ) ⎤ +Wtot ⎦ τ1 ⎣
τ2
dE Φ= + ⎡Σ ( ej qmj ) −Σ ( ei qmi ) ⎤ + P ⎣ ⎦ tot dτ
二、总(储存)能(total stored energy of system) 热力学能,内部储存能
E =U+Ek +Ep
宏观动能 宏观位能 总能 外部储存能
e =u+ek +ep
3
外部储存能 宏观动能:质量为m的物体以速度cf运动时,该物 体具有的宏观运动动能为:
1 2 Ek = mc f 2
重力位能:在重力场中质量为m的物体相对于系统 外的参数坐标系的高度为z时,具有的重力位能为:
1 2 q − Δu = Δc f + gΔz + Δ( pv ) + wi 2
维持工质流动所需的流动功
21
稳定能量方程的物理意义:工质在状态变化过程 中,从热能转变而来的机械能总和等于膨胀功。 技术功:技术上可资用的功,其数学表达式为:

1 2 wt = wi + Δc f + gΔz 2 q − Δu = w
E p = mgz
4
宏观动能与内动能的区别
三、热力学能是状态参数∂U ⎞ ⎛ ∂U ⎞ dU = ⎜ ⎟ dT + ⎜ ⎟ dV = cV dT + ⎢T ⎜ ⎟ − p ⎥ dV ⎝ ∂T ⎠V ⎝ ∂V ⎠T ⎣ ⎝ ∂T ⎠V ⎦

第二章 热力学第一定律

第二章 热力学第一定律

15
§2-4焓
焓: 比焓定义为: ∴ 焓=
H U PV
(2-5) (2-5a)
h u pv
内能 +推动功
从2-5式可知,焓是一个状态参数,它可以表示成 另外两个独立状态参数的函数,即
h f p, v
(2-6)
h f T , v
h f p, T
(2-6a)
1、 2、 3、
m out m in m
Q Const




1 2 cin 2 gz
in
W
net
W net Const W s
轴功


Q gz out
4、
每截面状态不变
dEC ,V / 0
1 2 cout 2
m out u out
稳定流动能量方程的推导
稳定流动条件
Q0
T
W 0
电 冰 箱
门窗紧闭房间用空调降温
以房间为系统 闭口系能量方程
闭口系
Q0
Q W
W 0
T
Q
空 调
例自由膨胀
如图, 抽去隔板,求
U
解:取气体为热力系 —闭口系?开口系?
Q U W
Q0
W ?0
U 0
强调:功是通过边界传递的能量。 例A4302661
气缸活塞抬升做功
§2-5热力学第一定律的基本能量方程式
1.:系统能量平衡方程式: 进入能量-离开能量=储存能变化 2.闭口系能量平衡方程式: (2-9)
Q W U 或
Q U W
(2-10)
意义:(2-10)式也被称为热力学第一定律的解析式,表 明加给工质的热量一部分用于增加工质的热力学能,储存 于工质内部,余下的一部分以作功的方式传递至外界 3.微元过程:

第二章 热力学第一定律

第二章 热力学第一定律
1 2 ws m u2 p2v2 cf2 gz2 0 2

u pv h
U pV H
,h 称为比焓。
, H 称为焓
焓的定义:焓=热力学能+推动功。
2-4 开口系统的稳定流动能量方程式
由于p、v 、u都是状态参数,所以焓也是工质的一个
1 2 Ws m u2 cf2 gz2 mp2v2 2 1 2 Ws m u2 cf2 gz2 p2v2 2
2-4 开口系统的稳定流动能量方程式
根据热力学第一定律可得
1 2 Q m u1 p1v1 2 cf1 gz1
本章主要内容
1 2 3 4 5
热力系统的储存能 热力学第一定律的实质 闭口系统的热力学第一定律表达式 开口系统的稳定流动能量方程式 稳定流动能量方程式的应用
2-1 热力系统的储存能
热力学能
热力学储存能
U
宏观动能与宏观位能
热力学能的定义:
Ek , E p
物体因热运动而具有的能量 , 是存储于物体内部的能量 。 内动能 内位能 原子能 化学能
对于单位质量工质的可逆过程 ,
q du pdv
q u pdv
1
2
2-3 闭口系统的热力学第一定律表达式
适用条件:
闭口系;可逆、不可逆; 理想和实际气体;初、终态为平衡态
符号规定:
吸热q为正,放热为负 系统对外作功为正,反之为负
系统内能增大 U为正,反之为负
2-3 闭口系统的热力学第一定律表达式
热力学能(内能)
2-3 闭口系统的热力学第一定律表达式
Q ΔU

第二讲-热性能PPT课件

第二讲-热性能PPT课件
b) 当T《E时,
特点与不足:1)随着T→0而指数地趋于零﹐同实验结果大致相 符c)﹐解决了杜隆-珀替定律不能解释的低温下固体热容同温度 有关的实验事实;2)但在低温下,与实验结果相比(与T3成比例), 下降得过快;3)只考虑了一种频率﹐忽略了其它振动频率。
不同材料的固体各有其特征频率 ﹐所以E不同(反应不同元 素的CV趋于常数3R时的温度),热容曲线也不同﹐但在高温时
▪ 平 的 加热温均到度热T变容2所化:需,在要即温的C度均热T1量=~。TQ2间/(T的2-T平1)均;热Q容为相把应体于系有从限T1
▪ 比热容或摩尔热容:单位质量(1kg)或物质量(1mol) 的物质温度升高一度所需要的热量。
.
2
▪ 由于热量Q与过程的途径有关﹐必须指出决定途径 的条件﹐热容才有确定的值。
TM为熔点, M是相对原子质量,Va是原子体积
• 德拜温度ΘD随物质而异,反映不同物质的原子间 结合力的大小。熔点(此时,原子振幅达到使晶格
破坏的数值)高,即材料原子间结合力强,ΘD便高 ,尤其是相对原子质量小的金属更为突出。 • 选用高温材料时ΘD也是考虑的参数之一。
.
11
德拜模型(续)
.
12
固体热容小结
.
4
经典动力学根据能量均分原理对两 经验定律的解释
▪ 对于气体分子振动来说,除了有振动动能以外,还有振 动势能,1个自由度的动能和势能皆为1/2kT;而一个原 子有3个振动自由度,因此其动能和势能的总和为:3kT。
▪ 一 摩 尔 固 体 中 有 N0 个 原 子 , 因 此 总 能 量 为 : E = 3N0kT=3RT。
U = Q + W
.
3
2.2 固体热容理论
1, 经验定律

(4)热力学第二章1

(4)热力学第二章1
U是状态参数,闭合积分为0 得到
W Q
循环过程闭口系能量方程式
在一个动力循环中,加入系统的净热量 等于输出的净功量;在一个逆向循环中,系 统放出的净热量等于输入的净功量。 Qnet = Wnet 或 qnet = wnet
特例闭口系能量方程式
Q = dU + W
Q=U+W 绝功系
闭口系统能量方程式
设闭口系统由于温差与 外界交换的热量为Q, 对外作功为W,系统从 状态1变化到状态2
闭口系统与外界无质量交 换;则系统的储存能的增 加为 TH
Q
1
热力系统 W
外界
EC
M1
2
边界 EC
M2
Q W ECM 离开系统的 ECM 2 ECM 1 U E k Ep 进入系统的 系统储存能量 = 能量 能量 的变化
2-2 热力学能和总能
内部储存能
系统储存的能量
外部储存能
内部储存能:只取决于系统本身(内部)的状态
外部储存能:与系统整体运动以及外界重力场有关
内 能
储存于系统内部的能量,称为内能。它与系 统内工质的内部粒子的微观运动和粒子空间位形 有关。 移动 内动能 转动 振动 内位能 内能 化学能 原子能
内能分析
可逆闭口系能量方程
简单可压缩系可逆过程
Q = TdS TdS = dU + pdV
TdS = U + pdV
q = Tds Tds = du + pdv Tds = u + pdv
循环过程闭口系能量方程式
Q = dU + W
p
4 3
1 2 v
∮δQ=∮dU+ ∮δW

第2章 热力学第一定律

第2章 热力学第一定律

第二章热力学第一定律First law of thermodynamics First law of thermodynamics2–1 热力学第一定律的实质2-2 热力学能(内能)和总能2-22–3 热力学第一定律基本表达式2–4 闭口系基本能量方程式252–5 开口系能量方程12–1热力学第一定律的实质一、第一定律的实质能量守恒与转换定律在热现象中的应用。

二、第一定律的表述第定律的表述热是能的一种,机械能变热能,或热能变机械能的时候,他们之间的比值是一定的。

或:热可以变为功,功也可以变为热;一定量的热消失时必定产生相应量的功;消耗一定量的功时,必出现与之相应量的热。

22–2 热力学能(内能)和总能一、热力学能(internal energy)UU chU nu k平移动能U thU k 转动动能振动动能()T f 1),(v T U U =U p —()v T f ,2二、总(储存)能(total stored energy of system)、总(储存)能(o s o ed e e gy o sys e )++热力学能,内部储存能k pk pE U E E e u e e =++=3总能外部储存能宏观动能宏观位能宏观动能与内动能的区别2–3 热力学第一定律基本表达式加入系统的能量总和-热力系统输出的能量总和= 热力系总储存能的增量δW+d EE d Eδi im e δj jm e δQd ττ+τ流入:δδi iQ m e +∑流出:δδjjW m e+∑5内部贮能的增量:d E2–4 闭口系基本能量方程式τ⎡()()21tot δδj j i i Q E e m e m W τ⎤=∆+Σ−Σ+⎣⎦∫闭口系,δ0δ0i j m m ==忽略宏观动能U k 和位能U p ,E U∆=∆δd δδd δQ U W Q U W u wu w=∆+=+=∆+=+q q 第一定律第一解析式—功的基本表达式热7讨论:δd δU W U W =∆+=+δd δQ Q q u wq u w=∆+=+1)对于可逆过程δd d Q U p V=+2)对于循环netnetδd δQ U W QW =+⇒=∫∫∫ 3)对于定量工质吸热与升温关系,还取决于W 的”“+”、“–”、数值大小。

4.热力学第二定律

4.热力学第二定律

T2
热源吸热Q 任何热机从高温 (T1)热源吸热 1,将其一部分转化为 热源吸热 将其一部分转化为 热源。 另一部分Q 功W,另一部分 2传给低温 2)热源。热机所作的功与 另一部分 传给低温(T 热源 所吸的热之比值称为热机效率 或称为热机转换系数, 热机效率,或称为热机转换系数 所吸的热之比值称为 热机效率 或称为热机转换系数 , 表示。 恒小于1。 用η表示。 η 恒小于 。 V2 nR(T1 − T2 ) ln W Q1 + Q2 V1 η=− = = V2 Q1 Q1 nRT1 ln V1 T 1−T2 = T1 T2 = 1T1
在指定的T 两个热源条件下, 永不可能为1, 在指定的 1、T2两个热源条件下,η 永不可能为 ,即从高 温热源吸收的热不可能完全转化为功(实际中 实际中, 温热源吸收的热不可能完全转化为功 实际中,< 65%)。 %。
卡诺循环是热力学中最基本的循环, 卡诺循环是热力学中最基本的循环,虽实际上不 可能实现, 但对研究热力学却非常有用, 可能实现 , 但对研究热力学却非常有用 , 而在热功 技术中也有很重要的意义。 技术中也有很重要的意义。 可逆卡诺循环热温熵之和为零是卡诺循环的一项重要特性
并非“功可以转变为热,而热不能完全变为功”,而是 并非“功可以转变为热,而热不能完全变为功” 在不引起其它变化的条件下,热才不能完全转变为功。 在不引起其它变化的条件下,热才不能完全转变为功。 理想气体等温膨胀。( 。(P, 发生改变了 发生改变了) 如:理想气体等温膨胀。( ,V发生改变了) 第二类永动机: 第二类永动机:从单一热源吸热使之完全变为功而不留 下任何影响。 下任何影响。 若行:那么在航海中,则不需要带燃料, 若行:那么在航海中,则不需要带燃料,只要带上第二类永动机 就行了。 海洋中贮存大量的热量” 可源源不断地供给它, 就行了。“海洋中贮存大量的热量”,可源源不断地供给它,然 后再转换为功。 后再转换为功。

热力学第二定律

热力学第二定律

700K
Q1 ?
Wnet 10000 kJ
Q2 4000kJ
400K
解:设为热机循环 TL 400 tc 1 1 0.4286 Th 700
Q2 Wnet 10000 t 1 0.7126 Q1 Q1 14000
设为制冷循环
Tc 400 c 1.33 T0 Tc 700 400
以上例子说明: ①.能量是有‘质’的差别的,机械能属高 质能,热能属低质能,热能所处温度越接近环境温度, 其能质也越低。 ②.能质高的能量可以全部转换成能质低的 能量,而能质低的不能全部转换成能质高的,而且必 须有补偿条件。 ③.能量的传递过程总是朝着消除势差的方 向进行的,在传递过程中,能量在数量上虽然保持守 恒,但在能质上却降低了。
§4-1 热力学第二定律的实质及表述
一 热力学第二定律的实质 热力学第二定律的实质就是“能质衰贬原理”, 即一切实际过程总是朝着使孤立系总的能质下降 的方向进行的。 二 热力学第二定律的表述: 1 . 开尔文—普朗克说法(1851年提出) 表述I:只从单一热库吸热而连续不断做功的循 环机器是不可能造成的。
④在一定的环境条件下,系统能量的有用能、无 用能、(火用)、(火无)等均为状态参数。
五、 熵
1)熵的物理意义
熵是系统无序程度(混乱度)的度量,熵值越大, 则无序度越大,系统能质越低,无用能也越大, 因此 熵是表征系统无用能大小的状态参数。 dE无用 --------- 可逆,不可逆均适用。 2) 定义式 dS T0
A
T
S
B
V
§4—2 有关“能质”的基本概念
一、 寂态及(火无)库 结论:①周围环境中能量的能质为零,没有转换能力; ②系统温度、压力越高,则能量的品质越高。 ③系统温度、压力低于周围环境越多,则能量 品质也越高。 (火无)库:指周围环境。 能质是相对于周围环境而言的,以周围环境作为能质 分析时的基准库,称为(火无)库,(火无)库中的能量 不可能被利用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档