(完整版)江苏省2018年普通高校对口单招数学试卷

合集下载

2018年最新 江苏省对口单独招生数学试卷[下学期]江苏教育版 精品

2018年最新 江苏省对口单独招生数学试卷[下学期]江苏教育版 精品

2018年江苏省对口单独招生数学试卷试卷Ⅰ(共48分)一. 选择题(本大题共12小题,每小题4分,共48分,每小题列出的四个选项中,只有一项是符合要求的) 1.已知集{}2,P x x n n ==∈,{}4,T x x n n ==∈,则PT = ( )A. {}4,x x n n =∈ B. {}2,x x n n =∈C. {},x x n n =∈D. {}4,x x n n =∈2.若函数2y x a =+与4y bx =-互为反函数,则,a b 的值分别为( ) A.4,-2 B. 2,-2 C. -8, 12-D. 12-,-8 3.已知向量()1,1a =与()2,3b =-,若2ka b -与a 垂直,则实数k 等于( ) A.-1 B. -10 C. 2 D. 04.如果事件A 与B 互斥,那么 ( )A. A 与B 是对立事件B. A B 是必然事件C. AB 是必然事件 D. A B 与互不相容5.若数列{}n a 的通项为1(1)n a n n =+ ,则其前10项的和10S 等于 ( )A.910 B. 1110 C. 109 D. 10116.已知cos α= ,且sin 0α> ,则tan α为( ) A.2 B. -2 C.12 D. 12- 7.已知()x f x a =,()log xa g x =(0,1a a >≠) ,若11()()022f g ⋅> ,则()y f x =与()y g x = 在同一坐标系内的图象可能是 ( )8.过点()2,4-,且在两坐标上的截距之和为0的直线有几条? ( )A. 1条B. 2条C. 3条D. 4条 9.三个数20.60.620.6,2,log 的大小关系是( )A.20.60.620.62log <<B. 0.620.62log 0.62<<C.0.60.622log 20.6<<D. 20.60.620.6log 2<<10.0a >且b>0是ab>0的 ( )A.充要条件B. 必要而非充分条件 充分而非必要条件 D. 以上均不对11.直线340x y k ++=与圆()2234x y -+=相切,则k 的值为 ( )A.1或-19B. -1或19C. 1D. 10±12.已知函数()f x 在)(,-∞+∞上是偶函数,且()f x 在)(,0-∞上又是减函数,那么3()4f -与2(1)f a a -+的大小关系是( )A.23()(1)4f f a a ->-+B. 23()(1)4f f a a -≥-+C.23()(1)4f f a a -<-+D. 23()(1)4f f a a -≤-+试卷Ⅱ(118分)二 填空题(本大题共6小题,每小题4分,共24分,把答案填在题中的横线上) 13.已知复数127z i =-,254z i =-+,则12arg()z z += . 14. 设等比数列{}n a 满足 15415,52a a S -=-=-,则公比q = . 15. 若函数()y f x =的图象经过点)(0,2-,则函数(4)y f x =+的图象必经过点 .16. 方程sin 2cos x x =在区间)(0,2π内的解的个数为 . 17. 由数字0,1,2,3组成的没有重复数字的四位偶数共有 .18. 椭圆221(3)3x y m m+=<的离心率是方程221150x x -+=的根,则m = .三.解答题(本大题共7题,共78分) 19. (本题满分8分)解不等式:()2822log 3x x --≤20. (本题满分8分)已知ABC 中,满足sin :sin :sin 2:3:4A B C =.试判断ABC 是什么形状?21.(本题满分14分)某公司年初花费72万元购进一台设备, 并立即投入使用. 计划第一年维护费用为8万元,从第二年开始,每一年所需维护费用比上一年增加4万元。

江苏省2018年高职院校单独招生文化联合测试数学

江苏省2018年高职院校单独招生文化联合测试数学

江苏省2018年高职院校单独招生文化联合测试试卷数 学参考公式: 锥体的体积公式为Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. 一、选择题(本大题共10小题,每小题4分,共40分)1. 已知i 是虚数单位,若bi a ii +=++-23),(R b a ∈,则b a +的值是( ) A.3; B.1; C.0; D.2-.【答案】C2. 若集合}11|{<<-=x x A ,}02|{2<--=x x x B ,则( )A.B A ⊂;B.A B ⊂;C.B A =;D.∅=B A .【答案】A3. 设抛物线的顶点在原点,准线方程为2-=x ,则抛物线的方程是( )A.x y 82-=;B.x y 82=;C.x y 42-=;D. x y 42=.【答案】B4. 设四边形ABCD 的两条对角线为AC 、BD ,则“四边形ABCD 为菱形”是“BD AC ⊥”的( )A.充分不必要条件;B.必要不充分条件;C.充要条件;D.既不充分也不必要条件.【答案】A5. 已知}{n a 为等差数列,04=+a a k ,以n S 表示}{n a 的前n 项的和,49S S =,则k 的值是( )A.6;B.8;C.10;D.12.【答案】C6. 在平面直角坐标系xOy 中,双曲线1222=-y x 的右焦点坐标为( )A.⎪⎪⎭⎫ ⎝⎛022,;B.⎪⎪⎭⎫ ⎝⎛025,;C.⎪⎪⎭⎫ ⎝⎛026,;D.()03,. 【答案】C7. 若不等式组⎪⎩⎪⎨⎧≤+≥+≥63220y x y x y 所表示的平面区域上有一动点M ,O 为坐标原点, 则||OM 的最小值为( ) A.22; B.3; C.26; D.2. 【答案】D8. 已知函数x x x f 2cos 232sin 21)(-=,则函数)(x f 在⎥⎦⎤⎢⎣⎡-2,2ππ上的单调增区间 是( ) A.⎥⎦⎤⎢⎣⎡-125,12ππ; B.⎥⎦⎤⎢⎣⎡1217,1211ππ; C.⎥⎦⎤⎢⎣⎡-12,125ππ; D.⎥⎦⎤⎢⎣⎡125,12ππ. 【答案】A9. 已知函数2)(+=x x x f ,则曲线)(x f y =在)1,1(--处的切线方程是( ) A.22--=x y ; B.12-=x y ; C.32--=x y ; D.12+=x y .【答案】D10.若过点)1,3(A 的直线l 与圆:C 4)2()2(22=-+-y x 相交形成弦,则其中最短的弦长为( ) A.2; B.2; C.22; D.23.【答案】C二、填空题(本大题共5小题,每小题4分,共20分)11.在等差数列}{n a 中,若3773=+a a ,则=+++8642a a a a .【答案】7412.箱子中有形状、大小都相同的3只红球和2只白球,一次摸出2只球,则摸到的2球颜色不同的概率为 . 【答案】5313.一圆锥的母线长为cm 50,高为cm 40,则该圆锥的侧面积为 2cm .【答案】π150014.已知点)2,1(--A ,)8,3(B ,若AC AB 2=,则点C 坐标为 .【答案】)3,1(15.已知坐标平面内两点)2,(x x A -和)0,22(B ,那么这两点之间距离的最小 值是 . 【答案】21 三、解答题(本大题共5小题,共40分,解答时写出步骤)16.(满分6分)已知θ的顶点为坐标原点,始边为x 轴的正半轴,若),4(y P 是角θ终边上一点,且552sin -=θ,求)sin(πθ-. 【答案】55217.(满分6分)在ABC ∆中,C B A ,,的对边分别是c b a ,,,若B c a C b cos )2(cos -=. (1)求B cos 的值;(2)设2=b ,求c a +的范围.【答案】(1)21(2)222≤+<c a18.(满分8分)如图,在直三棱柱111C B A ABC -中,11===BB BC AC ,31=AB .(1)求证:平面⊥C AB 1平面CB B 1;(2)求三棱锥C AB A 11-的体积.【答案】(1) (2)6119.(满分10分)已知椭圆:C 12222=+by a x )0(>>b a 的一个顶点为抛物线:D y x 342=的焦点,21,F F 分别是椭圆的左,右焦点,且离心率21=e ,过椭 圆右焦点2F 的直线l 与椭圆C 交于N M ,两点. (1)求椭圆C 的方程;(2)是否存在直线l ,使得2-=⋅OM .若存在,求出直线l 的方程;若不 存在,说明理由.【答案】(1)13422=+y x (2))1(2-=x y 或)1(2--=x y20.(满分10分)已知圆:C 25)7()6(22=-+-y x .(1)设圆D 与x 轴相切,与圆C 外切,且圆心D 在直线6=x 上,求圆D 的标 准方程; (2)点)4,2(A 为圆C 上一点,设平行于OA 的直线l 与圆C 相交于 F E ,两点,且OA EF =,求直线l 的方程.【答案】(1)1)1()6(22=-+-y x (2)052=+-y x 或0152=--y x。

2018年普通高等学校招生全国统一(江苏卷)数学试卷和答案解析

2018年普通高等学校招生全国统一(江苏卷)数学试卷和答案解析

2018年普通高等学校招生全国统一考试(江苏卷)数学1. 已知集合,,那么__________.2. 若复数z满足,其中i是虚数单位,则z的实部为__________.3. 已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为______.4. 一个算法的伪代码如图所示,执行此算法,最后输出的S的值为______.5. 函数的定义域为__________.6. 某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为__________.7. 已知函数的图象关于直线对称,则的值为__________.8. 在平面直角坐标系xOy中,若双曲线的右焦点到一条渐近线的距离为,则其离心率的值是__________.9. 函数满足,且在区间上,,则的值为__________.10. 如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为__________.11. 若函数在内有且只有一个零点,则在上的最大值与最小值的和为__________.12. 在平面直角坐标系xOy中,A为直线l:上在第一象限内的点,,以AB 为直径的圆C与直线l交于另一点若,则点A的横坐标为__________. 13. 在中,角A,B,C所对的边分别为a,b,c,,的平分线交AC于点D,且,则的最小值为__________.14. 已知集合,将的所有元素从小到大依次排列构成一个数列,记为数列的前n项和,则使得成立的n的最小值为______.15. 在平行六面体中,,求证:平面;平面平面16. 已知,为锐角,,求的值;求的值.17. 某农场有一块农田,如图所示,它的边界由圆O的一段圆弧为此圆弧的中点和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为,要求A,B均在线段MN上,C,D均在圆弧上.设OC与MN所成的角为用分别表示矩形ABCD和的面积,并确定的取值范围;若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:求当为何值时,能使甲、乙两种蔬菜的年总产值最大.18. 如图,在平面直角坐标系xOy中,椭圆C过点,焦点,,圆O的直径为求椭圆C及圆O的方程;设直线l与圆O相切于第一象限内的点①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于A,B两点.若的面积为,求直线l的方程.19. 记,分别为函数,的导函数.若存在,满足且,则称为函数与的一个“S点”.证明:函数与不存在“S点”;若函数与存在“S点”,求实数a的值;已知函数,对任意,判断是否存在,使函数与在区间内存在“S点”,并说明理由.20. 设是首项为,公差为d的等差数列,是首项为,公比为q的等比数列.设,,,若对,2,3,4均成立,求d的取值范围;若,,证明:存在,使得对,3,…,均成立,并求d的取值范围用,m,q表示21. 如图,圆O的半径为2,AB为圆O的直径,P为AB延长线上一点,过P作圆O的切线,切点为若,求BC的长.22. 已知矩阵求A的逆矩阵;若点P在矩阵A对应的变换作用下得到点,求点P的坐标.23. 在极坐标系中,直线l的方程为,曲线C的方程为,求直线l被曲线C截得的弦长.24. 若x,y,z为实数,且,求的最小值.25. 如图,正三棱柱中,,点P,Q分别为,BC的中点.求异面直线BP与所成角的余弦值;求直线与平面所成角的正弦值.26. 设,对1,2,……,n的一个排列……,如果当时,有,则称是排列……的一个逆序,排列……的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序,,则排列231的逆序数为记为1,2,…,n的所有排列中逆序数为k的全部排列的个数.求,的值;求的表达式用n表示答案和解析1.【答案】【解析】【分析】直接利用交集运算得答案.本题考查交集及其运算,属于基础题.【解答】解:,,,故答案为:2.【答案】2【解析】【分析】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.把已知等式变形,再由复数代数形式的乘除运算化简得答案.【解答】解:由,得,的实部为故答案为:3.【答案】90【解析】【分析】本题考查了利用茎叶图计算平均数的问题,是基础题.根据茎叶图中的数据计算它们的平均数即可.【解答】解:根据茎叶图中的数据知,这5位裁判打出的分数为89、89、90、91、91,它们的平均数为故答案为:4.【答案】8【解析】【分析】模拟程序的运行过程,即可得出程序运行后输出的S值.本题考查了程序语言的应用问题,模拟程序的运行过程是解题的常用方法,属基础题.【解答】解:模拟程序的运行过程如下;,,,,,,,,此时不满足循环条件,则输出故答案为:5.【答案】【解析】【分析】本题考查了对数函数的性质,考查求函数的定义域问题,是一道基础题.解关于对数函数的不等式,求出x的范围即可.【解答】解:由题意得:,解得:,函数的定义域是故答案为:6.【答案】【解析】【分析】本题考查了古典概率的问题,属于基础题.设2名男生为a,b,3名女生为A,B,C,则任选2人的种数为ab,aA,aB,aC,bA,bB,bC,AB,AC,BC共10种,其中全是女生为AB,AC,BC共3种,根据概率公式计算即可.【解答】解:设2名男生为a,b,3名女生为A,B,C,则任选2人的种数为ab,aA,aB,aC,bA,bB,bC,AB,AC,BC共10种,其中全是女生为AB,AC,BC共3种,故选中的2人都是女同学的概率,故答案为:7.【答案】【解析】【分析】本题主要考查三角函数的图象和性质,利用正弦函数的对称性建立方程关系是解决本题的关键.根据正弦函数的对称性建立方程关系进行求解即可.【解答】解:的图象关于直线对称,,,即,,,当时,,故答案为:8.【答案】2【解析】【分析】本题考查双曲线的简单性质的应用,考查转化思想以及计算能力.利用双曲线的简单性质,以及点到直线的距离列出方程,转化求解即可.【解答】解:双曲线的右焦点到一条渐近线的距离为,可得:,可得,即,所以双曲线的离心率为:故答案为:9.【答案】【解析】【分析】本题主要考查函数值的计算,根据函数的周期性结合分段函数的表达式利用转化法是解决本题的关键.根据函数的周期性,进行转化求解即可.【解答】解:由得函数是周期为4的周期函数,则,,即,故答案为:10.【答案】【解析】【分析】本题考查几何体的体积的求法,考查空间想象能力,属于中档题.将多面体看做两个正四棱锥,然后利用体积公式求解即可.【解答】解:正方体的棱长为2,中间四边形的边长为,八面体看做两个正四棱锥,棱锥的高为1,多面体的体积为故答案为11.【答案】【解析】【分析】解:,,①当时,,函数在上单调递增,,在上没有零点,舍去;②当时,的解为,在上递减,在递增,又只有一个零点,,解得,则,,,的解集为,在上递增,在上递减,,,,,,在上的最大值与最小值的和为:【解答】本题考查函数的单调性、最值,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力,是中档题.推导出,,当时,,,在上没有零点;当时,的解为,在上递减,在递增,由只有一个零点,解得,从而,,,利用导数性质能求出在上的最大值与最小值的和.12.【答案】3【解析】【分析】本题考查平面向量的数量积运算,考查圆的方程的求法,是中档题.设,,求出C的坐标,得到圆C的方程,联立直线方程与圆的方程,求得D的坐标,结合求得a值得答案.【解答】解:设,,,,则圆C的方程为联立,解得解得:或又,即A的横坐标为故答案为:13.【答案】9【解析】【分析】本题主要考查三角形的面积公式与基本不等式的应用.根据面积关系建立条件等式,结合基本不等式利用1的代换的方法进行求解即可.【解答】解:由题意得,即,得,得,当且仅当,即,亦即,时,取等号,故答案为:14.【答案】27【解析】【分析】本题考查数列的递推关系以及数列的分组转化求和,属于拔高题.根据题意说明当,时不符合题意,当时,,符合题意,求出n的最小值. 【解答】解:集合A是由所有正奇数组成的集合,集合B是由组成的集合,所有的正奇数与按照从小到大的顺序排列构成,在数列中,前面有16个正奇数,即,当时,,不符合题意;当时,,不符合题意;当时,,不符合题意;当时,,不符合题意;……;当时,,,不符合题意;当时,,,,符合题意.故使得成立的n的最小值为故答案为:15.【答案】证明:平行六面体中,,又平面平面;得平面;在平行六面体中,,得四边形是菱形,在平行六面体中,,又,平面,平面得面,且平面平面平面【解析】本题考查了平行六面体的性质,及空间线面平行、面面垂直的判定,属于中档题.由平面;可得四边形是菱形,,由面,平面平面16.【答案】解:由,解得,;由得,,则,,,则【解析】本题考查三角函数的恒等变换及化简求值,考查同角三角函数基本关系式的应用,属于中档题.由已知结合平方关系求得,的值,再由倍角公式得的值;由求得,再由求得,利用,展开两角差的正切求解.17.【答案】解:,,当B、N重合时,最小,此时;当C、P重合时,最大,此时,的取值范围是;设年总产值为y,甲种蔬菜单位面积年产值为4t,乙种蔬菜单位面积年产值为3t,则,其中;设,则;令,解得,此时,;当时,,单调递增;当时,,单调递减;时,取得最大值,即总产值y最大.【解析】本题考查了解三角形的应用问题,也考查了构造函数以及利用导数求函数的最值问题,是较难题.根据图形计算矩形ABCD和的面积,求出的取值范围;根据题意求出年总产值y的解析式,构造函数,利用导数求的最大值,即可得出为何值时年总产值最大.18.【答案】解:由题意可设椭圆方程为,焦点,,椭圆C过点,,又,解得,椭圆C的方程为:,圆O的方程为:①可知直线l与圆O相切,也与椭圆C,且切点在第一象限,因此k一定小于0,可设直线l的方程为,由圆心到直线l的距离等于圆半径,可得,即由,可得,,可得,,结合,,解得,将,代入,可得,解得,,故点P的坐标为②设,,由联立直线与椭圆方程得,,O到直线l的距离,,的面积为,解得,正值舍去,直线l的方程为【解析】本题考查了椭圆的方程,直线与圆、椭圆的位置关系,属于较难题.由题意可得,,又,解得,,即可得到椭圆C的方程和圆O的方程;①可设直线l的方程为,,可得,即,由,可得,,解得,,进而可得P点坐标;②设,,联立直线与椭圆方程得,根据弦长公式和点到直线得距离公式可解得,正值舍去,,即可得到直线方程.19.【答案】解:证明:,,则由定义得,得方程无解,则与不存在“S点”;,,,由得,得,,得;,,,由,假设,得,得,由,得,得,令,,设,,则,,得,又的图象在上不间断,则在上有零点,则在上有零点,则存在,使与在区间内存在“S”点.【解析】本题主要考查导数的应用,根据条件建立两个方程组,判断方程组是否有解是解决本题的关键.根据“S点”的定义解两个方程,判断方程是否有解即可;根据“S点”的定义解两个方程即可;分别求出两个函数的导数,结合两个方程之间的关系进行求解判断即可.20.【答案】解:由题意可知对任意,2,3,4均成立,,,,解得即且对,3,…,均成立,,…,,即,…,,…,,,…,,又,…,,存在,使得对,3,…,均成立当时,,设,则,…,,设,,单调递增,,设,且设,则,,,,在上恒成立,即单调递减,又,,对…,均成立,数列,…,单调递减,的最大值为,的最小值为,的取值范围是【解析】本题主要考查等比数列和等差数列以及不等式的综合应用,考查学生的运算能力,综合性较强,难度较大.根据等比数列和等差数列的通项公式,解不等式组即可;根据数列和不等式的关系,利用不等式的关系构造新数列和函数,判断数列和函数的单调性和性质进行求解即可.21.【答案】解:连接OC,因为PC为切线且切点为C,所以因为圆O的半径为2,,所以,,所以,所以,所以为等边三角形,所以【解析】连接OC,由题意,CP为圆O的切线,得到垂直关系,由线段长度及勾股定理,可以得到PO的长,即可判断是等边三角形,BC的长.本题主要考查圆与直线的位置关系,切线的应用,考查发现问题解决问题的能力.22.【答案】解:矩阵,,所以A可逆,从而:A的逆矩阵设,则,所以,因此点P的坐标为【解析】本题矩阵与逆矩阵的关系,逆矩阵的求法,考查转化思想的应用,是基本知识的考查.矩阵,求出,A可逆,然后求解A的逆矩阵设,通过,求出,即可得到点P的坐标.23.【答案】解:曲线C的方程为,,,曲线C是圆心为,半径为得圆.直线l的方程为,,直线l的普通方程为:圆心C到直线l的距离为,直线l被曲线C截得的弦长为【解析】将直线l、曲线C的极坐标方程利用互化公式可得直角坐标方程,利用直线与圆的相交弦长公式即可求解.本题考查了极坐标方程化为直角坐标方程、直线与圆的相交弦长关系、点到直线的距离公式,属于中档题.24.【答案】解:由柯西不等式得,,是当且仅当时,不等式取等号,此时,,,的最小值为4【解析】本题主要考查求的最值,利用柯西不等式是解决本题的关键.根据柯西不等式进行证明即可.25.【答案】解:如图,在正三棱柱中,设AC,的中点分别为O,,则,,,故以为基底,建立空间直角坐标系,,,,,,,点P为的中点.,,异面直线BP与所成角的余弦值为;为BC的中点.,,设平面的一个法向量为,由,可取,设直线与平面所成角的正弦值为,,直线与平面所成角的正弦值为【解析】本题考查了异面直线所成角,直线与平面所成角,向量法求空间角,考查学生的计算能力和推理能力,属于中档题.设AC,的中点分别为O,,以为基底,建立空间直角坐标系,由可得异面直线BP与所成角的余弦值;求得平面的一个法向量为,设直线与平面所成角的正弦值为,可得,即可得直线与平面所成角的正弦值.26.【答案】解:记为排列abc得逆序数,对1,2,3的所有排列,有,,,,,,,,对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,;对一般的的情形,逆序数为0的排列只有一个:12…n,逆序数为1的排列只能是将排列12…n中的任意相邻两个数字调换位置得到的排列,为计算,当1,2,…,n的排列及其逆序数确定后,将添加进原排列,在新排列中的位置只能是最后三个位置.因此,当时,……因此,当时,【解析】由题意直接求得的值,对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置,由此可得的值;对一般的的情形,可知逆序数为0的排列只有一个,逆序数为1的排列只能是将排列12…n中的任意相邻两个数字调换位置得到的排列,为计算,当1,2,…,n的排列及其逆序数确定后,将添加进原排列,在新排列中的位置只能是最后三个位置,可得,则当时,…,则的表达式可求.本题主要考查计数原理、排列等基础知识,考查运算求解能力和推理论证能力,是中档题.。

2018江苏省对口单招数学模拟试卷

2018江苏省对口单招数学模拟试卷

盐城市2018年普通高校单独招生第二次调研考试试卷数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(填充题.解答题).两卷满分150分,考试时间120分钟.第Ⅰ卷(共40分)注意事项:将第Ⅰ卷每小题的答案序号写在答题纸上一、选择题:(本大题共10小题,每小题4分,共40分,每小题列出的四个选项中,只有一项是符合要求的) 1. 设集合}0,1,2{--=A ,}1,{lgx B =,}0{=⋂B A ,则x =( )A .-1B .-2C .1D .22.化简逻辑式ABC ABC AB A +++=( )A .1B .0 C. A D .A 3.下表为某项工程的工作明细表,则完成此工程的关键路径是( ) A .A B G H →→→ B .AC E G H →→→→ C G H →→n 的值可为( ) A .10 B .8 C .6 D .45.已知),0(,43)tan(πθθπ∈=-,则=+)2sin(θπ( ) A .54 B .54- C .53 D .53-6.已知点)cos ,(sin θθP 在直线01=-+y x 的上方,则θ的取值范围是( ) A .),2(ππB .Z ∈+k k k )2,(πππ C .),0(π D .Z ∈+k k k ),(πππ7.若一个轴截面是面积为2的正方形的圆柱,它的侧面积与一个正方体的表面积相等,则该正方体的棱长为( )A .66π B .33π C .22π D .36π8.将3台电视机和2台收录机排成一排,要求收录机互不相邻且不排在首、尾,则不同的排列方法种法共有( ) A .12种 B .36种 C .72种 D .120种9.抛物线x y 82-=的准线与双曲线12422=-y x 的两渐近线围成的三角形的面积为( )A .4B .24C .22D .210.已知b >0,直线b 2x +y +1=0与a x -(b 2+4)y +2=0互相垂直,则ab 的最小值为( ) A .1B .2C .22 D .4第Ⅰ卷的答题纸第Ⅱ卷(共110分)二、填空题:(本大题共5小题,每小题4分,共20分,把答案填在题中的横线上) 11.已知数组(2,4,3),(1,,),2a b m n a b ===,则log (1)___________m n -=. 12.已知复数z 满足方程0922=+-x x ,则z = .13.已知奇函数f (x )(x ∈R ,且x ≠0)在区间(0,+∞)上是增函数,且f (-3)=0,则f (x )>0的解集是 . 14.函数⎩⎨⎧≥<<-=-0,01),sin()(12x e x x x f x π,若2)()1(=+a f f ,则a 的所有可能值为 . 15.若过点P ()3,1作圆122=+y x 的两条切线,切点分别为A 、B 两点,则=AB .三、解答题:(本大题共8题,共90分) 16.(本题满分8分)已知指数函数)(x g y =满足:g(2)=4.定义域为R 的函数mx g nx g x f ++-=)(2)()(是奇函数. (1)求)(x g y=的解析式;(2)求m ,n 的值.17.(本题满分10分)已知函数]1)1[(log )(2+--=a x a x f 的定义域为),1(+∞.(1)求a 的取值范围;(2)解不等式:x xxa a382-->.18.(本题满分12分)在ABC ∆中,角C B A 、、所对的边分别是c b a 、、,C A C A sin sin 21cos cos ⋅=+.(1)求B ∠;(2)当ABC ∆的面积为34,周长为12,求CA ca sin sin ++的值.19.(本题满分12分)为了解盐城某中等专业学校的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列.(1)为了详细了解高三学生的视力情况,从样本中视力在[4.9,5.1)中任选2名高三学生进行分析,求至少有1人视力在 [5.0,5.1)的概率; (2)设b a ,表示参加抽查的某两位高三学生的视力,且已知)0.5,9.4[)6.4,5.4[, ∈b a ,求事件“1.0||>-b a”的概率.20. (本题满分14分)已知n S 为各项均为正数的数列{}n a 的前n 项和,且12、n a 、n S 成等差数列. (1)求数列{}n a 的通项公式;(2)若212nb n a ⎛⎫= ⎪⎝⎭,求证{}n b 为等差数列;(3)n n nb ac -=,求数列}{n c 的前n 项和n T .21. (本题满分10分)我市有一种可食用的食品,上市时,外商王经理按市场价格20元/千克收购了这种食品1000千克放入冷库中,据预测,该食品市场价格将以每天每千克1元上涨;但冷冻存放这些食品时每天需支出各种费用合计310元,而且这类食品在冷库中最多保存160天,同时每天有3千克的食品损坏不能出售. (1)设x 天后每千克该食品的市场价格为y 元,试写出y 与x 的函数关系式;(2)若存放x 天后将这批食品一次性出售,设这批食品的销售总额为P 元,试写出P 与x 的函数关系式; (3)王经理将这批食品存放多少天后出售可获得最大利润W 元?(利润=销售总额-收购成本-各种费用) 22.(本题满分10分)盐城某工厂生产甲、乙两种新型产品,按计划每天生产甲、乙两种新型产品均不得少于3件,已知生产甲种新型产品一件需用煤3吨、电2度、工人4个;生产乙种新型产品一件需用煤5吨、电6度、工人4个.如果甲种新型产品每件价值7万元,乙种新型产品每件价值10万元,且每天用煤不超过44吨,用电不超过48度,工人最多只有48个.每天应安排生产甲、乙两种新型产品各多少件,才能既保证完成生产计划,又能为企业创造最大的效益?23.(本题满分14分)已知椭圆C 中心在原点,长轴在x 轴上,F 1、F 2为其左、右两焦点,点P 为椭圆C 上一点,212,PF F F ⊥且122PF PF == (1) 求椭圆C 的方程;(2) 若圆E 经过椭圆C 的三个顶点,且圆心在x 轴的正半轴上,求圆E 的方程;(3)若倾斜角为450的一动直线l 与椭圆C 相交于A 、B 两点,求当△AOB (O 为坐标原点)面积最大时直线l 的方程.盐城市2018年普通高校单独招生第二次调研考试试卷数学答案一、选择题:二、填空题:11. -1 12. 3 13. (-3,0)∪(3,+∞) 14. 1或-2215.3 三、解答题:16.解:⑴设)10(,)(≠>==a a a x g y x且 由4)2(=g 得:xx g a a 2)(,2,42=∴=∴=; ⑵由题意得:0)0(=f ,0)0(2)0(=++-∴mg ng ,则1)0(==g n ,1221)(++-=∴x x m x f ,则121221)1(111+=+-=-+--m m f ,41221)1(11+-=+-=+m m f 由)1()1(f f -=-得:41121+=+m m ,解得:.2=m17.解:⑴由题意得:01)1(>+--a x a ,则1)1(->-a x a定义域为),1(+∞,1,01>∴>-∴a a ;⑵由⑴得:1>a ,∴不等式化为:x x x 382->-,即:0822>-+x x 解得:{}.42-<>x x x 或18. 解①∵21sin sin cos cos -=⋅-C A C A ∴21)cos(-=+C A ∵),0(21cos π∈=B B 又∴ 60=B ②∵B ac S ABC sin 21⋅=∆ ∴232134⋅⋅=ac ∴16=ac 又12=++c b a ∴b c a -=+12 ∵B ac c a b cos 2222⋅-+=∴ac c a b -+=222 ∴163)12(22⨯--=b b ∴4=b ∴338234sin sin sin ===++B b C A c a19. 解:(1)由题可知:[)4.4,3.4的频数为11.01.0100=⨯⨯,[)5.4,4.4的频数为31.03.0100=⨯⨯.由前4项的频数成等比数列,则可知公比为3, 所以[)6.4,5.4的频数为9,[)7.4,6.4的频数为27. 又后6组的频数成等差数列,则可设数列公差为d , 所以13100256276-=⨯+⨯d 5-=⇒d . 所以[)0.5,9.4的频数12,[)1.5,0.5的频数为7. 设“至少有1人视力在[)1.5,0.5”为事件A .所以5735)(2191121727=+=C C C C A P . (2)设“1.0>-b a ”为事件B . 如图所示:()b a ,可以看成平面中的点坐标,则全部结果所构成的区域为而事件B 构成的区域{}Ω∈>-=),(,1.0),(b a b a b a B .所以21)(=B P . 20. 解:(1)∵12,n a ,n S 成等差数列∴122n n a S =+,即122n n S a =- ……………………………………1分当1n =时,111122a S a ==-,∴ 112a = ……………………………………2分当2n ≥时,1n n n a S S -=- ∴12nn a a -=∴数列{}n a 是以12为首项,2为公比的等比数列, ……………………………3分 ∴121222n n n a --== ……………………………………………………4分 (2)由21()2n b n a =可得2241122log log 224n n n b a n -===-+ ……………………………………6分∴1[2(1)4](24)2n n b b n n +-=-++---=-为常数∴{}n b 为等差数列 ……………………………………………………………8分(3)由(1)、(2)可得21(24)2(2)2n n n c n n --=--+=- ………………………10分 则01221120212(3)2(2)2n n n T n n --=-⨯+⨯+⨯++-⨯+-⨯ ①2n T = 122120212-⨯+⨯+⨯+1(3)2(2)2n n n n -+-⨯+-⨯ ②①-② 得12311(2)2(2222)nn Tn n --=---⨯+++++∴(3)23nn T n =-⨯+ …………………………………………………………14分21.解:⑴由题意得:),1601(,20Z x x x y ∈≤≤+=; ………………3分 ⑵由题意得:),1601(,200009403)31000)(20(2Z x x x x x x P ∈≤≤++-=-+=;………………6分⑶由题意得:33075)105(3310100020)200009403(22+--=-⨯-++-=x x x x W∴当33075105max ==W x 时,,∴存放105天出售可获得最大利润,为33075元. ………………10分22. 解:设每天安排生产甲、乙两种新型产品各y x 、件,利润为z 万元.作出可行区域(如图所示)目标函数可化为10107zx y +-=,作出直线x y l 107:0-=,经过平移在A 点出取得最大值.⎩⎨⎧=+=+124453y x y x ⎩⎨⎧==⇒48y x 即)4,8(A 所以每天应安排生产甲、乙种新型产品各8、4件时,既保证完成生产计划,又能为企业创造最大的效益.()222210x y a b a b+=>>,则23. 解:(1)依题意设椭圆方程为:22222a c a b c ⎧=⎪⎪⎪⎪=⎨⎪⎪=+⎪⎪⎩∴1a b ⎧=⎪⎨=⎪⎩2212x y +=………………………………………4分 (3)设动直线l 方程为y=x+m ,由2212y x m x y =+⎧⎪⎨+=⎪⎩消y 得:3x 2+4mx+2m 2-2=0,……………………………10分∵直线与椭圆有两个交点,∴△>0即m 2<3,设A (x 1,y 1)、B (x 2,y 2)∴,322,3422121-=-=+m x x m x x 代入弦长公式 得2334m AB -=,又原点O 到直线y=x+m 的距离2m d =4923323322334212122422+⎪⎭⎫⎝⎛--=-=⋅-⋅==∴∆m m m m m d AB S AOB……………………………12分 ∵332<,∴m 2=32,即m =时, AOB S最大,此时直线l方程为y x =±14分 解法二:设动直线l 方程为y=x+m ,由2212y x m x y =+⎧⎪⎨+=⎪⎩消x 得:3y 2-2my+m 2-2=0, (10)分∵直线与椭圆有两个交点,∴△>0即m 2<3,设A (x 1,y 1)、B (x 2,y 2)∴2121222,33m y y m y y -+==,∴12y y -==l 与x 轴交于点(-m ,0),∴12AOBS=-=……………………………12分=332<,∴m 2=32,即2m =±时,AOB S最大,此时直线l 方程为2y x =±…………………………14分 .。

江苏省2018年高职院校单独招生文化联合测试数学

江苏省2018年高职院校单独招生文化联合测试数学

江苏省2018年高职院校单独招生文化联合测试试卷数 学参考公式: 锥体的体积公式为Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. 一、选择题(本大题共10小题,每小题4分,共40分)1. 已知i 是虚数单位,若bi a ii +=++-23),(R b a ∈,则b a +的值是( ) A.3; B.1; C.0; D.2-.【答案】C2. 若集合}11|{<<-=x x A ,}02|{2<--=x x x B ,则( )A.B A ⊂;B.A B ⊂;C.B A =;D.∅=B A .【答案】A3. 设抛物线的顶点在原点,准线方程为2-=x ,则抛物线的方程是( )A.x y 82-=;B.x y 82=;C.x y 42-=;D. x y 42=.【答案】B4. 设四边形ABCD 的两条对角线为AC 、BD ,则“四边形ABCD 为菱形”是“BD AC ⊥”的( )A.充分不必要条件;B.必要不充分条件;C.充要条件;D.既不充分也不必要条件.【答案】A5. 已知}{n a 为等差数列,04=+a a k ,以n S 表示}{n a 的前n 项的和,49S S =,则k 的值是( )A.6;B.8;C.10;D.12.【答案】C6. 在平面直角坐标系xOy 中,双曲线1222=-y x 的右焦点坐标为( )A.⎪⎪⎭⎫ ⎝⎛022,;B.⎪⎪⎭⎫ ⎝⎛025,;C.⎪⎪⎭⎫ ⎝⎛026,;D.()03,. 【答案】C7. 若不等式组⎪⎩⎪⎨⎧≤+≥+≥63220y x y x y 所表示的平面区域上有一动点M ,O 为坐标原点, 则||OM 的最小值为( ) A.22; B.3; C.26; D.2. 【答案】D8. 已知函数x x x f 2cos 232sin 21)(-=,则函数)(x f 在⎥⎦⎤⎢⎣⎡-2,2ππ上的单调增区间 是( ) A.⎥⎦⎤⎢⎣⎡-125,12ππ; B.⎥⎦⎤⎢⎣⎡1217,1211ππ; C.⎥⎦⎤⎢⎣⎡-12,125ππ; D.⎥⎦⎤⎢⎣⎡125,12ππ. 【答案】A9. 已知函数2)(+=x x x f ,则曲线)(x f y =在)1,1(--处的切线方程是( ) A.22--=x y ; B.12-=x y ; C.32--=x y ; D.12+=x y .【答案】D10.若过点)1,3(A 的直线l 与圆:C 4)2()2(22=-+-y x 相交形成弦,则其中最短的弦长为( ) A.2; B.2; C.22; D.23.【答案】C二、填空题(本大题共5小题,每小题4分,共20分)11.在等差数列}{n a 中,若3773=+a a ,则=+++8642a a a a .【答案】7412.箱子中有形状、大小都相同的3只红球和2只白球,一次摸出2只球,则摸到的2球颜色不同的概率为 . 【答案】5313.一圆锥的母线长为cm 50,高为cm 40,则该圆锥的侧面积为 2cm .【答案】π150014.已知点)2,1(--A ,)8,3(B ,若AC AB 2=,则点C 坐标为 .【答案】)3,1(15.已知坐标平面内两点)2,(x x A -和)0,22(B ,那么这两点之间距离的最小 值是 . 【答案】21 三、解答题(本大题共5小题,共40分,解答时写出步骤)16.(满分6分)已知θ的顶点为坐标原点,始边为x 轴的正半轴,若),4(y P 是角θ终边上一点,且552sin -=θ,求)sin(πθ-. 【答案】55217.(满分6分)在ABC ∆中,C B A ,,的对边分别是c b a ,,,若B c a C b cos )2(cos -=. (1)求B cos 的值;(2)设2=b ,求c a +的范围.【答案】(1)21(2)222≤+<c a18.(满分8分)如图,在直三棱柱111C B A ABC -中,11===BB BC AC ,31=AB .(1)求证:平面⊥C AB 1平面CB B 1;(2)求三棱锥C AB A 11-的体积.【答案】(1) (2)6119.(满分10分)已知椭圆:C 12222=+by a x )0(>>b a 的一个顶点为抛物线:D y x 342=的焦点,21,F F 分别是椭圆的左,右焦点,且离心率21=e ,过椭 圆右焦点2F 的直线l 与椭圆C 交于N M ,两点. (1)求椭圆C 的方程;(2)是否存在直线l ,使得2-=⋅OM .若存在,求出直线l 的方程;若不 存在,说明理由.【答案】(1)13422=+y x (2))1(2-=x y 或)1(2--=x y20.(满分10分)已知圆:C 25)7()6(22=-+-y x .(1)设圆D 与x 轴相切,与圆C 外切,且圆心D 在直线6=x 上,求圆D 的标 准方程; (2)点)4,2(A 为圆C 上一点,设平行于OA 的直线l 与圆C 相交于 F E ,两点,且OA EF =,求直线l 的方程.【答案】(1)1)1()6(22=-+-y x (2)052=+-y x 或0152=--y x。

2018江苏省对口单招数学模拟试卷

2018江苏省对口单招数学模拟试卷

盐城市2018年普通高校单独招生第二次调研考试试卷数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(填充题.解答题).两卷满分150分,考试时间120分钟.第Ⅰ卷(共40分)注意事项:将第Ⅰ卷每小题的答案序号写在答题纸上一、选择题:(本大题共10小题,每小题4分,共40分,每小题列出的四个选项中,只有一项是符合要求的)1. 设集合}0,1,2{--=A ,}1,{lg x B =,}0{=⋂B A ,则x =( )A .-1B .-2C .1D .22.化简逻辑式ABC ABC AB A +++=( )A .1B .0 C. A D .A 3.下表为某项工程的工作明细表,则完成此工程的关键路径是( ) A .A B G H →→→ B .AC E G H →→→→ C G H →→n 的值可为( ) A .10 B .8 C .6 D .45.已知),0(,43)tan(πθθπ∈=-,则=+)2sin(θπ( )A .54 B .54- C .53 D .53-6.已知点)cos ,(sin θθP 在直线01=-+y x 的上方,则θ的取值范围是( ) A .),2(ππ B .Z ∈+k k k )2,(πππC .),0(πD .Z ∈+k k k ),(πππ7.若一个轴截面是面积为2的正方形的圆柱,它的侧面积与一个正方体的表面积相等,则该正方体的棱长为( )A .66π B .33π C .22π D .36π8.将3台电视机和2台收录机排成一排,要求收录机互不相邻且不排在首、尾,则不同的排列方法种法共有( )A .12种B .36种C .72种D .120种9.抛物线x y 82-=的准线与双曲线12422=-y x 的两渐近线围成的三角形的面积为( ) A .4B .24C .22D .210.已知b >0,直线b 2x +y +1=0与a x -(b 2+4)y +2=0互相垂直,则ab 的最小值为( ) A .1B .2C .22 D .4第Ⅰ卷的答题纸第Ⅱ卷(共110分)二、填空题:(本大题共5小题,每小题4分,共20分,把答案填在题中的横线上) 11.已知数组(2,4,3),(1,,),2a b m n a b ===,则log (1)___________m n -=. 12.已知复数z 满足方程0922=+-x x ,则z = .13.已知奇函数f (x )(x ∈R ,且x ≠0)在区间(0,+∞)上是增函数,且f (-3)=0,则f (x )>0的解集是 .14.函数⎩⎨⎧≥<<-=-0,01),sin()(12x e x x x f x π,若2)()1(=+a f f ,则a 的所有可能值为 .15.若过点P ()3,1作圆122=+y x 的两条切线,切点分别为A 、B 两点,则=AB .三、解答题:(本大题共8题,共90分) 16.(本题满分8分)已知指数函数)(x g y =满足:g(2)=4.定义域为R 的函数mx g nx g x f ++-=)(2)()(是奇函数.(1)求)(x g y =的解析式;(2)求m ,n 的值.17.(本题满分10分)已知函数]1)1[(log )(2+--=a x a x f 的定义域为),1(+∞.(1)求a 的取值范围;(2)解不等式:x xx a a 382-->.18.(本题满分12分)在ABC ∆中,角C B A 、、所对的边分别是c b a 、、,C A C A sin sin 21cos cos ⋅=+.(1)求B ∠;(2)当ABC ∆的面积为34,周长为12,求CA ca sin sin ++的值.19.(本题满分12分)为了解盐城某中等专业学校的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列.(1)为了详细了解高三学生的视力情况,从样本中视力在[4.9,5.1)中任选2名高三学生进行分析,求至少有1人视力在 [5.0,5.1)的概率;(2)设b a ,表示参加抽查的某两位高三学生的视力,且已知)0.5,9.4[)6.4,5.4[, ∈b a ,求事件“1.0||>-b a”的概率.20. (本题满分14分)已知n S 为各项均为正数的数列{}n a 的前n 项和,且12、n a 、n S 成等差数列.(1)求数列{}n a 的通项公式;(2)若212nb n a ⎛⎫= ⎪⎝⎭,求证{}n b 为等差数列;(3)n n n b a c -=,求数列}{n c 的前n 项和n T .21. (本题满分10分)我市有一种可食用的食品,上市时,外商王经理按市场价格20元/千克收购了这种食品1000千克放入冷库中,据预测,该食品市场价格将以每天每千克1元上涨;但冷冻存放这些食品时每天需支出各种费用合计310元,而且这类食品在冷库中最多保存160天,同时每天有3千克的食品损坏不能出售.(1)设x 天后每千克该食品的市场价格为y 元,试写出y 与x 的函数关系式;(2)若存放x 天后将这批食品一次性出售,设这批食品的销售总额为P 元,试写出P 与x 的函数关系式;(3)王经理将这批食品存放多少天后出售可获得最大利润W 元?(利润=销售总额-收购成本-各种费用)22.(本题满分10分)盐城某工厂生产甲、乙两种新型产品,按计划每天生产甲、乙两种新型产品均不得少于3件,已知生产甲种新型产品一件需用煤3吨、电2度、工人4个;生产乙种新型产品一件需用煤5吨、电6度、工人4个.如果甲种新型产品每件价值7万元,乙种新型产品每件价值10万元,且每天用煤不超过44吨,用电不超过48度,工人最多只有48个.每天应安排生产甲、乙两种新型产品各多少件,才能既保证完成生产计划,又能为企业创造最大的效益?23.(本题满分14分)已知椭圆C 中心在原点,长轴在x 轴上,F 1、F 2为其左、右两焦点,点P 为椭圆C 上一点,212,PF F F ⊥且122PF PF == (1) 求椭圆C 的方程;(2) 若圆E 经过椭圆C 的三个顶点,且圆心在x 轴的正半轴上,求圆E 的方程;(3)若倾斜角为450的一动直线l 与椭圆C 相交于A 、B 两点,求当△AOB (O 为坐标原点)面积最大时直线l 的方程.盐城市2018年普通高校单独招生第二次调研考试试卷数学答案一、选择题:二、填空题:11. -1 12. 3 13. (-3,0)∪(3,+∞) 14. 1或-2215.3 三、解答题:16.解:⑴设)10(,)(≠>==a a a x g y x且 由4)2(=g 得:xx g a a 2)(,2,42=∴=∴=; ⑵由题意得:0)0(=f ,0)0(2)0(=++-∴mg ng ,则1)0(==g n ,1221)(++-=∴x xm x f ,则121221)1(111+=+-=-+--m m f ,41221)1(11+-=+-=+m m f 由)1()1(f f -=-得:41121+=+m m ,解得:.2=m17.解:⑴由题意得:01)1(>+--a x a ,则1)1(->-a x a定义域为),1(+∞,1,01>∴>-∴a a ;⑵由⑴得:1>a ,∴不等式化为:x x x 382->-,即:0822>-+x x 解得:{}.42-<>x x x 或 18.解①∵21sin sin cos cos -=⋅-C A C A∴21)cos(-=+C A ∵),0(21cos π∈=B B 又∴ 60=B②∵B ac S ABC sin 21⋅=∆ ∴232134⋅⋅=ac ∴16=ac 又12=++c b a ∴b c a -=+12 ∵B ac c a b cos 2222⋅-+= ∴ac c a b -+=222ac c a 3)(2-+=∴163)12(22⨯--=b b ∴4=b ∴338234sin sin sin ===++B b C A c a19. 解:(1)由题可知:[)4.4,3.4的频数为11.01.0100=⨯⨯,[)5.4,4.4的频数为31.03.0100=⨯⨯.由前4项的频数成等比数列,则可知公比为3, 所以[)6.4,5.4的频数为9,[)7.4,6.4的频数为27. 又后6组的频数成等差数列,则可设数列公差为d , 所以13100256276-=⨯+⨯d 5-=⇒d . 所以[)0.5,9.4的频数12,[)1.5,0.5的频数为7. 设“至少有1人视力在[)1.5,0.5”为事件A .所以5735)(2191121727=+=C C C C A P . (2)设“1.0>-b a ”为事件B .如图所示:()b a ,可以看成平面中的点坐标,则全部结果所构成的区域为()⎭⎬⎫⎩⎨⎧∈⎩⎨⎧<≤<≤<≤<≤=ΩR b a b b a a b a ,,0.59.46.45.40.59.46.45.4,或或而事件B 构成的区域{}Ω∈>-=),(,1.0),(b a b a b a B .所以21)(=B P . 20. 解:(1)∵12,n a ,n S 成等差数列∴122n n a S =+,即122n n S a =- ……………………………………1分当1n =时,111122a S a ==-,∴ 112a = ……………………………………2分当2n ≥时,1n n n a S S -=-111(2)(2)22n n a a -=---122n n a a -=-∴12nn a a -= ∴数列{}n a 是以12为首项,2为公比的等比数列, ……………………………3分 ∴121222n n n a --== ……………………………………………………4分(2)由21()2n bn a =可得2241122log log 224n n n b a n -===-+ ……………………………………6分∴1[2(1)4](24)2n n b b n n +-=-++---=-为常数∴{}n b 为等差数列 ……………………………………………………………8分(3)由(1)、(2)可得21(24)2(2)2n n n c n n --=--+=- ………………………10分 则01221120212(3)2(2)2n n n T n n --=-⨯+⨯+⨯++-⨯+-⨯ ①2n T = 122120212-⨯+⨯+⨯+1(3)2(2)2n n n n -+-⨯+-⨯ ②①-② 得12311(2)2(2222)nn Tn n --=---⨯+++++∴(3)23nn T n =-⨯+ …………………………………………………………14分21.解:⑴由题意得:),1601(,20Z x x x y ∈≤≤+=; ………………3分 ⑵由题意得:),1601(,200009403)31000)(20(2Z x x x x x x P ∈≤≤++-=-+=;………………6分⑶由题意得:33075)105(3310100020)200009403(22+--=-⨯-++-=x x x x W∴当33075105max ==W x 时,,∴存放105天出售可获得最大利润,为33075元. ………………10分22. 解:设每天安排生产甲、乙两种新型产品各y x 、件,利润为z 万元.y x z 107max +=⎪⎪⎪⎩⎪⎪⎪⎨⎧∈≥≤+≤+≤+⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧∈≥≤+≤+≤+++N y x y x y x y x y x N y x y x y x y x y x ,3,122434453,3,484448624453 作出可行区域(如图所示)目标函数可化为10107z x y +-=, 作出直线x y l 107:0-=,经过平移在A 点出取得最大值. ⎩⎨⎧=+=+124453y x y x ⎩⎨⎧==⇒48y x 即)4,8(A 所以每天应安排生产甲、乙种新型产品各8、4件时,既保证完成生产计划,又能为企业创造最大的效益.23. 解:(1)依题意设椭圆方程为:()222210x y a b a b +=>>,则22222a c a b c ⎧=⎪⎪⎪⎪=⎨⎪⎪=+⎪⎪⎩∴1a b ⎧=⎪⎨=⎪⎩2212x y +=………………………………………4分()89y 42x 方程为E 所求圆,42m ,2m 1m 则,0m )m,0设圆的圆心为(解法二:801-x 22-y x E 1F 0E 22D 0F E 10F E 10F D 220F Ey Dx y x E )1,0(),1,0(),0,2()2(2222222=+⎪⎪⎭⎫ ⎝⎛-∴=∴-=+>=+∴⎪⎪⎩⎪⎪⎨⎧-==-=⎪⎩⎪⎨⎧=+-=++=++=++++-依题意可分方程为圆,解得则方程为三点,设圆由题意知圆过(3)设动直线l 方程为y=x+m ,由2212y x m x y =+⎧⎪⎨+=⎪⎩消y 得:3x 2+4mx+2m 2-2=0,……………………………10分∵直线与椭圆有两个交点,∴△>0即m 2<3,设A (x 1,y 1)、B (x 2,y 2)∴,322,3422121-=-=+m x x m x x 代入弦长公式 得2334m AB -=,又原点O 到直线y=x+m 的距离2m d = 4923323322334212122422+⎪⎭⎫ ⎝⎛--=-=⋅-⋅==∴∆m m m m m d AB S AOB ……………………………12分∵332<,∴m 2=32,即2m =±时, AOB S 最大,此时直线l方程为2y x =±…………………………14分 解法二:设动直线l 方程为y=x+m ,由2212y x m x y =+⎧⎪⎨+=⎪⎩消x 得:3y 2-2my+m 2-2=0,……………………………10分∵直线与椭圆有两个交点,∴△>0即m 2<3,设A (x 1,y 1)、B (x 2,y 2)∴2121222,33m y y m y y -+==,∴12y y -==l 与x 轴交于点(-m ,0),∴12AOB S=-=12分=,∵332<,∴m 2=32,即m =时,AOB S最大,此时直线l 方程为2y x =±…………………………14分 .。

(完整版)2018对口高考数学试卷及答案(可编辑修改word版)

(完整版)2018对口高考数学试卷及答案(可编辑修改word版)

江苏省2018年普通高校对口单招文化统考数学试卷—、单项选择题(本大题共10小题,每小题4分,共40分。

在下列每小题中,选出一个正确答案,将答题卡上对应选项的方框涂满、狳黑)1.设集合M={1, 3}, N={a+2, 5},若MPlN={3},则a 的值为A. -1B. 1C. 3D. 52.若实系数一元二次方程x2+mx + n = 0的一个根为1-z ,则另一个根的三角形式为. n . . 7T rr, 3苁..3苁、A. cos——I sin —B. V 2 (cos——+ zsin——)4 4 4 4C. y[2 (cos— + z sin —)D. x/2[cos(-—) + i sin(-—)]4 4 4 43.在等差数列{aj中,若a3, a2016是方程x2-2x-2018 = 0的两根,则3* *3a⑽的值为1A. -B. 1C. 3D. 934.已知命题P:(1101)2=(13) 10和命题q:A • 1=1(A为逻辑变量),则下列命题中为真命题的是A. ~tiB. p AqC. pVqD.-*pAq5.用1, 2, 3, 4, 5这五个数字,可以组成没有重复数字的三位偶数的个数是A. 18B. 24C. 36D. 486.在长方体ABCD-^CiDi中,AB=BC=2,AA I=2A/6,则对角线BD:与底面ABCD所成的角是— B. — C.—6 4 38.若过点P (-1,3)和点Q(1, 7)的直线&与直线mx + (3m - 7)y + 5 = 0平行,则m的值为人2 C. 69.设向量a=(cos2^, -), b= (4,6)、若sin(^--0 =-:则|25a-Z?| 的值为3 、A. -B. 3C. 4D. 5510.若函数/(x) = x2-bx+c满足/(I + x) = /(I - x),且 / ⑼=5,则f(b x)与/(O 的大小关系是A- /(dO</(C x) B. /(y)>/(c x) c. /«/)</(c x) D. /(//)>/(c x)二、填空题(本大题共5小题,每小题4分,共20分)11.设数组a=(-l, 2, 4),b=(3, rn, -2),若a • b=l,则实数m= 。

江苏2018年单招高考数学试题(卷)和答案解析

江苏2018年单招高考数学试题(卷)和答案解析

WORD 资料整理江苏省 2018 年普通高校对口单招文化统考数学 试卷一、单项选择题(本大题共 10 小题,每小题 4 分,共 40 分,在下列每小题中,选出一个正确答案,将答题卡上对应选项的方框涂满、涂黑)1.设集合 M ={1,3}, N ={a +2, 5},若 MN ={3},则 a 的值为 ( )A.-1B.1C.3D.52.若实系数一元二次方程x 2mxn 0 的一个根为 1-i ,则另一个根的三角形式为() A.cosi sin B. (2 cos 3i sin 3)4 44 4 C. (2 cosisin ) D. 2 cos 4 i sin4 443.在等差数列 an 中,若 a 3, a2016 是方程 x22x 2018 0 的两根,则 3a13a2018的值为() 1 A. 3B.1C.3D.9已知命题 p:(1101) 和命题 q: A 1 1( A为逻辑变量),则下列命题中4. 2=(13)10为真命题的是 ( ) A. pB. pq C. p qD. pq5.用 1, 2, 3, 4, 5 这五个数字,可以组成没有重复数字的三位偶数的个数是 () A.18B.24C.36D.48 在长方体1 1 1 1 中, AB=BC=2,AA12 6 ,则对角线 BD1 与底面 ABCD 6. ABCD-AB C D=所成的角是 () A. 6B. 4C. 3D. 27.题 7 图是某项工程的网络图,若最短总工期是13 天,则图中 x的最大值为()WORD 资料整理若过点 P( 1,3)和点 Q (1,7)的直线 l 1 与直线 l2: mx (3m 7) y 5 0平行,8.则 m的值为( )A.2B.4C.6D.89.设向量 a2 ( 4,6) ,若 sin( 3,则 | 25ab |的值为(cos 2 , ),b) () A. 35 5 B.3 C.4 D.6510.若函数 f( x) x 2bx c 满足 f (1x) f (1- x) ,且 f (0) 5, 则 f (b x)与 f (c x ) 的大小关系是( )A. f (b x)f (c x ) B. f (b x) f (c x ) C. f(b x)f (c x ) D. f (b x ) f (cx)二、填空题(本大题共 5 小题,每小题 4 分,共 20 分)11.设数组 a ( 1,2,4) ,b (3, m, 2) ,若 a b 1,则实数 m =. 23), 则 tan .12.若 sin,( , 3213.题 13 图是一个程序框图,执行该程序框图,则输出的m 值是.22 x 1 3cos14.若双曲线 xy1( a >0,b >0)的一条渐近线把圆 2 ( 为参数)a 2b 2y3sin分成面积相等的两部分,则该双曲线的离心率是_______. | x |,的实根,则实数 a 的取值范围是 ________________.完美格式可编辑三、解答题(本大题共8 小题,共 90 分)16.(8 分)设实数 a 满足不等式 | a -3|<2.( 1)求 a 的取值范围;( 2)解关于 x 的不等式 log a 32 x 1log a 27 .17.(10 分)已知 f ( x) 为R上的奇函数,又函数g( x) a x 211 ( a >0 且 a 1 )恒过定点 A.( 1)求点 A 的坐标;( 2)当 x <0 时, f ( x) x2mx ,若函数 f ( x) 也过点 A ,求实数 m 的值;( 3)若 f (x 2) f ( x) ,且 0< x <1 时, f ( x) 2 x 3 ,求 f ( 7) 的值 .218.(14 分)已知各项均为正数的数列{ an }满足 a2 6 , 1 log 2 an log 2 an 1 ,n N .( 1)求数列 { a n }的通项公式及前 n 项和 S n;( 2)若 b n log 2a n2(n N ) ,求数列 {b n }的前 n 项和T n .919.(12 分)某校从初三年级体育加试百米测试成绩中抽取 100 个样本,所有样本成绩全部在11 秒到 19秒之间 . 现将样本成绩按如下方式分为四组:第一组 [11,13),第二组 [13,15),第三组 [15, 17),第四组 [17,19],题 19 图是根据上述分组得到的频率分布直方图 .(1)若成绩小于 13 秒被认定为优秀,求该样本在这次百米测试中成绩优秀的人数;(2)是估算本次测试的平均成绩;(3)若第四组恰有 3 名男生,现从该组随机抽取 3 名学生,求所抽取的学生中至多有 1 名女生的概率 .20.( 12 分)已知正弦型函数 f (x) H sin( x ) ,其中常数H 0 ,0 ,0,若函数的一个最高点与其相邻的最低点的坐标分别是,,32 127, 3 .12(1)求 f ( x) 的解析式;(2)求 f ( x) 的单调递增区间;( 3)在△ ABC 中 A 为锐角,且 f ( A) 0 . 若 AB 3 , BC 3 3 , 求△ ABC 的面积S .WORD 资料整理21.(10 分) 某学校计划购买 x 咯篮球和 y 个足球 .2x y 5( 1)若 x , y 满足约束条件 x y 2 ,问该校计划购买这两种球的总数最多是x 7多少个?2 x y 5( 2)若 x , y 满足约束条件 x y2 ,已知每个篮球 100 元,每个足球 70 元,x 7求该校最少要投入多少元?22.(10 分)某辆汽车以 x 千米 / 小时 x60,120 的速度在高速公路上匀速行驶,每小时的耗油量为 1xk 3600升,其中 k 为常数 .若该汽车以120 千米 / 小5x时的速度匀速行驶时,每小时的耗油量是 12 升.( 1)求常数 k 值;( 2)欲使每小时的耗油量不超过 8 升,求 x 的取值范围;( 3)求该汽车匀速行驶100 千米的耗油量 y (升)的最小值和此时的速度.x 2y 2x m ,直线 l 与椭圆 C 交于 A , B23.(14 分)已知椭圆 C :1 和直线 l :y23两点 . (1)求椭圆 C 的准线方程;(2)求△ ABO(O 为坐标原点 ) 面积 S 的最大值;(3) 如果椭圆 C 上存在两个不同的点关于直线 l 对称,求 m 的取值范围 .WORD 资料整理江苏省 2018 年普通高校对口单招文化统考数学试题答案及评分参考一、单项选择题(本大题共 10 小题,每小题 4 分,共 40 分)题号12 3 4 5 6 78910答案 BCDCBCCADA二、填空题(本大题共5 小题,每小题 4 分,共 20 分)11.6 12. 2 513.48 14.515. a 4 5三、解答题(本大题共 8 小题,共 90 分)16. (8 分)解:(1)由题意知: 2 a 3 2 , ·····························2 分 即1 a 5. ··········································2 分(2)因为 1 a 5 ,所以 32x 127 33, (2)分于是 2x 1 3 ,故 x 1. ·······························2 分17. ( 10 分)解:(1)因为当 x 2 0 ,即 x 0时,····························1 分g( x ) 12 ,···········································1 分所以定点 A 的坐标为( 2,12 ). ·························1 分(2)因为 f (x) 是奇函数,所以 f ( 2) f ( 2) ,·································2 分于是 ( 4 即 m 4 . ·······················2 分2m ) 12 ,(3)由题意知: f ( 7)f ( 72)f ( 3) f ( 32) f (1)f (1)22 2 2 2 2(2 1 3) 2. (3)分 18. ( 14 分) 2解:(1)由题意知 log 2 an 1 log 2 a n 1,得 an 12 ,a n所以数列 { a n } 是公比 q =2, a 1 a 23 的等比数列,······· 2 分2完美格式可编辑WORD 资料整理S n (2n)1). (3)分3 1 3( 2n1 2(2)因为 b n log 2a n2log 2(32n1 )2 log 2 22 n 22n 2 ,·······2 分9 9所以数列 { b n } 是首项为 0,公差为 2 的等差数列,·········2分于是T n 2n 2n n2.·····························分2n 219. ( 12 分)解:(1)由频率分布直方图可得成绩优秀的人数为0.1×2×100=20. ······································4 分(2)因为 12×0.1+14 ×0.15+16 ×0.2+18 ×0.05=7.4 ,·············2 分所以本次测试的平均成绩为 7.4×2=14.8 秒. ··············2 分(3)由频率分布直方图得第四组有 100×0.05 ×2=10 人,其中由 7 名女生,3 名男生 . ·········································1 分设“所抽取的 3 名学生中至多有 1 名女生”记作事件 A所求事件的概率为C33C32C7111.·················分P(A)C1033 6020.(12 分)解:(1)由题意知 H3 ,········································1 分因为T712 ,所以 T , 即 2 2 ,··········1 分2 12 2 T于是 f (x) 3sin(2x ) ,把点(,3)代入可得,12 3即 f(x) 3 sin(2x ) . ·································2 分3(2)由2k 2x3 2k, (2)分2 2解得5kx k , k Z , 12 1212(3)由 f ( A) 3sin( 2A ) 0, A 为锐角,得 A ,··········1 分3 3在△ ABC 中, cos9 AC 227 1,解得 AC 6 . ·······1 分6 AC 2完美格式可编辑WORD 资料整理故 S 1 3 6 sin 9 3 . (2)分2 3 221. (10 分)解:(1)设该校一共购买 z 个球,则目标函数是 z x y ,··········1 分作出约束条件所表示的平面区域(答 21 图),解方程组 2xy 5 得 x7,···········2 分x 7 y 9图中阴影部分是问题的可行域,根据题意 x N , y N ,从图中看出目标函数在点 A (7,9)处取得最大值,即 max z=7+9=16个, 所以该校最多一共可购买 16 个球 . ········3 分 (2)设该校需要投入w 元,则目标函数是w100 x 70 y ,························· 1 分约束条件的可行域是答21 图中不包含边界的部分,根据x N, y N ,容易得到满足条件的整数点只有三个,分别是( 5,4 ),( 6,5 ),(6,6 ),·························································2 分显然点( 5,4 )是最优解,此时 min w =100×5+70×4=780 元,所以该校最少投资 780元. ··································1 分22. ( 10 分)解:(1)由题意知: 12 1 (120 k 3600) ,解得 k90 . ···········3 分153600 120(2)由题意知 x 90 )8 ,·························· 分 (5 x 2化简得 x 2130 x 3600 0 , 解得 40x90 , (1)分因为 x [60,120] ,故 x 的范围是 60 x90 . ······························1 分(3)由题意知y 100 1 ( x 90 3600 )·····························1 分x 5 x , 完美格式可编辑WORD 资料整理( 903600) 20 1 x x 2令 11 1 ) , t,t ( , x120 60则 y 72000 t 21800t 20当 t1 时,即 x80 千米 / 小时,最低耗油量 y35 8.75升 .80 4···················································2 分23. (14 分)解:( 1)易知 a 2 3 , b 22 ,得 c 1, (2)分所以准线方程为 ya 23 . ·····················2 分cy x m(2)联立方程组 x 2y 2,化简得 5x 24mx 2m 2 60 ,213 由24m 2120 0 得5 m5设 A( x 1, y 1 ), B( x 2 , y 2 ) ,则 x 1 x 2 4m, x 1 x 22m 26 ,55于是| AB|= 1 1 | x 1 x 2 | 2 16m 220(2m 26)54 35m 2,·························2 分5又原点 O 到直线 y x m 的距离 | m|,············分d 1 2所以 S 1 4 3 5 m 2 | m | 6| m | 5 m 2252 56 (5 m2 ) m2 6 5 m2m2 6 ,5 5 2 2完美格式可编辑WORD 资料整理当 m 10 时,等号成立,2即△ ABO 面积的最大值为6 . (3)分2(3) M ( x3 , y3 ), N ( x4 ,y4 )是椭圆上不同的两点,它们关于直线l对称,所以直线MN的方程可设为y x n ,y x n联立方程组x2y21,化简得5x24nx2n2 6 0 ,2 3于是16n240n2120 0,解得5 n 5 ·····1 分,4n 6n又 x3 x4 5 ,y3y4 - x3 nx4n 5 ,因此MN的中点坐标P( 2n , 3n ) ,点 P 必在直线 l 上,5 5代入直线方程得m n (1)分,5又 5 n 5 ,5m 5·······························2 分所以5 5 .完美格式可编辑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省2018年普通高校对口单招文化统考
数学试卷
注意事项
考生在答题前请认真阅读本注意事项及各题答题要求
1.本试卷共4页,包含选择题(第1题~第10题,共10题)、非选择题(第11题~第23题,共13题)。

本卷满分为150分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡
一并交回。

2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、考试证号与您本人是否相符。

4.作答选择题(第1题~第10题),必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案。

作答非选择题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。

5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。

一、单项选择题(本大题共10小题,每小题4分,共40分。

在下列每小题中,选出一个

确答案,将答题卡上对应选项的方框涂满、涂黑)
1.设集合,若则的值为
{}{}5,231+==a N M ,,{},3=⋂N M a A.-1
B.1
C.3
D.5
2.若实系数一元二次方程的一个根为,则另一个根的三角形式
02=++n mx x i -1为
A
B 4
sin 4
cos
π
π
i +(
4
3sin 43cos 2π
πi +
C
D (4
sin 4cos

π
i +])((4
-sin 4-cos

π
i +3.在等差数列中,若是方程的两根,则的{
}n a 20163,a a 0201822=--x x 2018133a a ⋅值为
2
A
B 1
C 3
D 9
31
4.已知命题p:和命题q:(A 为逻辑变量)
,则下列命题中()()102131101=11=⋅A 为真命题 的是
A
B
C
D p ⌝q p ∧q p ∨q
p ∧⌝5.用1,2,3,4,5这五个数字,可以组成没有重复数字的三位偶数的个数是
A 18
B 24
C 36 D48
6.在长方体中,,则对角线与底面1111D C B A ABCD -2==BC AB 621=AA 1BD ABCD 所成角是
A
B
C
D



2
π
7.下图为某项工程的网络图。

若最短总工期是13天,则图中的最大值为
x A. 1
B.2
C.3
D.4
8.若过点P (-1,3)和点Q(1,7)的直线与直线:平行,
1l 2l 05)73(=+-+y m mx 则m 的值为
A .2
B.4
C.6
D.8
9.设向量,,若,则的值为)
(52,2cos θ=→
a )(6,4=→
b 5
3
)sin(=-θπ→→-b a 25A. B.3
C.4
D.5
5
3
3
10.若函数满足且则与的c bx x x f +-=2)(),1()1(x f x f -=+,5)0(=f )(x b f )c (x f 大小关系是A. B. C.4 D.)
()(x x c f b f ≤)
()(x x c f b f ≥)
()(x x c f b f <)
()(x x c f b f >二、填空题(本大题5小题,每小题4分,共20分)
11.设数组,,若,则实数。

)4,2,1(-=a )2,,3(-=m b 1=⋅b a ___________m =12.若,,则。

32sin -=θ⎪⎭

⎝⎛∈2

πθ,
_______tan =θ13.题13图是一个程序框图,执行该程序框图,则输出的m 的值是
____________。

14.若双曲线的一条渐近线把圆(为参
)0,0(122
2
2>>=-b a b y a x ⎩
⎨⎧+=+=θθsin 32cos 31y x θ数)分成面积相等的两部分,则该双曲线的离心率是_____________.
15.函数,若关于的方程存在三个不相等的
⎪⎩⎪⎨⎧>+--≤=2
,942
,)(2x a x x x x x f x ()1=x f 实根,则函数解析式中的取值范围_________.
a 三、解答题(本大题共8小题,共90分)16.(8分)。

满足不等式设实数23<-a a
37
log 3log 2112a x a x a >+的不等式)解关于(的取值范围;
)求(17.(10分)已知为R 上的奇函数,又函数恒过定点
)(x f )且(1011)(2
≠>+=-a a a
x g x A 。

(1)、求点A 的坐标;
(2)、的值;
点,求实数也过若函数时,当m A x f mx x x f x )(.)(02
+-=<(3)、.
2
7(,32)(10),()2(的值求时,且若f x x f x x f x f -=<<=-
18.(14分)已知各项均为正数的数列满足{
}n a 。

*
1222,log log 1,6N n a a a n n ∈=+=+(1)、的通项公式及前n 项和;{
}n a 求数列n S (2)、若,求数列的前n 项和)(9
log *2
2N n a b n
n ∈={
}n b n T
o d
19.(12分)某校从初三年级体育加试百米测试成绩中抽取100个样本,所有样本成绩全部在
11秒到19秒之间。

现将样本成绩按如下方式分成四组:第一组,第二组 [
)1311,[)1513,,
第三组,第四组,图是根据上述分组得到的频率分布直方图。

[)1715,[)1917,(1)若成绩小于13秒被认定为优秀,求该样本在这次百米测试中成绩优秀的人数;(2)试估算本次测试的平均成绩;
(3)若第四组恰有3名男生,现从该组随机抽取3名学生,求所抽取的学生中至多有一名女生的概率。

20.(12分)已知正弦型函数其中常数。

若函
),sin()(ϕω+=x H x f 2
0,0,0π
ϕω<
<>>H 数的一个最高点与其相邻的最低点的坐标分别是。

),),(
,(3-12
7312
π
π
(1)求的解析式;
)(x f
(2)求的单调增区间;
)(x f (3)在中,A 为锐角,且。

若AB=3,BC=,求的面积S 。

ABC ∆0)(=A f 33ABC ∆21.(10分)某学校计划购买个篮球和个足球。

x y (1)若,满足的约束条件问该校计划购买这两种球的总数最多是多少个?
x y ,7252⎪⎩

⎨⎧≤≤-≥-x y x y x (2) 若,满足的约束条件已知每个篮球100元,每个足球70元,求该
x y ,7252⎪⎩

⎨⎧≤≤-≥-x y x y x 校最少要投入多少元?
22.(10分)某辆汽车以的速度在高速公路上匀速行驶,每小时[]()120,60/∈x x 小时千米的耗油量为升,其中k 为常数。

若该汽车以120米/小时的速度速度匀速⎪⎭

⎝⎛+
-x k x 360051行驶时,每小时的耗油量是12升。

(1)求常数k 的值;
(2)欲使每小时的耗油量不超过8(升),求x 的取值范围;
(3)求该汽车匀速行驶100千米的耗油量y (升)的最小值和此时的速度。

23.(14分)已知椭圆C :+=1和直线:y=x+m,直线与椭圆C 交于A,B 两点。

22x 3
2y l l (1)求椭圆C 的准线方程;
(2)求(O 为坐标原点)面积S 的最大值;
ABO ∆(3)如果椭圆C 上存在两个不同的点关于直线对称,求 m 的取值范围。

l。

相关文档
最新文档