高中数学竞赛题之平面几何

高中数学竞赛题之平面几何
高中数学竞赛题之平面几何

第一讲 注意添加平行线证题

在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁.

添加平行线证题,一般有如下四种情况. 1 为了改变角的位置

大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利

用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 设P 、Q 为线段BC 上两点,且BP =CQ ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA .

在△DBP =∠AQC 中,显然 ∠DBP =∠AQC ,∠DPB =∠C .

由BP =CQ ,可知 △DBP ≌△AQC . 有DP =AC ,∠BDP =∠QAC .

于是,DA ∥BP ,∠BAP =∠BDP .

则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP . 所以AB =AC .

这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅.

例2 如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE .

由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . 显然,四边形PBCE 、PADE 均为平行四边形.有 ∠BCE =∠BPE ,∠APE =∠ADE .

由∠BAF =∠BCE ,可知 ∠BAF =∠BPE .

有P 、B 、A 、E 四点共圆. 于是,∠EBA =∠APE . 所以,∠EBA =∠ADE .

这里,通过添加平行线,使已知与未知中的四个角通过P 、B 、A 、E 四点共圆,紧密联系起来.∠APE 成为∠EBA 与∠ADE 相等的媒介,证法很巧妙. 2 欲“送”线段到当处

利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题.

例3 在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂线,M 、N 、Q 为垂足.求证:PM +PN =PQ .

证明:如图3,过点P 作AB 的平行线交BD 于F ,过点F 作BC 的平行线分别交PQ 、AC 于K 、G ,连PG . 由BD 平行∠ABC ,可知点F 到AB 、BC 两边距离相等.有KQ =PN .

显然,PD EP =FD EF =GD

CG

,可知PG ∥EC .

由CE 平分∠BCA ,知GP 平分∠FGA .有PK =PM .于是, PM +PN =PK +KQ =PQ .

这里,通过添加平行线,将PQ “掐开”成两段,证得PM =PK ,就有PM +PN =PQ .证法非常简捷.

3 为了线段比的转化

∥=

A D

B P Q

图1P

E

D G A B F C

图2

A

N E

B

Q

K G C

D

M

F P 图3

由于“平行于三角形一边的直线截其它两边,所得对应线段成比例”,在一些问题中,可以通过添加平行线,实现某些线段比的良性转化.这在平面几何证题中是会经常遇到的.

例4 设M 1、M 2是△ABC 的BC 边上的点,且BM 1=CM 2.任作一直线分别交AB 、AC 、AM 1、AM 2于P 、Q 、N 1、N 2.试证:

AP AB +AQ

AC

=11AN AM +22AN AM .

证明:如图4,若PQ ∥BC ,易证结论成立. 若PQ 与BC 不平行,设PQ 交直线BC 于D .过点

A 作PQ 的平行线交直线BC 于E .

由BM 1=CM 2,可知BE +CE =M 1E +M 2E ,易知 AP AB =DE BE ,AQ AC =DE

CE ,

11AN AM =DE E M 1,22AN AM =DE E M 2. 则AP AB +AQ AC =DE

CE

BE +=DE E M E M 21+=11AN AM +2

2AN AM . 所以,

AP AB +AQ

AC

=11AN AM +22AN AM .

这里,仅仅添加了一条平行线,将求证式中的四个线段比“通分”,使公分母为DE ,于是

问题迎刃而解.

例5 AD 是△ABC 的高线,K 为AD 上一点,BK 交AC 于E ,CK 交AB 于F .求证:∠FDA =∠EDA .

证明:如图5,过点A 作BC 的平行线,分别交直线DE 、DF 、BE 、CF 于Q 、P 、N 、M .

显然,

AN BD =KA KD =AM

DC

. 有BD ·AM =DC ·AN . (1)

BD AP =FB AF =BC AM ,有 AP =BC AM BD ·. (2) 由DC AQ =EC AE =BC AN ,有 AQ =BC

AN DC ·. (3) 对比(1)、(2)、(3)有 AP =AQ .

显然AD 为PQ 的中垂线,故AD 平分∠PDQ . 所以,∠FDA =∠EDA .

这里,原题并未涉及线段比,添加BC 的平行线,就有大量的比例式产生,恰当地运用这些比例式,就使AP 与AQ 的相等关系显现出来. 4 为了线段相等的传递

当题目给出或求证某点为线段中点时,应注意到平行线等分线段定理,用平行线将线段相等的关系传递开去.

例6 在△ABC 中,AD 是BC 边上的中线,点M 在AB 边上,点N 在AC 边上,并且∠MDN =90°.如果BM 2+CN 2=DM 2+DN 2,求证:AD 2=

4

1

(AB 2+AC 2). 证明:如图6,过点B 作AC 的平行线交ND 延长线于E .连ME .

A

P

E

D

M 2M 1B

Q N 1

N 2

图4

图5

M

P A Q N

F

B

D C

E

K

A

N C

D

B

M

由BD =DC ,可知ED =DN .有 △BED ≌△CND . 于是,BE =NC .

显然,MD 为EN 的中垂线.有 EM =MN .

由BM 2+BE 2=BM 2+NC 2=MD 2+DN 2=MN 2=EM 2,可知△BEM 为直角三角形,∠MBE =90°.

有 ∠ABC +∠ACB =∠ABC +∠EBC =90°. 于是,∠BAC =90°.

所以,AD 2=2

21??

?

??BC =41(AB 2+AC 2).

这里,添加AC 的平行线,将BC 的以D 为中点的性质传递给EN ,使解题找到出路. 例7 如图7,AB 为半圆直径,D 为AB 上一点,分别在半圆上取点E 、F ,使EA =DA ,

FB =DB .过D 作AB 的垂线,交半圆于C .求证:CD 平分EF .

证明:如图7,分别过点E 、F 作AB 的垂线,G 、H 为垂足,连FA 、EB .

易知 DB 2=FB 2=AB ·HB ,

AD 2=AE 2=AG ·AB .

二式相减,得 DB 2-AD 2=AB ·(HB -AG ),或 (DB -AD )·AB =AB ·(HB -AG ).

于是,DB -AD =HB -AG ,或 DB -HB =AD -AG . 就是DH =GD . 显然,EG ∥CD ∥FH . 故CD 平分EF .

这里,为证明CD 平分EF ,想到可先证CD 平分GH .为此添加CD 的两条平行线EG 、FH ,从而得到G 、H 两点.证明很精彩.

经过一点的若干直线称为一组直线束.

一组直线束在一条直线上截得的线段相等,在该直线的平行直线上截得的线段也相等.

如图8,三直线AB 、AN 、AC 构成一组直线束,DE 是与BC 平行的直线.于是,有

BN DM =AN AM =NC ME ,即 BN DM =NC ME 或ME DM =NC

BN .

此式表明,DM =ME 的充要条件是 BN =NC .

利用平行线的这一性质,解决某些线段相等的问题会很漂亮.

例8 如图9,ABCD 为四边形,两组对边延长后得交点E 、F ,对角线BD ∥EF ,AC 的延长

线交EF 于G .求证:EG =GF .

证明:如图9,过C 作EF 的平行线分别交AE 、AF 于M 、N .由BD ∥EF ,可知MN ∥BD .易

知 S △BEF =S △DEF .

有S △BEC =S △ⅡKG - *5ⅡDFC .

可得MC =CN . 所以,EG =GF .

例9 如图10,⊙O 是△ABC 的边BC 外的旁切圆,D 、E 、F 分别为⊙O 与BC 、CA 、AB 的切点.若OD 与EF 相交于K ,求证:AK 平分BC . 证明:如图10,过点K 作BC 的行平线分别交直线AB 、AC 于Q 、P 两点,连OP 、OQ 、 OE 、OF . 由OD ⊥BC ,可知OK ⊥PQ .

由OF ⊥AB ,可知O 、K 、F 、Q 四点共圆,有 ∠FOQ =∠FKQ .

由OE ⊥AC ,可知O 、K 、P 、E 四点共圆.有 ∠EOP =∠EKP .

显然,∠FKQ =∠EKP ,可知 ∠FOQ =∠EOP .

A G D O H

B

F

C E 图7

图8A D

B N C

E M

图9

A

B M E N

D

C G

O 图10

由OF =OE ,可知 Rt △OFQ ≌Rt △OEP . 则OQ =OP . 于是,OK 为PQ 的中垂线,故 QK =KP . 所以,AK 平分BC .

综上,我们介绍了平行线在平面几何问题中的应用.同学们在实践中应注意适时添加平行线,让平行线在平面几何证题中发挥应有的作用.

练习题

1. 四边形ABCD 中,AB =CD ,M 、N 分别为AD 、BC 的中点,延长BA 交直线NM 于E ,延长CD 交直线NM 于F .求证:∠BEN =∠CFN . (提示:设P 为AC 的中点,易证PM =PN .)

2. 设P 为△ABC 边BC 上一点,且PC =2PB .已知∠ABC =45°,∠APC =60°.求∠ACB . (提示:过点C 作PA 的平行线交BA 延长线于点D .易证△ACD ∽△PBA .答:75°)

3. 六边开ABCDEF 的各角相等,FA =AB =BC ,∠EBD =60°,S △EBD =60cm 2.求六边形ABCDEF 的面积.

(提示:设EF 、DC 分别交直线AB 于P 、Q ,过点E 作DC 的平行线交AB 于点M .所求面积与EMQD 面积相等.答:120cm 2) 4. AD 为Rt △ABC 的斜边BC 上的高,P 是AD 的中点,连BP 并延长交AC 于E .已知AC :AB =k .求AE :EC .

(提示:过点A 作BC 的平行线交BE 延长线于点F .设BC =1,有AD =k ,DC =k 2.答:

2

11

k

) 5. AB 为半圆直径,C 为半圆上一点,CD ⊥AB 于D ,E 为DB 上一点,过D 作CE 的垂线交CB 于F .求证:

DE AD =FB

CF

. (提示:过点F 作AB 的平行线交CE 于点H .H 为△CDF 的垂心.)

6. 在△ABC 中,∠A :∠B :∠C =4:2:1,∠A 、∠B 、∠C 的对边分别为a 、b 、c .求证:a

1

+b

1=

c

1

. (提示:在BC 上取一点D ,使AD =AB .分别过点B 、C 作AD 的平行线交直线CA 、BA 于点E 、F .)

7. 分别以△ABC 的边AC 和BC 为一边在△ABC 外作正方形ACDE 和CBFG ,点P 是EF 的中点.求证:P 点到边AB 的距离是AB 的一半.

8. △ABC 的内切圆分别切BC 、CA 、AB 于点D 、E 、F ,过点F 作BC 的平行线分别交直线DA 、DE 于点H 、G .求证:FH =HG .

(提示:过点A 作BC 的平行线分别交直线DE 、DF 于点M 、N .)

9. AD 为⊙O 的直径,PD 为⊙O 的切线,PCB 为⊙O 的割线,PO 分别交AB 、AC 于点M 、N .求证:OM =ON .

(提示:过点C 作PM 的平行线分别交AB 、AD 于点E 、F .过O 作BP 的垂线,G 为垂足.AB ∥GF .)

第二讲 巧添辅助 妙解竞赛题

在某些数学竞赛问题中,巧妙添置辅助圆常可以沟通直线形和圆的内在联系,通过圆的有关性质找到解题途径.下面举例说明添置辅助圆解初中数学竞赛题的若干思路.

1 挖掘隐含的辅助圆解题

有些问题的题设或图形本身隐含着“点共圆”,此时若能把握问题提供的信息,恰当补出辅助圆,并合理挖掘图形隐含的性质,就会使题设和结论的逻辑关系明朗化. 1.1 作出三角形的外接圆

例1 如图1,在△ABC 中,AB =AC ,D 是底边BC 上一点,E 是线段AD 上一点 且∠BED =2∠CED =∠A .求证:BD =2CD .

分析:关键是寻求∠BED =2∠CED 与结论的联系.容易想到作∠BED 的平分线, 但因BE ≠ED ,故不能直接证出BD =2CD .若延长AD 交△ABC 的外接圆于F , 则可得EB =EF ,从而获取.

证明:如图1,延长AD 与△ABC 的外接圆相交于点F ,连结CF 与BF ,则∠BFA =∠BCA =∠ABC =∠AFC ,即∠BFD =∠CFD .故BF :CF =BD :DC .

又∠BEF =∠BAC ,∠BFE =∠BCA ,从而∠FBE =∠ABC =∠ACB =∠BFE . 故EB =EF .

作∠BEF 的平分线交BF 于G ,则BG =GF . 因∠GEF =

2

1

∠BEF =∠CEF ,∠GFE =∠CFE ,故△FEG ≌△FEC .从而GF =FC . 于是,BF =2CF .故BD =2CD . 1.2 利用四点共圆

例2 凸四边形ABCD 中,∠ABC =60°,∠BAD =∠BCD =90°, AB =2,CD =1, 对角线AC 、BD 交于点O ,如图2.则sin ∠AOB =____.

分析:由∠BAD =∠BCD =90°可知A 、B 、C 、D

四点共圆,欲求sin ∠AOB ,联想到托勒密定理,只须求出BC 、AD 即可.

解:因∠BAD =∠BCD =90°,故A 、B 、C 、D 四点共圆.延长BA 、CD 交于P ,则∠ADP =∠ABC =60°.

设AD =x ,有AP =3x ,DP =2x .由割线定理得(2+3x )3x =2x (1+2x ). 解得AD =x =23-2,BC =

2

1

BP =4-3. 由托勒密定理有 BD ·CA =(4-3)(23-2)+2×1=103-12.

又S ABCD =S △ABD +S △BCD =

233. 故sin ∠AOB =26

3

615 . 例3 已知:如图3,AB =BC =CA =AD ,AH ⊥CD 于H ,CP ⊥BC ,CP 交AH 于P .求证:

△ABC 的面积S =4

3

AP ·BD .

分析:因S △ABC =

43BC 2=4

3AC ·BC ,只 须证AC ·BC =AP ·BD ,转化为证△APC ∽△BCD .这由A 、B 、C 、Q 四点共圆易证(Q 为

BD 与AH 交点).

证明:记BD 与AH 交于点Q ,则由AC =AD ,AH ⊥CD 得∠ACQ =∠ADQ . 又AB =AD ,故∠ADQ =∠ABQ .

A

B

G

C

D F

E

图1

A

B

C

D P O

图2

A

图3

B

P Q

D

H

C

从而,∠ABQ =∠ACQ .可知A 、B 、C 、Q 四点共圆. ∵∠APC =90°+∠PCH =∠BCD ,∠CBQ =∠CAQ , ∴△APC ∽△BCD . ∴AC ·BC =AP ·BD . 于是,S =

43AC ·BC =4

3AP ·BD . 2 构造相关的辅助圆解题

有些问题貌似与圆无关,但问题的题设或结论或图形提供了某些与圆的性质相似的信息,此时可大胆联想构造出与题目相关

的辅助圆,将原问题转化为与圆有关的问题加以解决. 2.1 联想圆的定义构造辅助圆

例4 如图4,四边形ABCD 中,AB ∥CD ,AD =DC =DB =p ,BC =q .求对角线AC 的长. 分析:由“AD =DC =DB =p ”可知A 、B 、C 在半径为p 的⊙D 上.利用圆的性质即

可找到AC 与p 、q 的关系.

解:延长CD 交半径为p 的⊙D 于E 点,连结AE .显然A 、B 、C 在⊙D 上. ∵AB ∥CD ,

∴= 从而,BC =AE =q .

在△ACE 中,∠CAE =90°,CE =2p ,AE =q ,故 AC =

22AE CE -=

224q p -.

2.2 联想直径的性质构造辅助圆

例5 已知抛物线y =-x 2+2x +8与x 轴交于B 、C 两点,点D 平分BC .若在x 轴上侧的

A 点为抛物线上的动点,且∠BAC 为锐角,则AD 的取值范围是____.

分析:由“∠BAC 为锐角”可知点A 在以定线段BC 为直径的圆外,又点A 在x 轴上 侧,从而可确定动点A 的范围,进而确定AD 的取值范围.

解:如图5,所给抛物线的顶点为A 0(1,9),对称轴为x =1,与x 轴交于两点B (-2,0)、 C (4,0).分别以BC 、DA 为直径作⊙D 、⊙E ,则两圆与抛物线均交于两点P (1-22,1) 、Q (1+22,1).

可知,点A 在不含端点的抛物线PA 0Q 内时,∠BAC <90°.且有3=DP =DQ <AD ≤DA 0=9,即AD 的取值范围是3<AD ≤9. 2.3 联想圆幂定理构造辅助圆

例6 AD 是Rt △ABC 斜边BC 上的高,∠B 的平行线交AD 于M ,交AC 于N .求证:AB 2-AN 2=BM ·BN .

分析:因AB 2-AN 2=(AB +AN )(AB -AN )=BM ·BN ,而由题设易知AM =AN ,联想割线定理,构造辅助圆即可证得结论. 证明:如图6,

∵∠2+∠3=∠4+∠5=90°,又∠3=∠4,∠1=∠5,

∴∠1=∠2.从而,AM =AN . 以AM 长为半径作⊙A ,交AB 于F ,交BA 的延长线于E .则AE =AF =AN . A E

D

C B 图4

图5

E

A

N

C

D B

F

M

12

34

5图6

由割线定理有

BM ·BN =BF ·BE =(AB +AE )(AB -AF )=(AB +AN )(AB -AN ) =AB 2-AN 2, 即 AB 2-AN 2=BM ·BN .

例7 如图7,ABCD 是⊙O 的内接四边形,延长AB 和DC 相交于E ,延长AB 和DC 相交于E ,延长AD 和BC 相交于F ,EP 和FQ 分别切⊙O 于P 、Q .求证:EP 2+FQ 2=EF 2.

分析:因EP 和FQ 是⊙O 的切线,由结论联想到切割线定理,构造辅助圆使EP 、FQ 向EF 转化.

证明:如图7,作△BCE 的外接圆交EF 于G ,连结CG .

因∠FDC =∠ABC =∠CGE ,故F 、D 、C 、G 四点共圆.

由切割线定理,有 EF 2

=(EG +GF )·EF =EG ·EF +GF ·EF =EC ·ED +FC ·FB =EC ·ED +FC ·FB =EP 2+FQ 2, 即 EP 2+FQ 2=EF 2.

2.4 联想托勒密定理构造辅助圆

例8 如图8,△ABC 与△A 'B 'C '的三边分别为a 、b 、c 与a '、 b '、c ',且∠B =∠B ',∠A +∠A =180°.试证:aa '=bb '+cc '. 分析:因∠B =∠B ',∠A +∠A '=180°,由结论联想到托勒密定理,

构造圆内接四边形加以证明.

证明:作△ABC 的外接圆,过C 作CD ∥AB 交圆于D ,连结AD 和BD ,

如图9所示. ∵∠A +∠A '=180°=∠A +∠D , ∠BCD =∠B =∠B ', ∴∠A '=∠D ,∠B '=∠BCD . ∴△A 'B 'C '∽△DCB . 有DC B A ''=CB C B ''=DB

C A '',

即 DC c '=a a '=DB b '. 故DC =''a ac ,DB ='

'a ab .

又AB ∥DC ,可知BD =AC =b ,BC =AD =a .

从而,由托勒密定理,得 AD ·BC =AB ·DC +AC ·BD , 即 a 2=c ·

''a ac +b ·'

'a ab . 故aa '=bb '+cc '.

练习题

1. 作一个辅助圆证明:△ABC 中,若AD 平分∠A ,则

AC AB =DC

BD

. (提示:不妨设AB ≥AC ,作△ADC 的外接圆交AB 于E ,证△ABC ∽△DBE ,从而AC AB =DE

BD

DC

BD

.) 2. 已知凸五边形ABCDE 中,∠BAE =3a ,BC =CD =DE ,∠BCD =∠CDE =180°-2a .求证:∠BAC =∠CAD =∠DAE .

(提示:由已知证明∠BCE =∠BDE =180°-3a ,从而A 、B 、C 、D 、E 共圆,得∠BAC

=∠

(1)(2)

图8

A

C A'

B'C'

c b a'c'b'

A B

C

D

a b

b c 图9

初中数学竞赛辅导几何变换(旋转)

第2讲几何变换——旋转 典型例题 【例1】C是线段AE上的点,以AC、CE为边在线段AE的同侧作等边三角形ABC、CDE, △是等设AD的中点是M,BE的中点是N,连结MN、MC、NC,求证:CMN 边三角形.Array【例2】如图,两个正方形ABCD和AKLM有一个公共点A.求证:这两个正方形的中心以 及线段BM,DK的中点是某正方形的顶点. L

【例3】 已知:如图,ABC △、CDE △、EHK △都在等边三角形,且A 、D 、K 共线, AD DK =.求证:HBD △也是等边三角形. 【例4】 ABC △是等边三角形,P 是AB 边的中点,Q 是AC 边的中点,R 为BC 边的中点, M 为RC 上任意一点,且PMS △是等边三角形,S 与Q 在PM 的同侧,求证: RM QS =. E C H D B A Q ? S M P C B A R

【例5】 ABCD 是正方形,P 是ABCD 内一点,1PA =,3PB = ,PD =求正方形ABCD 的面积. 【例6】 P 是等边三角形ABC 内的一点,6PA =,8PB =,10PC =.求ABC △的边长. D

【例7】 设O 是等边ABC △内一点,已知115AOB ?∠=,125BOC ?∠=,求以线段OA 、OB 、 OC 为边所构成的三角形的各内角大小. 【例8】 如图,在ABC △中,90ACB ?∠=,AC BC =,P 是ABC △内一点,3PA =,1PB =, 2PC =,求BPC ∠. A P C

如图,已知ABC △中,90A =,AB AC =,D 为BC 上一点,求证:2222BD DC AD +=. 【例9】 如图,在等腰直角ABC △中,90ACB ?∠=,CA CB =,P 、Q 在斜边AB 上,且 45PCQ ?∠=,求证:222PQ AP BQ =+. A D C B A Q B C P

初中数学竞赛第二轮专题复习(4)几何

初中数学竞赛第二轮专题复习(4) 几何 1、如图,D ,E 分别为?AB C的边AB ,AC 上的点,且不与?A BC 的顶点重合.已知AE 的长为m,AC 的长为n,A D,AB的长是关于x 的方程2140x x mn -+=的两个根. (Ⅰ)证明:C ,B,D,E 四点共圆; (Ⅱ)若∠A=90°,且m=4, n=6,求C,B ,D,E 所在圆的半径. 解:(Ⅰ)连接DE,根据题意在△ADE 和△ACB 中,A D×A B=mn=A E×A C,即AD AE AC AB =. 又∠DAE=∠CAB ,从而△ADE ∽△ACB 因此∠AD E=∠A CB ,所以C , B, D, E 四点共圆. (Ⅱ)m=4, n =6时,方程x2-14x +mn=0的两根为x1=2,x 2=12. 故AD =2,AB =12. 取CE 的中点G ,DB 的中点F,分别过G,F 作AC ,AB 的垂线,两垂线相交于H点,连接DH . 因为C , B , D, E 四点共圆,所以C, B , D, E 四点所在圆的圆 心为H,半径为DH. 由于∠A=90°,故GH∥AB,H F∥AC .H F=AG=5,D F=12 (12-2)=5. 故C,B,D,E四点所在圆的半径为 . 2、在等腰?AB C中,顶角∠AC B=80°,过A , B引两直线在?ABC 内交于一点O.若∠O AB=10°, ∠OBA=20°,求∠ACO 的大小,并证明你的结论. 解:60ACO ∠=?(4分) 以OA 为轴翻转OAB ?到OAB '?,连接,CB BB '',由10OAB ∠=?知20BAB '∠=?且AB AB '=,ABB '为等 腰三角形,故80AB B ACB '∠=?=∠,从而知,,,A B B C '四点共圆,再由20ABO ∠=?知60OBB '∠=?,BB O '?为 等边三角形.由四点共圆知100ACB '∠=?,又 30OBC B BC '∠=∠=?,OB B B '=,BC 公共,故OBC B BC '???. 再由100ACB '∠=?,80ACB ∠=?,故20OCB ∠=?,从而得证:60ACO ∠=?. 答题要点:60ACO ∠=? 以OA 为轴翻转OAB ?到OAB '?,连接,CB BB '' ①OBB '?为正三角形;

2018全国高中数学联赛试题

2018年全国高中数学联合竞赛一试试题(A 卷) 一、填空题:本大题共 8小题,每小题 8分,共64分. 1.设集合{1,2,3,,99}A = ,{2}B x x A =∈,{2}B x x A =∈,则B C 的元素个数 . 解析:因为{1,2,3,,99}A = ,所以{2,4,6,,198}B = ,{1,2,3,,49}C = ,于是 {2,4,6,,48}B C = ,共24个元素. 2.设点P 到平面α Q 在平面α上,使得直线PQ 与α所成角不小于30 且不大于60 ,则这样的点Q 所构成的区域的面积为 . 解析:过点P 作平面α的垂线,这垂足为O ,则点Q 的轨迹是以O 为圆心,分别以1ON =和3OM =为半径的扇环,于是点Q 所构成的区域的面积为21S S S =-= 9 8πππ-=. 3. 将1,2,3,4,5,6随机排成一行,记为,,,,,a b c d e f ,则abc def +是偶数的概率为 . 解析:(直接法)将1,2,3,4,5,6随机排成一行,共有6 6720A =种不同的排法,要使 abc def +为偶数,abc 为与def 同为偶数或abc 与且def 同为奇数. (1)若,,a b c 中一个偶数两个奇数且,,d e f 中一个奇数两个偶数. 共324种情形; (2)若,,a b c 中一个奇数两个偶数且,,d e f 中一个偶数两个奇数. 共324种情形; 共有648种情形.综上所述,abc def +是偶数的概率为 6489 72010 =. (间接法)“abc def +是偶数”的对立事件为“abc def +是偶数”, abc def +是偶数分成两种情况:“abc 是偶数且def 是奇数”或“abc 是奇数且def 是偶数”,每 P O M N α

数学初中竞赛大题训练:几何专题(含答案)

数学初中竞赛大题训练:几何专题 1.阅读理解: 如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”.证明“四点共圆”判定定理有:1、若线段同侧两点到线段两端点连线夹角相等,那么这两点和线段两端点四点共圆;2、若平面上四点连成的四边形对角互补,那么这四点共圆.例:如图1,若∠ADB=∠ACB,则A,B,C,D四点共圆;或若∠ADC+∠ABC=180°,则A,B,C,D四点共圆. (1)如图1,已知∠ADB=∠ACB=60°,∠BAD=65°,则∠ACD=55°; (2)如图2,若D为等腰Rt△ABC的边BC上一点,且DE⊥AD,BE⊥AB,AD=2,求AE 的长; (3)如图3,正方形ABCD的边长为4,等边△EFG内接于此正方形,且E,F,G分别在边AB,AD,BC上,若AE=3,求EF的长. 解:(1)∵∠ADB=∠ACB=60°, ∴A,B,C,D四点共圆, ∴∠ACD=∠ABD=180°﹣∠ADB﹣∠BAD=180°﹣60°﹣65°=55°, 故答案为:55°; (2)在线段CA取一点F,使得CF=CD,如图2所示: ∵∠C=90°,CF=CD,AC=CB, ∴AF=DB,∠CFD=∠CDF=45°, ∴∠AFD=135°, ∵BE⊥AB,∠ABC=45°, ∴∠ABE=90°,∠DBE=135°, ∴∠AFD=∠DBE, ∵AD⊥DE,

∴∠ADE=90°, ∵∠FAD+∠ADC=90°,∠ADC+∠BDE=90°, ∴∠FAD=∠BDE, 在△ADF和△DEB中,, ∴△ADF≌△DEB(ASA), ∴AD=DE, ∵∠ADE=90°, ∴△ADE是等腰直角三角形, ∴AE=AD=2; (3)作EK⊥FG于K,则K是FG的中点,连接AK,BK,如图3所示:∴∠EKG=∠EBG=∠EKF=∠EAF=90°, ∴E、K、G、B和E、K、F、A分别四点共圆, ∴∠KBE=∠EGK=60°,∠EAK=∠EFK=60°, ∴△ABK是等边三角形, ∴AB=AK=KB=4,作KM⊥AB,则M为AB的中点, ∴KM=AK?sin60°=2, ∵AE=3,AM=AB=2, ∴ME=3﹣2=1, ∴EK===, ∴EF===.

全国高中数学联赛试题及答案教程文件

2009年全国高中数学联赛试题及答案

全国高中数学联赛 全国高中数学联赛一试命题范围不超出教育部《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。主要考查学生对基础知识和基本技能的掌握情况,以及综合和灵活运用的能力。 全国高中数学联赛加试命题范围与国际数学奥林匹克接轨,在知识方面有所扩展,适当增加一些竞赛教学大纲的内容。全卷包括4道大题,其中一道平面几何题. 一 试 一、填空(每小题7分,共56分) 1. 若函数( )f x = ()()()n n f x f f f f x ??=??????,则() ()991f = . 2. 已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M 上两点,在ABC ?中,45BAC ∠=?,AB 过圆心M ,则点A 横 坐标范围为 . 3. 在坐标平面上有两个区域M 和N ,M 为02y y x y x ?? ??-? ≥≤≤,N 是随t 变化的区 域,它由不等式1t x t +≤≤所确定,t 的取值范围是01t ≤≤,则M 和N 的公共面积是函数()f t = . 4. 使不等式 1111 200712 213 a n n n +++ <-+++对一切正整数n 都成立的最小正整数a 的值为 . 5. 椭圆22 221x y a b +=()0a b >>上任意两点P ,Q ,若OP OQ ⊥,则乘积 OP OQ ?的最小值为 . 6. 若方程()lg 2lg 1kx x =+仅有一个实根,那么k 的取值范围是 . 7. 一个由若干行数字组成的数表,从第二行起每一行中的数字均等于其肩 上的两个数之和,最后一行仅有一个数,第一行是前100个正整数按从小到大排成的行,则最后一行的数是 (可以用指数表示) 8. 某车站每天800~900∶∶,900~1000∶∶都恰有一辆客车到站,但到站的时

历年全国高中数学联赛二试几何题汇总汇总

历年全国高中数学联赛二试几何题汇总 2007 联赛二试 类似九点圆 如图,在锐角?ABC 中,AB

历年全国高中数学联赛试题及答案

1988年全国高中数学联赛试题 第一试(10月16日上午8∶00——9∶30) 一.选择题(本大题共5小题,每小题有一个正确答案,选对得7分,选错、不选或多选均得0分): 1.设有三个函数,第一个是y=φ(x ),它的反函数是第二个函数,而第三个函数的图象及第二个函数的图象关于x +y=0对称,那么,第三个函数是( ) A .y=-φ(x ) B .y=-φ(-x ) C .y=-φ-1(x ) D .y=-φ- 1(-x ) 2.已知原点在椭圆k 2x 2+y 2-4kx +2ky +k 2-1=0的内部,那么参数k 的取值范围是( ) A .|k |>1 B .|k |≠1 C .-1π 3 ; 命题乙:a 、b 、c 相交于一点. 则 A .甲是乙的充分条件但不必要 B .甲是乙的必要条件但不充分 C .甲是乙的充分必要条件 D .A 、B 、C 都不对 5.在坐标平面上,纵横坐标都是整数的点叫做整点,我们用I 表示所有直线的集合,M 表示恰好通过1个整点的集合,N 表示不通过任何整点的直线的集合,P 表示通过无穷多个整点的直线的集合.那么表达式 ⑴ M ∪N ∪P=I ; ⑵ N ≠?. ⑶ M ≠?. ⑷ P ≠?中,正确的表达式的个数是 A .1 B .2 C .3 D .4 二.填空题(本大题共4小题,每小题10分): 1.设x ≠y ,且两数列x ,a 1,a 2,a 3,y 和b 1,x ,b 2,b 3,y ,b 4均为等差数列,那么b 4-b 3 a 2-a 1= . 2.(x +2)2n +1的展开式中,x 的整数次幂的各项系数之和为 . 3.在△ABC 中,已知∠A=α,CD 、BE 分别是AB 、AC 上的高,则DE BC = . 4.甲乙两队各出7名队员,按事先排好顺序出场参加围棋擂台赛,双方先由1号队员比赛,负者被淘汰,胜者再及负方2号队员比赛,……直至一方队员全部淘汰为止,另一方获得胜利,形成一种比赛过程.那么所有可能出现的比赛过程的种数为 . 三.(15分)长为2,宽为1的矩形,以它的一条对角线所在的直线为轴旋转一周,求得到的旋转体的体积. 四.(15分) 复平面上动点Z 1的轨迹方程为|Z 1-Z 0|=|Z 1|,Z 0为定点,Z 0≠0,另一个动点Z 满足Z 1Z=-1,求点Z 的轨迹,指出它在复平面上的形状和位置. 五.(15分)已知a 、b 为正实数,且1a +1 b =1,试证:对每一个n ∈N *, (a +b )n -a n -b n ≥22n -2n +1.

初中数学竞赛 几何专题:点共线问题(含答案)

初中数学竞赛 几何专题:点共线问题(含答案) 1. 锐角三角形ABC 中,45BAC ∠=?,BE 、CF 是两条高,H 为ABC △的垂心,M 、K 分别是BC 、 AH 的中点.证明:MK 、EF 和OH 共点,这里O 为ABC △的外心. 解析 如图,由条件45BAE ∠=?,可知AEB △和AFC △都是等腰直角三角形,而O 为AB 、BC 的中垂线上的点,故EO AB ⊥,FO AC ⊥,于是EO CF ∥,FO BE ∥,从而四边形EOFH 为平行四边形.故EF 与OH 的交点为EF 的中点. 另一方面,M 、K 为BC 、AH 的中点,结合直角三角形斜边上的中线等于斜边的一半,可知 12EM MF BC ==,1 2 EK KF AH ==.即四边形EKFM 为菱形,所以EF 与KM 的交点亦是EF 的中点. 从而命题获证. 2. 四边形SPNM 与PFET 都是正方形,且点S 、P 、T 共线,点N 、P 、F 共线,连结MT 、SE , 点S 在MT 上的射影是点A ,点T 在SE 上的射影是点B ,求证:点A 、P 、B 共线. 解析 设AB 与ST 交于点P ',又设ATS α∠=,TSE β∠=.于是由180ASB ATB ∠+∠=?,有 tan cot ASB ATB S SP AS BS P T S AT BT αβ'?===?'?△△ MS ST MS SP ST TE TE PT = ?== , 即点P 与点P '重合. 3. 在矩形ABCD 的边AB 、BC 、CD 、DA 上分别取异于顶点的K 、L 、M 、N ,已知KL MN ∥.证明KM 与LN 的交点O 在矩形的对角线BD 上. 解析 连结OB 、OD . B M N A S P T F E D M C N O L A K B

高中数学竞赛讲义_平面几何

平面几何 一、常用定理(仅给出定理,证明请读者完成) 梅涅劳斯定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','C B A 三点共线,则 .1''''''=??B C AC A B CB C A BA 梅涅劳斯定理的逆定理 条件同上,若.1''''''=??B C AC A B CB C A BA 则',','C B A 三点共线。 塞瓦定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','CC BB AA 三线平行或共点,则.1''''''=??B C AC A B CB C A BA 塞瓦定理的逆定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若.1''''''=??B C AC A B CB C A BA 则',','CC BB AA 三线共点或互相平行。 角元形式的塞瓦定理 ',','C B A 分别是ΔABC 的三边BC ,CA ,AB 所在直线上的点,则',','CC BB AA 平行或共点的充要条件是.1'sin 'sin 'sin 'sin 'sin 'sin =∠∠?∠∠?∠∠BA B CBB CB C ACC AC A BAA 广义托勒密定理 设ABC D 为任意凸四边形,则AB ?CD+BC ?AD ≥AC ?BD ,当且仅当A ,B ,C ,D 四点共圆时取等号。 斯特瓦特定理 设P 为ΔABC 的边BC 上任意一点,P 不同于B ,C ,则有 AP 2=AB 2?BC PC +AC 2?BC BP -BP ?PC. 西姆松定理 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。 西姆松定理的逆定理 若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。 九点圆定理 三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。 蒙日定理 三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴) 欧拉定理 ΔABC 的外心O ,垂心H ,重心G 三点共线,且.2 1GH OG = 二、方法与例题 1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。 例1 在ΔABC 中,∠ABC=700,∠ACB=300,P ,Q 为ΔABC 内部两点,∠QBC=∠QCB=100,∠ PBQ=∠PCB=200,求证:A ,P ,Q 三点共线。 [证明] 设直线CP 交AQ 于P 1,直线BP 交AQ 于P 2,因为∠ACP=∠PCQ=100,所以 CQ AC QP AP =1 ,①在ΔABP ,ΔBPQ ,ΔABC 中由正弦定理有

全国高中数学联赛平面几何题

全国高中数学联赛平面几何题 1.(2000) 如图,在锐角三角形ABC 的BC 边上有两点E 、F ,满足∠BAE =∠CAF ,作FM ⊥AB ,FN ⊥AC (M 、N 是垂足),延长AE 交三角形ABC 的外接圆于D .证明:四边形AMDN 与三角形ABC 的面积相等. 2. (2001) 如图,△ABC 中,O 为外心,三条高AD 、BE 、CF 交于点H ,直线ED 和AB 交于点M ,FD 和AC 交于点N . 求证:(1) OB ⊥DF ,OC ⊥DE ; (2) OH ⊥MN . 3.(2002) 4.(2003) 过圆外一点P 作圆的两条切线和一条割线,切点为A ,B 所作割线交圆于C ,D 两点,C 在P ,D 之间,在弦CD 上取一点Q ,使∠DAQ =∠PBC .求证:∠DBQ =∠PAC . A B C D E F M N

5.(2004)在锐角三角形ABC 中,AB 上的高CE 与AC 上的高BD 相交于点H ,以DE 为直径的圆分别交AB 、AC 于F 、G 两点,FG 与AH 相交于点K 。已知BC=25,BD=20,BE=7,求AK 的长。 6.(2005) 7.(2006)以B 0和B 1为焦点的椭圆与△AB 0B 1的边AB i 交于点 C i (i =0,1). 在AB 0的延长线上任取点P 0,以B 0为圆心,B 0P 0 为半径作圆弧P 0Q 0⌒ 交C 1B 0的延长线于Q 0;以C 1为圆心,C 1Q 0 为半径作圆弧Q 0P 1⌒ 交B 1A 的延长线于点P 1;以B 1为圆心,B 1P 1 为半径作圆弧P 1Q 1⌒ 交B 1C 0的延长线于Q 1;以C 0为圆心,C 0Q 1 为半径作圆弧Q 1P 0'⌒ ,交AB 0的延长线于P 0'. 试证: ⑴ 点P 0'与点P 0重合,且圆弧P 0Q 0⌒与P 0Q 1⌒ 相切于点P 0; ⑵ 四点P 0,Q 0,Q 1,P 1共圆. P B 1 B 0 C 1P 1 P 0 Q 1Q 0 A C 0

初中数学竞赛几何证明题综合训练

几何证明题综合训练 1. 线段或角相等的证明 (1) 利用全等△或相似多边形; (2) 利用等腰△; (3) 利用平行四边形; (4) 利用等量代换; (5) 利用平行线的性质或利用比例关系 (6) 利用圆中的等量关系等。 2. 线段或角的和差倍分的证明 (1) 转化为相等问题。如要证明a=b±c ,可以先作出线段p=b±c ,再去证明a=p , 即所谓“截长补短”,角的问题仿此进行。 (2) 直接用已知的定理。例如:中位线定理,Rt △斜边上的中线等于斜边的一半; △的外角等于不相邻的内角之和;圆周角等于同弧所对圆心角的一半等等。 3. 两线平行与垂直的证明 (1) 利用两线平行与垂直的判定定理。 (2) 利用平行四边形的性质可证明平行;利用等腰△的“三线合一”可证明垂直。 (3) 利用比例关系可证明平行;利用勾股定理的逆定理可证明垂直等。 【竞赛例题剖析】 【例1】从⊙O 外一点P 向圆引两条切线PA 、PB 和割线PCD 。从A 点作弦AE 平行于CD ,连结BE 交CD 于F 。求证:BE 平分CD 。 【分析1】构造两个全等△。 连结ED 、AC 、AF 。 CF=DF ←△ACF ≌△EDF ← ←? ?? ?? ?????←←∠=∠∠=∠=∠←∠=∠←??? ∠=∠=四点共圆、、、P B F A ABP AFC ABP AEF EFD EFD AFC CD //AE EDF ACF ED AC ←∠PAB=∠AEB=∠PFB 【分析2】利用圆中的等量关系。连结OF 、?? ?? ?=∠←=∠←=、、、P B F O 90 OBP 90OFP DF CF 0 ←∠PFB=∠POB ← ←? ??←∠=∠←∠=∠是切线、PB PA AEB POB CD //AE AEB PFB

全国高中数学联赛试题及解答

2000年全国高中数学联合竞赛试卷 (10月15日上午8:00?9:40) 一、选择题(本题满分36分,每小题6分) 1.设全集是实数,若A={x|≤0},B={x|10=10x},则A∩?R B是() (A){2}(B){?1}(C){x|x≤2}(D)? 2.设sin?>0,cos?<0,且sin>cos,则的取值范围是() (A)(2k?+,2k?+),k?Z(B)(+,+),k?Z (C)(2k?+,2k?+?),k?Z(D)(2k?+,2k?+)∪(2k?+,2k?+?),k?Z 3.已知点A为双曲线x2?y2=1的左顶点,点B和点C在双曲线的右分支上,△ABC是等边三角形,则△ABC的面积是() (A)(B)(C)3(D)6 4.给定正数p,q,a,b,c,其中p?q,若p,a,q是等比数列,p,b,c,q是等差数列,则一元二次方程bx2?2ax+c=0() (A)无实根(B)有两个相等实根(C)有两个同号相异实根(D)有两个异号实根 5.平面上整点(纵、横坐标都是整数的点)到直线y=x+的距离中的最小值是() (A)(B)(C)(D) 6.设ω=cos+i sin,则以?,?3,?7,?9为根的方程是() (A)x4+x3+x2+x+1=0(B)x4?x3+x2?x+1=0 (C)x4?x3?x2+x+1=0(D)x4+x3+x2?x?1=0 二.填空题(本题满分54分,每小题9分) 1.arcsin(sin2000?)=__________. 2.设a n是(3?)n的展开式中x项的系数(n=2,3,4,…),则(++…+))=________. 3.等比数列a+log23,a+log43,a+log83的公比是____________. 4.在椭圆+=1(a>b>0)中,记左焦点为F,右顶点为A,短轴上方的端点为B.若该椭圆的离心率是,则∠ABF=_________. 5.一个球与正四面体的六条棱都相切,若正四面体的棱长为a,则这个球的体积是________. 6.如果:(1)a,b,c,d都属于{1,2,3,4}; (2)a?b,b?c,c?d,d?a; (3)a是a,b,c,d中的最小值, 那么,可以组成的不同的四位数的个数是_________ 三、解答题(本题满分60分,每小题20分) 1.设S n=1+2+3+…+n,n?N*,求f(n)=的最大值.

初中数学竞赛平面几何常用公式及例题讲解

面积公式A bc B ac C ab S ABC sin 2 1sin 21sin 21===? ))()((c p b p a p p S ABC ---=? 2/)(c b a p ++= 和角公式 A B B A B A cos sin cos sin )sin(+=+ A B B A B A sin sin cos cos )cos(-=+ B A B A B A tan tan 1tan tan )tan(-+=+ 差角公式 A B B A B A cos sin cos sin )sin(-=- A B B A B A sin sin cos cos )cos(+=- B A B A B A tan tan 1tan tan )tan(+-=-

常用角度的三角比

相关练习题: 1.已知ABC ?中,,75 =∠B ,60 =∠C ,10=BC 求AB 与AC 的长及三角形的面积 2.求证面积公式A bc B ac C ab S ABC sin 2 1sin 21sin 21===? 3.求证海伦公式 ))()((c p b p a p p S ABC ---=? 2/)(c b a p ++= 4. 已知ABC ?中,,7=AB ,8=BC ,9=AC 求sinA , sinB , sinC 5.在等腰三角形ABC 中,AB=1,∠A=900,点E 为腰AC 中点,点F 在底边BC 上,且FE ⊥BE ,求△CEF 的面积。 6.已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点是P ,AB=BD ,且PC=0.6,求四边形ABCD 的周长. 7.在△ABC 中,∠ABC =600,点P 是△ABC 内的一点,使得∠APB =∠BPC =∠CPA ,且PA =8,PC =6,则PB = 。 A B C E F A B C P

全国高中数学联赛试题及答案

2010年全国高中数学联赛 一 试 一、填空题(每小题8分,共64分,) 1. 函数x x x f 3245)(---= 的值域是 . 2. 已知函数x x a y sin )3cos (2 -=的最小值为3-,则实数a 的取值范围是 . 3. 双曲线12 2 =-y x 的右半支与直线100=x 围成的区域内部(不含边界)整点(纵横坐标均为整数的点)的个数是 . 4. 已知}{n a 是公差不为0的等差数列,}{n b 是等比数列,其中 3522113,,1,3b a b a b a ====,且存在常数βα,使得对每一个正整数n 都有βα+=n n b a log , 则=+βα . 5. 函数)1,0(23)(2≠>-+=a a a a x f x x 在区间]1,1[-∈x 上的最大值为8,则它在这个区 间上的最小值是 . 6. 两人轮流投掷骰子,每人每次投掷两颗,第一个使两颗骰子点数和大于6者为胜,否则轮由另一人投掷.先投掷人的获胜概率是 . 7. 正三棱柱111C B A ABC -的9条棱长都相等,P 是1CC 的中点,二面角α=--11B P A B ,则=αsin . 8. 方程2010=++z y x 满足z y x ≤≤的正整数解(x ,y ,z )的个数是 . 二、解答题(本题满分56分) 9. (16分)已知函数)0()(2 3 ≠+++=a d cx bx ax x f ,当10≤≤x 时,1)(≤'x f ,试求a 的最大值. 10.(20分)已知抛物线x y 62=上的两个动点1122(,)(,)A x y B x y 和,其中21x x ≠且 421=+x x .线段AB 的垂直平分线与x 轴交于点C ,求ABC ?面积的最大值. 11.(20分)证明:方程02523 =-+x x 恰有一个实数根r ,且存在唯一的严格递增正整数数列}{n a ,使得 +++=3215 2 a a a r r r .

2018-2019初中数学竞赛专题复习 极限几何100题

1. 如图,在△ABC 中,AB =2AC ,AD 是角平分线,E 是 BC 边的中点,EF ⊥AD 于点 F ,CG ⊥AD 于点 G , 3 若 tan ∠CAD= 4 ,AB =20,则线段 EF 的长为 C F 2. 如图,在△ABC 中,tan ∠ACB=3,点D 、E 在 BC 边上,∠DAE = 1 ∠BAC ,∠ACB =∠DAE +∠B ,点 2 F 在线段 AE 的延长线上,AF =AD ,若 CD =4,CF =2,则 AC 边的长为 3. 如图,在△ABC 中,∠A=30°,点 D 、E 分别在 AB 、AC 边上,BD=CE=BC ,点 F 在 BC 边上,DF 与 BE 1 交于点 G 。若 BG=1,∠BDF= 2 ∠ACB ,则线段 EG 的长为

4. 如图,在△ABC 中,∠A =60°,角平分线 BD 、CE 交于点 F ,若 BC =3CD ,BF =2,则 BC 边的长为 E B 5. 如图,在△ABC 中,AB =AC ,∠ACD =45°,点 E 在射线 BD 上,AE//CD ,AE =DE ,若 BD =1,CD = 5,则 AE 的长为 6. 如图,△ABC 中,∠AB =90°,CD 是 AB 边上的中线,点 F 在线段 AD 上,点 F 在 CD 延长线上,AE = DF ,连接 CE 、BF ,若∠AEC =∠DFB ,AC = 2 3 ,DF = 1,则线段 CE 的长为 A B 7. 如图,在等边△ABC 中,D 为 AB 边上一点,连接 CD ,在 CD 上取一点E ,连接BE ,∠BED =60°,若 3

2014年全国高中数学联赛试题及答案

2014年全国高中数学联赛(B 卷) 一 试 一、填空题(每小题8分,共64分,) 1. 函数 x x x f 3245)(---=的值域是 . 2. 已知函数x x a y sin )3cos (2-=的最小值为3-,则实数a 的取值范围是 . 3. 双曲线122 =-y x 的右半支与直线100=x 围成的区域内部(不含边界)整点(纵横坐标均为整数的点)的个 数是 . 4. 已知}{n a 是公差不为0的等差数列,}{n b 是等比数列,其中352211 3,,1,3b a b a b a ====,且存在常 数βα,使得对每一个正整数n 都有βα+=n n b a log ,则=+βα . 5. 函数 )1,0(23)(2≠>-+=a a a a x f x x 在区间]1,1[-∈x 上的最大值为8,则它在这个区间上的最小值 是 . 6. 两人轮流投掷骰子,每人每次投掷两颗,第一个使两颗骰子点数和大于6者为胜,否则轮由另一人投掷.先投掷人的获 胜概率是 . 7. 正三棱柱 111C B A ABC -的 9条棱长都相等, P 是1CC 的中点,二面角α =--11B P A B ,则 =αsin . 8. 方程2010=++ z y x 满足z y x ≤≤的正整数解(x ,y ,z )的个数是 . 二、解答题(本题满分56分) 9. (16分)已知函数 )0()(23≠+++=a d cx bx ax x f ,当10≤≤x 时,1)(≤'x f ,试求a 的最大值. 10.(20分)已知抛物线 x y 62=上的两个动点1122(,)(,)A x y B x y 和,其中21x x ≠且421=+x x .线段AB 的垂直平分线与x 轴交于点C ,求ABC ?面积的最大值. 11.(20分)证明:方程02523 =-+x x 恰有一个实数根r ,且存在唯一的严格递增正整数数列}{n a ,使得 +++=3215 2 a a a r r r . 解 答 1. ]3, 3[- 提示:易知)(x f 的定义域是[]8,5,且)(x f 在[]8,5上是增函数,从而可知)(x f 的值域为 ]3,3[-.

高中数学竞赛专题讲座---平面几何选讲

立身以立学为先,立学以读书为本 平面几何选讲 反演变换 基础知识 一. 定义 1. 设O 是平面π上的一个定点,k 是一个非零常数.如果平面π的一个变换,使得对于平面π上任意异 于O 的点A 与其对应点'A 之间,恒有(1)' ,,A O A 三点共线;(2)'OA OA k ?=,则这个变换称为平面π 的一个反演变换,记做(,)I O k .其中,定点O 称为反演中心,常数k 称为反演幂,点'A 称为点A 的反点. 2. 在反演变换(,)I O k 下,如果平面π的图形F 变为图形'F ,则称图形'F 是图形F 关于反演变换(,)I O k 的反形.反演变换的不动点称为自反点,而反演变换的不变图形则称为自反图形. 3. 设两条曲线u v 、相交于点A ,l 、m 分别是曲线u v 、在点A 处的切线(如果存在),则l 与m 的交角称为曲线u v 、在点A 处的交角;如果两切线重合,则曲线u v 、在点A 处的交角为0.特别地,如果两圆交于点,那么过点作两圆的切线,则切线的交角称为两圆的交角.当两圆的交角为90时,称为两圆正交;如果直线与圆相交,那么过交点作圆的切线,则切线与直线的交角就是直线与圆的交角.当这个交角为90时,称为直线与圆正交. 二. 定理 定理1. 在反演变换下,不共线的两对互反点是共圆的四点. 定理2. 在反演变换(,)I O k 下,设A B 、两点(均不同于反演中心O )的反点分别为' ' A B 、,则有''B A = ''k A B AB OA OB = ?. 定理3. 在反演变换下,过反演中心的直线不变. 定理 4. 在反演变换下,不过反演中心的直线的反形是过反演中心的圆;过反演中心的圆的反形是不过反演中心的直线. 定理5. 在反演变换下,不过反演中心的圆的反形仍是不过反演中心的圆. 定理6. 在反演变换下,两条曲线在交点处的交角大小保持不变,但方向相反. 定理7. 如果两圆或一圆一直线相切于反演中心,则其反形是两条平行直线;如果两圆或一圆一直线相切于非反演中心,则其反形(两圆或一圆一直线)相切. 定理8. 如果两直线平行,则其反形(两圆或一圆一直线)相切于反演中心. 典型例题 一. 证明点共线 例1. ABC 的内切圆与边BC 、CA 、AB 分别相切于点D 、E 、F , 设L 、M 、N 分别是EF 、FD 、DE 的中点.求证:ABC 的外心、 内心与LMN 的外心三点共线. 证明:如图,设ABC 的内心为I ,内切圆半径为r .以内心I 为反演中心,内切圆为反演圆作反演变换2 (,)I I r ,则A 、B 、C 的 反点分别为L 、M 、N ,因而ABC 的反形是LMN 的外接圆.故ABC 的外心、内心和LMN 的外心三点共线. 二. 证明线共点 例2. 四边形ABCD 内接于O ,对角线AC 与BD 相交于P ,设ABP 、BCP 、CDP 、DAP 的 I N M L F E D C B A

2015年全国高中数学联赛试题

2015年全国高中数学联合竞赛一试试题(A 卷) 一、填空题:本大题共8小题,每小题8分,满分64分 1.设,a b 为不相等的实数,若二次函数2()f x x ax b =++满足()()f a f b =,则(2)f 的值为 2.若实数α满足cos tan αα=,则41cos sin αα +的值为 3.已知复数数列{}n z 满足111,1(1,2,3,)n n z z z ni n +==++= ,其中i 为虚数单位,n z 表示n z 的共轭复数,则2015z 的值为 4.在矩形ABCD 中,2,1AB AD ==,边DC (包含点,D C )上的动点P 与CB 延长线上(包含 点B )的动点Q 满足DP BQ = ,则向量PA 与向量PQ 的数量积PA PQ ? 的最小值为 5.在正方体中随机取3条棱,它们两两异面的概率为 6.在平面直角坐标系xOy 中,点集{} (,)(36)(36)0K x y x y x y =+-+-≤所对应的平面区域的面积为 7.设ω为正实数,若存在,(2)a b a b ππ≤<≤,使得sin sin 2a b ωω+=,则ω的取值范围是 8.对四位数(19,0,,9)abcd a b c d ≤≤≤≤,若,,a b b c c d ><>,则称abcd 为P 类数,若 ,,a b b c c d <><,则称abcd 为Q 类数,用(),()N P N Q 分别表示P 类数与Q 类数的个数,则 ()()N P N Q -的值为 二、解答题:本大题共3小题,满分56分,解答应写出文字说明、证明过程或演算步骤 9.(本题满分16分)若实数,,a b c 满足242,424a b c a b c +=+=,求c 的最小值. 10.(本题满分20分)设1234,,,a a a a 是4个有理数,使得 {}311424,2,,,1,328i j a a i j ??≤<≤=----???? ,求1234a a a a +++的值. 11.(本题满分20分)在平面直角坐标系xOy 中,12,F F 分别是椭圆2 212 x y +=的左、右焦点,设不经过焦点1F 的直线l 与椭圆交于两个不同的点,A B ,焦点2F 到直线l 的距离为d ,如果直线11,,AF l BF 的斜率依次成等差数列,求d 的取值范围.

高中数学竞赛几何专题从调和点列到Apollonius圆到极线

2012暑期专题——几何(1) 从交比到调和点列到Apollonius 圆到极线极点 20XX 年10月17日结束的20XX 年全国高中数学联赛平面几何题目为:如图1,锐角三角形 ABC 的外心为 O ,K 是边 BC 上一点(不是边 BC 的中点),D 是线段AK 延长线上一点,直线BD 与AC 交于点N ,直线CD 与AB 交于点M . 求证:若OK ⊥MN ,则ABDC 四点共圆. 图 1 本题颇有难度,参考答案的反证法让有些人“匪夷所思”,其实这是一系列射影几何中常见而深刻结论的自然“结晶”,此类问题在国家队选拔考试等大赛中屡见不鲜。本文拟系统的介绍交比、调和点列、完全四边形、Apollonius 圆、极线等射影几何的重要概念及应用,抽丝剥茧、溯本求源,揭示此类问题的来龙去脉,并在文中给出上题的一种简洁明了的直接证明。 知识介绍 定义 1 线束和点列的交比:如图2,共点于O 的四条直线被任意直线所截的有向线段比/AC BC AD BD 称为线束OA 、OC 、OB 、OD 或点列ACBD 的交比。[1] 定理1 线束的交比与所截直线无关。 图 2 证明:本文用[ABC]表示ABC 面积,则

[][]//[][]AC BC AOC BOC AOD BOD AD BD = sin sin /sin sin sin sin /sin sin CO AOC CO COB DO AOD DO BOD AOC COB AOD BOD ∠∠= ∠∠∠∠=∠∠ 从而可知线束交比与所截直线无关。 定义2 调和线束与调和点列:交比为-1,即AC BC AD BD =-的线束称为调和线束,点列称为调和点列。显然调和线束与调和点列是等价的,即调和线束被任意直线截得的四点均为调和点列,反之,调和点列对任意一点的线束为调和线束。 定理2 调和点列常见形式:(O 为CD 中点) (1)、211D C A A B A =+ (2)、2*O C O B O A = (3)、 AC*AD=AB*AO (4)、 AB*OD=AC*BD 证明:由基本关系式变形即得,从略。 定理3 一直线被调和线束中的三条平分当且仅当它与第四边平行(由定义即得,证略) 定义3 完全四边形:如图3,凸四边形ABCD 各边延长交成的图形称为完全四边形ABCDEF ,AC 、BD 、EF 称为其对角线(一般的四条直线即交成完全四边形)[2]。 定理4 完全四边形对角线互相调和分割。即AGCH 、BGDI 、EHFI 分别构成调和点列。 图 3 分析:只需证EHFI 为调和点列,其余可类似证得,也可由线束的交比不变性得到。 证法一:面积法[][][][] HE IF AEC BDF HF IE AFC BDE ?= [][][][][][][][] AEC ACD BDF BEF ACD AFC BEF BDE = 1EC AD DC AF CD AF EC AD =??=,即HE IE HF IF =。

相关文档
最新文档