电磁干扰的屏蔽方法知识

合集下载

防止高频干扰的方法

防止高频干扰的方法

防止高频干扰的方法高频干扰是指在电子通信中,由于高频信号的干扰导致通信质量下降或无法正常进行的现象。

为了解决这个问题,人们采取了一系列的方法来减少或消除高频干扰的影响。

本文将介绍几种常见的防止高频干扰的方法。

一、屏蔽方法屏蔽是最常见的防止高频干扰的方法之一。

它利用屏蔽材料将电子设备或通信线路包裹起来,阻挡高频信号的干扰。

屏蔽材料通常采用金属材料,如铜、铝等,具有良好的导电性和屏蔽性能。

在设计电子设备或布置通信线路时,应合理选择屏蔽材料,确保其能够有效地屏蔽高频干扰。

二、滤波器方法滤波器是防止高频干扰的另一种常用方法。

滤波器可以通过选择特定频率的信号,将高频干扰滤除,保留所需信号。

常见的滤波器有低通滤波器、带通滤波器和带阻滤波器等。

通过合理选择滤波器的参数,可以有效地降低高频干扰对通信系统的影响。

三、接地方法接地是防止高频干扰的重要手段之一。

通过将电子设备或通信线路的金属外壳与地面连接,可以将高频干扰的电荷导入地面,减少对设备或线路的影响。

在接地中,要保证接地电阻的低阻值,以提高接地效果。

此外,还可以采取屏蔽层接地、信号线接地等方法,进一步提高防止高频干扰的效果。

四、距离隔离方法距离隔离是一种有效的防止高频干扰的方法。

通过增加设备或线路之间的距离,可以减少高频干扰的传播和影响范围。

在设计电子设备或布置通信线路时,可以合理规划设备之间的距离,避免高频干扰的传递。

五、抗干扰设计方法抗干扰设计是防止高频干扰的综合性方法。

它包括电路设计、信号处理、电磁兼容性等方面的内容。

在电路设计中,可以采用抗干扰电路和滤波电路来降低高频干扰的影响。

在信号处理方面,可以采用差分信号传输、编码解码等技术来提高信号的抗干扰能力。

在电磁兼容性方面,可以通过减少电磁辐射、提高抗电磁辐射能力等措施来降低高频干扰。

六、培训和教育方法为了防止高频干扰对电子设备和通信系统的影响,人们还可以通过培训和教育的方式提高工程师和操作人员的防干扰意识和技能。

emc防护知识

emc防护知识

电磁兼容性( EMC)是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁干扰的能力。

因此,EMC防护知识主要涉及如何降低设备或系统产生的电磁干扰以及提高其抵抗电磁干扰的能力。

以下是一些常见的EMC防护知识:
1.接地:接地是EMC防护中最基本的方法之一。

通过将设备或系统的接地,可以将静
电和电磁干扰导入地下,从而减少对设备的干扰。

2.屏蔽:屏蔽是另一种常用的EMC防护方法。

通过使用导电材料(如金属)制成的屏
蔽体,可以有效地隔离和减少电磁干扰的传播。

3.滤波:滤波技术可以有效地减少电磁干扰的传播。

通过使用适当的滤波器,可以减
少信号中的噪声和干扰成分,从而降低电磁干扰的影响。

4.电缆管理:电缆是电磁干扰的主要传播途径之一。

因此,良好的电缆管理对于EMC
防护至关重要。

确保电缆远离干扰源,避免电缆过长,以及使用适当的电缆类型都可以降低电磁干扰的影响。

5.设备布局:设备布局对于EMC防护也非常重要。

确保敏感设备远离干扰源,并按照
特定的规则和顺序排列设备,可以减少电磁干扰的影响。

6.软件开发:软件开发人员在编写代码时也应该考虑EMC问题。

通过使用适当的算法
和数据结构,可以减少软件运行时产生的电磁干扰。

以上是一些常见的EMC防护知识,但具体的实现方法可能因设备和系统的不同而有所差异。

因此,在实际应用中,建议参考相关设备的EMC标准和规范,以确保设备或系统的正常运行和可靠性。

屏蔽罩知识多大孔,多厚的铁皮,才能封住电磁波!这有个公式

屏蔽罩知识多大孔,多厚的铁皮,才能封住电磁波!这有个公式

屏蔽罩知识多大孔,多厚的铁皮,才能封住电磁波!这有个公式在电子产品中,如果有多种信号混合在一起,比如高频电路,射频电路,高压与低压电路等等电路。

这些电路彼此之间是会有干扰的。

如果不做任何措施直接放在一起,各个模块可能会运行不正常,也可能会死机。

原创今日头条/飞聊:卧龙会IT技术这样,我们就有一个屏蔽罩来解决他们之间互相干扰。

屏蔽的概念:屏蔽其实相当于是一个滤波器,放在电磁波的传播路径上,对一部分的频段形成高阻抗,阻抗越大,屏蔽性能越好。

说到屏蔽罩就要讲讲两个知识:1,趋肤效应k:材料电导率(或电阻率)温度系数;u:导线材料的磁导率(铜=4π×10-7 H/m);r:材料的电导率(铜=5.8×107 S/m)这个就能看出越肤深度与信号频率有关,信号频率越高,越在导体表面流通,也就是从表面下去越浅。

这样导致实际的阻抗比原先本来的阻抗增大,导体利用率下降。

这个对于信号传输来说,是不利的。

但是对于屏蔽罩来说,我们就要利用这个高频信号的趋肤效应做些文章,能让屏蔽有效果。

趋肤效应一定程序上是阻止信号的传输,那我们是不是可以依信号的频率算出这个趋肤深度,我们只要大于这个深度,不就可以阻止信号传输了吗?原创今日头条/飞聊:卧龙会IT 技术对于低频,因为趋肤深度很厚,所以很难屏蔽!50hz的趋肤深度是5-15mm,谁家会去做这么厚的屏蔽罩,你以为是钢板!不同的金属材料,会有不同的屏蔽效果。

对于一般金属,0.5mm 厚度就能对1MHZ的电磁波有较好的屏蔽效果了,100M的就可以更薄!2,讲讲多大的孔能封死多高频率的电磁波。

这里就有个屏蔽效能。

公式如下d是代表孔直径这个屏蔽效能越大,屏蔽效果就越好。

这里有个等级3,屏蔽效能等级的划分一般结构件的屏蔽效能分为以下六个等级,各级屏蔽效能指标规定如下:E级:30-230 MHz 20 dB;230-1000 MHz 10 dBD级:30-230 MHz 30 dB;230-1000 MHz 20 dBC级:30-230 MHz 40 dB;230-1000 MHz 30 dBB级:30-230 MHz 50 dB;230-1000 MHz 40 dBA级:30-230 MHz 60 dB;230-1000 MHz 50 dBT级:比A级高10dB或者以上,和/或对低频磁场、1GHz以上平面波屏蔽效能有特殊需求屏蔽效能等级由高至低分别为:T级 A级 B级 C级 D级 E级。

电磁干扰的屏蔽方法知识

电磁干扰的屏蔽方法知识

电磁干扰的屏蔽方法知识电磁干扰(EMI)是指电磁场能够穿透设备或电路的特定部分,从而导致故障、错误或停机的现象。

电磁干扰通常包括来自雷达、航空电子、贺兰山、电力线、无线电和发射塔等无线电波源的干扰。

在工业和科技领域,电子设备用途广泛,因此解决电磁干扰问题是非常重要的。

本文将介绍电磁干扰的屏蔽方法。

1. 金属屏蔽材料金属是一种可靠的屏蔽材料,它能有效地吸收和反射电磁波。

金属薄膜的应用是最常见的屏蔽方法,例如铜箔、镀金银等。

在使用这些薄膜进行屏蔽时,应确保屏蔽材料与所屏蔽设备之间有良好的接地。

2. 电磁波吸收材料电磁波吸收材料是一种能够吸收电磁波的材料。

电磁波吸收材料可分为两类:一是铁磁材料和铁氧体材料,主要用于吸收低频磁场;二是导电复合材料,主要用于吸收高频电磁波。

导电复合材料包括碳纤维、纳米碳管和金属粉末等。

3. 地线地线是非常重要的屏蔽方法。

地线是一根足够长的导体,通过直接联系大地来接地。

地线可将电磁干扰引导到地面上,从而减轻实验设备的干扰。

在使用地线时,应注意地线的长度应达到最佳长度,这样才能使地线的效果达到最佳。

4. 屏蔽罩屏蔽罩是一种能够有效地屏蔽电磁干扰的装置。

屏蔽罩可以是单层或多层的金属结构。

多层屏蔽罩可以提供更好的屏蔽效果,但是成本也会更高。

一般情况下,屏蔽罩应该与设备相连,以确保一个完全传导的屏蔽效果。

5. 电磁隔离屏蔽墙在电磁隔离屏蔽墙内,内部设备可以自由地交换信息,而不被外部物体干扰。

电磁隔离屏蔽墙是一种构造紧凑、电磁屏蔽效果显著的屏蔽材料结构。

在使用电磁隔离屏蔽墙时,应考虑到墙壁阻挡电磁波的能力。

总结:电磁干扰是工业和科技领域一个很普遍的问题。

屏蔽电磁干扰的方法很多,包括金属屏蔽材料、电磁波吸收材料、地线、屏蔽罩和电磁隔离屏蔽墙等。

应该根据实际情况选择适合的屏蔽方法,以达到最佳的屏蔽效果。

电磁干扰的屏蔽方法知识

电磁干扰的屏蔽方法知识

电磁干扰的屏蔽方法知识电磁干扰是指在电磁波传播的过程中,外部电磁波对其他电子设备的干扰现象。

随着电子设备的日益普及和电磁波的频谱增加,电磁干扰问题变得越来越严峻。

为了保证电子设备的正常工作和通信质量,人们不断探索和研究电磁干扰的屏蔽方法。

电磁干扰可以分为传导干扰和辐射干扰两种。

传导干扰是指电磁波通过导线或介质传输到其他设备中,造成设备之间的相互干扰;辐射干扰是指电磁波通过空气传播到其他设备中,也会造成相互干扰。

针对这两种干扰现象,人们采取了多种屏蔽方法。

在传导干扰屏蔽方面,主要包括以下几种方法:1.选择合适的材料:用良好的导电材料制作外壳或覆盖物,能够有效屏蔽传导干扰。

常用的材料有金属、导电橡胶和导电涂层等。

2.设计合理的接地系统:通过合适的接地设计和接地导线的布置,可以有效地降低传导干扰。

接地系统主要包括设备接地、建筑物接地和电气系统接地等。

3.使用滤波器:在输入输出端口上安装合适的滤波器可以有效地抵御传导干扰。

滤波器是根据干扰信号频率特性进行设计,可以提供有效的衰减。

在辐射干扰屏蔽方面,主要包括以下几种方法:1.合理布局:对设备的线路、电缆和天线等进行合理布局,避免产生不必要的电磁辐射。

特别是要避免平行布置的线路和电缆之间产生电磁耦合。

2.屏蔽罩:在干扰源和受干扰设备之间设置屏蔽罩,可以有效地降低辐射干扰。

屏蔽罩可以用金属网、金属板或金属化塑料等材料制作。

3.磁屏蔽:对于强磁场干扰,可以采用磁屏蔽材料进行屏蔽。

常用的磁屏蔽材料有镍铁合金和铁氟龙等。

除了以上屏蔽方法,还有一些其他的技术手段用于电磁干扰的屏蔽:1.圆形线缆:圆形线缆可以减少电磁辐射,降低辐射干扰。

它与矩形线缆相比,能够减小电磁辐射的距离。

2.电磁封闭室:电磁封闭室是一种特殊的屏蔽装置,能够完全屏蔽外界的电磁波,用于测试电磁兼容性和电磁辐射等。

3.使用差模传输线:差模传输线的优点是可以减少传输线上的电磁辐射和传导干扰。

差模传输线可以将正负信号在同一传输线上进行传输,减小电磁辐射。

电磁干扰对电子设备的影响与防护

电磁干扰对电子设备的影响与防护

电磁干扰对电子设备的影响与防护电磁干扰是指电磁场中的能量在电磁传输路径上发生的干扰现象。

它对电子设备的正常运行造成了诸多问题,因此,对于电磁干扰的影响和防护是非常重要的。

本文将从以下几个方面进行详细介绍。

一、电磁干扰的影响1.对电子设备正常工作的影响:电磁干扰会引起电子设备的干扰电流和干扰电压,从而导致设备的误差和故障。

特别是对于精密电子设备,如医疗器械、航空仪表等,干扰可能导致严重的后果。

2.对通信系统的影响:电磁干扰会导致通信系统的接收信号质量下降,从而影响通信质量和传输速度。

这对于无线通信系统尤为重要,因为它们更容易受到电磁干扰的影响。

3.对生活和工作环境的影响:电磁干扰会产生噪音和电磁波辐射,对人体健康和生活质量造成潜在风险。

尤其是长期处于电磁干扰环境中的人们可能会出现焦虑、失眠等健康问题。

二、电磁干扰的防护措施1.合理导线布局:通过合理布局电器设备之间的导线,避免电源线与信号线交叉布置,减少相互之间的干扰。

2.引入地线:为电子设备引入地线,将干扰电流通过地线引导到地面,减少设备之间的干扰。

3.使用屏蔽材料:在电子设备的外部壳体和关键元件上使用屏蔽材料,以阻挡外部电磁场对设备的干扰。

4.使用滤波器:在电源线路上安装滤波器,以滤除电源中的高频干扰信号。

5.增加设备的抗干扰性能:在设计电子设备时,应优先考虑其抗干扰能力,采取适当的屏蔽和过滤技术,降低其对外界电磁场的敏感度。

6.加强室内电磁环境管理:合理布局电子设备,避免电磁辐射交叉干扰。

减少电子设备数量和使用频率,尽量使用低功率和低辐射设备。

7.加强监测和测试:定期对电子设备进行电磁干扰测试,了解设备的抗干扰性能,并及时采取相应的措施进行修复和维护。

三、注意事项1.合法使用设备:不得使用未经授权或违规的电子设备,避免因不合规使用设备导致电磁干扰问题。

2.保持设备良好状态:定期清洁设备,确保设备的良好接地,避免接地线或连接线松动或断裂。

3.加强员工培训:加强对员工的电磁干扰防护知识的宣传和培训,提高他们对电磁干扰的认识和应对能力。

弱电系统中的电磁干扰问题

弱电系统中的电磁干扰问题

弱电系统中的电磁干扰问题弱电系统在现代建筑中扮演着至关重要的角色,包括但不限于安全监控、通信、消防系统等。

然而,频繁发生的电磁干扰问题可能会对这些系统的正常运行造成严重影响。

在本文中,我们将讨论弱电系统中的电磁干扰问题,并提出一些解决方案。

一、电磁干扰的定义及影响电磁干扰是指外部电磁场与被干扰系统之间的相互作用,导致系统性能下降或者失效。

在弱电系统中,电磁干扰可能来自不同的源,如电磁辐射、静电场、功率线干扰等。

这些干扰源可能会对系统的传输、接收和传感器等关键部件造成不同程度的干扰。

电磁干扰对弱电系统的影响是多方面的。

首先,它可能导致信号传输中断或者失真,使得监控、通信等功能无法正常运行。

其次,电磁干扰可能干扰传感器的准确度,导致误报或者漏报情况的发生。

最重要的是,电磁干扰还可能损坏设备和电路,增加维修和更换的成本。

二、电磁干扰的解决方案为了解决弱电系统中的电磁干扰问题,我们可以采取以下几种解决方案:1. 电磁屏蔽技术电磁屏蔽技术是减少电磁干扰的常见方法之一。

通过使用屏蔽材料和屏蔽设备,可以有效地阻隔外部电磁场对系统的影响。

这些屏蔽材料可以是金属网、金属膜、导电涂层等,通过将其应用于设备和电路上,可以将外部干扰降至最低。

2. 电磁地线技术电磁地线技术是另一种有效的去除电磁干扰的方法。

通过将设备和电路正确接地,可以有效地消除干扰信号。

合理布置地线系统,使电磁波沿导线流向接地,进而减小电磁波的辐射。

3. 信号调理与滤波技术信号调理与滤波技术可以通过降低被传感器接收的干扰信号的频率和能量,提高信号与干扰信号的信噪比。

这对于弱电系统的正常运行至关重要。

通过使用滤波器、衰减器等设备,可以滤除电磁干扰信号,确保主要信号的传输质量。

4. 设备间距与布线规范保持设备间适当的距离和规范的布线是减少电磁干扰的重要方法。

通过合理规划和设计布线方案,使得不同设备之间的干扰降至最低。

同时,根据电磁屏蔽的原理,将易受干扰的设备与干扰源之间的距离尽量增大,以减少干扰的影响。

电磁干扰解决方案

电磁干扰解决方案

电磁干扰解决方案第1篇电磁干扰解决方案一、背景随着电子信息技术的高速发展,电磁干扰(Electromagnetic Interference, EMI)问题日益凸显,对各类电子设备的正常运行及人类健康造成潜在影响。

本方案旨在针对当前面临的电磁干扰问题,提供一套合法合规的解决策略。

二、目标1. 降低电磁干扰对电子设备的影响,确保设备正常运行。

2. 满足国家相关法规及标准要求,保障人类健康。

3. 提高电磁兼容性,降低故障率和维修成本。

三、解决方案1. 电磁干扰源识别(1)现场勘查:对疑似存在电磁干扰的场所进行现场勘查,了解其周围环境、设备布局等情况。

(2)电磁干扰源定位:利用专业的电磁干扰检测设备,对干扰源进行定位。

(3)数据分析:对检测数据进行详细分析,确定干扰源类型、强度等信息。

2. 电磁干扰抑制(1)设备选型:选择具有良好电磁兼容性的设备,从源头上降低电磁干扰。

(2)屏蔽:采用屏蔽材料或屏蔽结构,减少电磁波的辐射和传播。

(3)滤波:在设备电源输入和输出端安装滤波器,降低电磁干扰。

(4)接地:合理设计接地系统,降低设备间的干扰。

(5)布线优化:优化设备布线,避免长距离平行布线,减少电磁干扰。

3. 法规遵循与检测(1)法规遵循:根据国家相关法规和标准,确保电磁干扰解决方案的合法合规性。

(2)检测与评估:定期对电磁干扰抑制效果进行检测,评估是否符合相关标准。

4. 培训与宣传(1)培训:对相关人员进行电磁兼容知识培训,提高其对电磁干扰的认识。

(2)宣传:加强电磁干扰防护意识,提高全体员工的电磁兼容素养。

四、实施与监督1. 成立专项小组,负责电磁干扰解决方案的制定、实施和监督。

2. 制定详细的实施计划,明确责任人和时间节点。

3. 定期对实施进度和效果进行评估,及时调整方案。

4. 加强与相关部门的沟通协调,确保方案的有效实施。

五、总结本方案针对电磁干扰问题,提出了包括电磁干扰源识别、电磁干扰抑制、法规遵循与检测、培训与宣传等方面的解决方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁干扰的屏蔽方法EMC问题常常是制约中国电子产品出口的一个原因,本文主要论述EMI的来源及一些非常具体的抑制方法。

电磁兼容性(EMC)是指“一种器件、设备或系统的性能,它可以使其在自身环境下正常工作并且同时不会对此环境中任何其他设备产生强烈电磁干扰(IEEEC63.12-1987)。

”对于无线收发设备来说,采用非连续频谱可部分实现EMC 性能,但是很多有关的例子也表明EMC并不总是能够做到。

例如在笔记本电脑和测试设备之间、打印机和台式电脑之间以及蜂窝电话和医疗仪器之间等都具有高频干扰,我们把这种干扰称为电磁干扰(EMI)。

EMC问题来源所有电器和电子设备工作时都会有间歇或连续性电压电流变化,有时变化速率还相当快,这样会导致在不同频率内或一个频带间产生电磁能量,而相应的电路则会将这种能量发射到周围的环境中。

EMI有两条途径离开或进入一个电路:辐射和传导。

信号辐射是通过外壳的缝、槽、开孔或其他缺口泄漏出去;而信号传导则通过耦合到电源、信号和控制线上离开外壳,在开放的空间中自由辐射,从而产生干扰。

很多EMI抑制都采用外壳屏蔽和缝隙屏蔽结合的方式来实现,大多数时候下面这些简单原则可以有助于实现EMI屏蔽:从源头处降低干扰;通过屏蔽、过滤或接地将干扰产生电路隔离以及增强敏感电路的抗干扰能力等。

EMI抑制性、隔离性和低敏感性应该作为所有电路设计人员的目标,这些性能在设计阶段的早期就应完成。

对设计工程师而言,采用屏蔽材料是一种有效降低EMI的方法。

如今已有多种外壳屏蔽材料得到广泛使用,从金属罐、薄金属片和箔带到在导电织物或卷带上喷射涂层及镀层(如导电漆及锌线喷涂等)。

无论是金属还是涂有导电层的塑料,一旦设计人员确定作为外壳材料之后,就可着手开始选择衬垫。

金属屏蔽效率可用屏蔽效率(SE)对屏蔽罩的适用性进行评估,其单位是分贝,计算公式为SEdB=A+R+B一个简单的屏蔽罩会使所产生的电磁场强度降至最初的十分之一,即SE等于20dB;而有些场合可能会要求将场强降至为最初的十万分之一,即SE要等于100dB。

吸收损耗是指电磁波穿过屏蔽罩时能量损耗的数量,吸收损耗计算式为AdB=1.314(f×σ×μt其中f:频率(MHz)μ:铜的导磁率σ:铜的导电率t:屏蔽罩厚度反射损耗(近场)的大小取决于电磁波产生源的性质以及与波源的距离。

对于杆状或直线形发射天线而言,离波源越近波阻越高,然后随着与波源距离的增加而下降,但平面波阻则无变化(恒为377)。

相反,如果波源是一个小型线圈,则此时将以磁场为主,离波源越近波阻越低。

波阻随着与波源距离的增加而增加,但当距离超过波长的六分之一时,波阻不再变化,恒定在377处。

反射损耗随波阻与屏蔽阻抗的比率变化,因此它不仅取决于波的类型,而且取决于屏蔽罩与波源之间的距离。

这种情况适用于小型带屏蔽的设备。

近场反射损耗可按下式计算R(电)dB=321.8-(20×lgr)-(30×lgf)-[10×lg(μ/σ)]R(磁)dB=14.6+(20×lgr)+(10×lgf)+[10×lg(μ/σ)]其中r:波源与屏蔽之间的距离。

SE算式最后一项是校正因子B,其计算公式为B=20lg[-exp(-2t/σ)]此式仅适用于近磁场环境并且吸收损耗小于10dB的情况。

由于屏蔽物吸收效率不高,其内部的再反射会使穿过屏蔽层另一面的能量增加,所以校正因子是个负数,表示屏蔽效率的下降情况。

EMI抑制策略只有如金属和铁之类导磁率高的材料才能在极低频率下达到较高屏蔽效率。

这些材料的导磁率会随着频率增加而降低,另外如果初始磁场较强也会使导磁率降低,还有就是采用机械方法将屏蔽罩作成规定形状同样会降低导磁率。

综上所述,选择用于屏蔽的高导磁性材料非常复杂,通常要向EMI屏蔽材料供应商以及有关咨询机构寻求解决方案。

际中要制造一个无接缝及缺口的屏蔽罩是不可能的,由于屏蔽罩要分成多个部分进行制作,因此就会有缝隙需要接合,另外通常还得在屏蔽罩上打孔以便安装与插卡或装配组件的连线。

设计屏蔽罩的困难在于制造过程中不可避免会产生孔隙,而且设备运行过程中还会需要用到这些孔隙。

制造、面板连线、通风口、外部监测窗口以及面板安装组件等都需要在屏蔽罩上打孔,从而大大降低了屏蔽性能。

尽管沟槽和缝隙不可避免,但在屏蔽设计中对与电路工作频率波长有关的沟槽长度作仔细考虑是很有好处的。

任一频率电磁波的波长为:波长(λ)=光速(C)/频率(Hz)当缝隙长度为波长(截止频率)的一半时,RF波开始以20dB/10倍频截止频率)或6dB/8倍频截止频率)的速率衰减。

通常RF发射频率越高衰减越严重,因为它的波长越短。

当涉及到最高频率时,必须要考虑可能会出现的任何谐波,不过实际上只需考虑一次及二次谐波即可。

一旦知道了屏蔽罩内RF辐射的频率及强度,就可计算出屏蔽罩的最大允许缝隙和沟槽。

例如如果需要对1GHz(波长为300mm)的辐射衰减26dB,则150mm的缝隙将会开始产生衰减,因此当存在小于150mm的缝隙时,1GHz辐射就会被衰减。

所以对1GHz频率来讲,若需要衰减20dB,则缝隙应小于15mm(150mm的,需要衰减26dB时,缝隙应小于7.5mm(15mm的以上),需要衰减32dB时,缝隙应小于3.75mm(7.5mm的以上)。

可采用合适的导电衬垫使缝隙大小限定在规定尺寸内,从而实现这种衰减效果。

屏蔽设计难点由于接缝会导致屏蔽罩导通率下降,因此屏蔽效率也会降低。

要注意低于截止频率的辐射其衰减只取决于缝隙的长度直径比,例如长度直径比为3时可获得100dB的衰减。

在需要穿孔时,可利用厚屏蔽罩上面小孔的波导特性;另一种实现较高长度直径比的方法是附加一个小型金属屏蔽物,如一个大小合适的衬垫。

上述原理及其在多缝情况下的推广构成多孔屏蔽罩设计基础。

多孔薄型屏蔽层:多孔的例子很多,比如薄金属片上的通风孔等等,当各孔间距较近时设计上必须要仔细考虑。

下面是此类情况下屏蔽效率计算公式SE=[20lg(fc/o/σ)]-10lgn其中fc/o:截止频率n:孔洞数目注意此公式仅适用于孔间距小于孔直径的情况,也可用于计算金属编织网的相关屏蔽效率。

定,因为紧固件之间接合处的低阻接触状态不容易长久保持。

导电衬垫的作用是减少接缝或接合处的槽、孔或缝隙,使RF辐射不会散发出去。

EMI衬垫是一种导电介质,用于填补屏蔽罩内的空隙并提供连续低阻抗接点。

通常EMI衬垫可在两个导体之间提供一种灵活的连接,使一个导体上的电流传至另一导体。

封孔EMI衬垫的选用可参照以下性能参数:·特定频率范围的屏蔽效率·安装方法和密封强度·与外罩电流兼容性以及对外部环境的抗腐蚀能力。

·工作温度范围·成本大多数商用衬垫都具有足够的屏蔽性能以使设备满足EMC标准,关键是在屏蔽罩内正确地对垫片进行设计。

垫片系统:一个需要考虑的重要因素是压缩,压缩能在衬垫和垫片之间产生较高导电率。

衬垫和垫片之间导电性太差会降低屏蔽效率,另外接合处如果少了一块则会出现细缝而形成槽状天线,其辐射波长比缝隙长度小约4倍。

确保导通性首先要保证垫片表面平滑、干净并经过必要处理以具有良好导电性,这些表面在接合之前必须先遮住;另外屏蔽衬垫材料对这种垫片具有持续良好的粘合性也非常重要。

导电衬垫的可压缩特性可以弥补垫片的任何不规则情况。

所有衬垫都有一个有效工作最小接触电阻,设计人员可以加大对衬垫的压缩力度以降低多个衬垫的接触电阻,当然这将增加密封强度,会使屏蔽罩变得更为弯曲。

大多数衬垫在压缩到原来厚度的30%至70%时效果比较好。

因此在建议的最小接触面范围内,两个相向凹点之间的压力应足以确保衬垫和垫片之间具有良好的导电性。

另一方面,对衬垫的压力不应大到使衬垫处于非正常压缩状态,因为此时会导致衬垫接触失效,并可能产生电磁泄漏。

与垫片分离的要求对于将衬垫压缩控制在制造商建议范围非常重要,这种设计需要确保垫片具有足够的硬度,以免在垫片紧固件之间产生较大弯曲。

在某些情况下,可能需要另外一些紧固件以防止外壳结构弯曲。

压缩性也是转动接合处的一个重要特性,如在门或插板等位置。

若衬垫易于压缩,那么屏蔽性能会随着门的每次转动而下降,此时衬垫需要更高的压缩力才能达到与新衬垫相同的屏蔽性能。

在大多数情况下这不太可能做得到,因此需要一个长期EMI解决方案。

如果屏蔽罩或垫片由涂有导电层的塑料制成,则添加一个EMI衬垫不会产生太多问题,但是设计人员必须考虑很多衬垫在导电表面上都会有磨损,通常金属衬垫的镀层表面更易磨损。

随着时间增长这种磨损会降低衬垫接合处的屏蔽效率,并给后面的制造商带来麻烦。

MI衬垫进行紧固,例如带有塑料铆钉或压敏粘结剂(PSA)的“C型”衬垫。

衬垫安装在垫片的一边,以完成对EMI的屏蔽。

衬垫及附件目前可用的屏蔽和衬垫产品非常多,包括铍-铜接头、金属网线(带弹性内芯或不带)、嵌入橡胶中的金属网和定向线、导电橡胶以及具有金属镀层的聚氨酯泡沫衬垫等。

大多数屏蔽材料制造商都可提供各种衬垫能达到的SE估计值,但要记住SE是个相对数值,还取决于孔隙、衬垫尺寸、衬垫压缩比以及材料成分等。

衬垫有多种形状,可用于各种特定应用,包括有磨损、滑动以及带铰链的场合。

目前许多衬垫带有粘胶或在衬垫上面就有固定装置,如挤压插入、管脚插入或倒钩装置等。

各类衬垫中,涂层泡沫衬垫是最新也是市面上用途最广的产品之一。

这类衬垫可做成多种形状,厚度大于0.5mm,也可减少厚度以满足UL燃烧及环境密封标准。

还有另一种新型衬垫即环境/EMI混合衬垫,有了它就可以无需再使用单独的密封材料,从而降低屏蔽罩成本和复杂程度。

这些衬垫的外部覆层对紫外线稳定,可防潮、防风、防清洗溶剂,内部涂层则进行金属化处理并具有较高导电性。

最近的另外一项革新是在EMI衬垫上装了一个塑料夹,同传统压制型金属衬垫相比,它的重量较轻,装配时间短,而且成本更低,因此更具市场吸引力。

结论设备一般都需要进行屏蔽,这是因为结构本身存在一些槽和缝隙。

所需屏蔽可通过一些基本原则确定,但是理论与现实之间还是有差别。

例如在计算某个频率下衬垫的大小和间距时还必须考虑信号的强度,如同在一个设备中使用了多个处理器时的情形。

表面处理及垫片设计是保持长期屏蔽以实现EMC性能的关键因素。

EMC问题常常是制约中国电子产品出口的一个原因,本文主要论述EMI的来源及一些非常具体的抑制方法。

电磁兼容性(EMC)是指“一种器件、设备或系统的性能,它可以使其在自身环境下正常工作并且同时不会对此环境中任何其他设备产生强烈电磁干扰(IEEEC63.12-1987)。

”对于无线收发设备来说,采用非连续频谱可部分实现EMC 性能,但是很多有关的例子也表明EMC并不总是能够做到。

相关文档
最新文档