电磁干扰及屏蔽
电磁干扰产生以及屏蔽技术

电磁干扰产生以及屏蔽技术作者:李建利来源:《中国科技博览》2014年第36期[摘要]本文论述了电子系统中电磁干扰的来源、传播途径以及可以采取的防护措施,主要对防护措施中的电磁干扰缝隙屏蔽设计进行了讨论。
[关键词]电磁干扰屏蔽电磁兼容衰减导磁率导电衬垫中图分类号:TN876 文献标识码:B 文章编号:1009-914X(2014)36-0361-01一、电磁干扰的来源和传播所有电器和电子设备工作时都会有间歇或连续性电压电流变化,有时变化速率还相当快,这样会导致在不同频率内或一个频带间产生电磁能量,而相应的电路则会将这种能量发射到周围的环境中。
电磁干扰(EMI)有两条途径离开或进入一个电路:辐射和传导。
信号辐射是通过外壳的缝、槽、开孔或其他缺口泄漏出去;而信号传导则通过耦合到电源、信号和控制线上离开外壳,在开放的空间中自由辐射,从而产生干扰。
二、电磁干扰的防护措施要实现电磁兼容设计,可以从以下两方面入手:一是从源头处降低干扰,将干扰源产生的EMI强度降低到能接受的水平;二是传播途径,将干扰源与被干扰电路之间的耦合减弱到能接受的程度,通过屏蔽、过滤或接地等防护措施可以实现。
本文仅就EMI的屏蔽措施进行简单的论述。
三、电磁干扰缝隙屏蔽的设计对设计工程师而言,采用屏蔽材料是一种有效降低EMI的方法。
如今已有多种外壳屏蔽材料得到广泛应用,如:薄金属片、箔带、在导电织物或卷带上喷射涂层及镀层(导电漆及锌线喷漆等)。
导磁率高的材料能在极低频率下达到较高屏蔽效率,这些材料的导磁率会随着频率增加而降低,另外如果初始磁场较强也会使导磁率降低,还有就是采用机械方法将屏蔽罩做成规定形状同样会降低导磁率。
在高频电场下,采用薄层金属作为外壳或内衬材料可达到良好的屏蔽效果,但条件是屏蔽必须连续,并将敏感部分完全遮盖住,没有缺口或缝隙(形成一个法拉第笼)。
由于屏蔽罩要分成多个部分进行制作,通常还得在屏蔽罩上打孔以便安装与插卡或装配组件的连线,这样就会有缝隙需要结合,因此在实际中要制造一个无接缝及缺口的屏蔽罩是不可能的。
变电站抗电磁干扰的措施.

变电站综合自动化
变电站抗电磁干扰的措施 2、严格执行《继电保护及安全自动装置反事故 技术措施要点》中有关保护及二次回路抗干扰的规 定,提高保护抗干扰能力。
敷设与厂、站主接地网紧密 连接的等电位接地网
重庆电力高等专科学校
变电站综合自动化
变电站(发电厂)等电位接地网
保护用结合滤波器 保护用结合滤波器
变电站抗电磁干扰的措施
变电站综合自动化
变电站抗电磁干扰的措施Байду номын сангаас
电磁干扰信号能够通过各种途径以传导或辐射的 方式耦合至变电站的一次系统和二次系统。
干扰源
消除或抑制干扰源
切断电磁耦合途径
传播途径
电磁敏感设备
降低装置本身对电磁干扰的敏感度
重庆电力高等专科学校
变电站综合自动化
变电站抗电磁干扰的措施 1、抑制干扰源 (1)屏蔽 ◆机柜和机箱采用铁质材料或在铁壳内加装铜衬里, 抑制电场和磁场的干扰。 ◆机箱或机柜的输入端子上对地接一耐高压的小电 容,可抑制外部高频干扰。 ◆测量和微机保护或自控装置所采用的各类中间互 感器的一、二次绕组之间加设屏蔽层,防止高频干 扰信号进入。 ◆与一次设备的连接采用带有金属外皮的控制电缆, 电缆的屏蔽层两端接地,可降低感应电压。
≥ 50mm 绝缘导 线
2
就地端子 箱
就地端子 箱
2 铜导 50mm 线
2 铜导 100mm 线
控 制 室
10kV 开关室
2 铜导 100mm 线
2 用4 根以上 50 mm 铜导线与主地网一点连接
通讯机 房
主电缆 沟
保护小 室
重庆电力高等专科学校
变电站综合自动化
变电站抗电磁干扰的措施
电磁干扰的来源及屏蔽方法介绍

电磁干扰的来源及屏蔽方法介绍EMC问题常常是制约中国电子产品出口的一个原因,本文主要论述EMI的来源及一些非常具体的抑制方法。
电磁兼容性(EMC)是指一种器件、设备或系统的性能,它可以使其在自身环境下正常工作并且同时不会对此环境中任何其他设备产生强烈电磁干扰(IEEE C63.12-1987)。
对于无线收发设备来说,采用非连续频谱可部分实现EMC性能,但是很多有关的例子也表明EMC并不总是能够做到。
例如在笔记本电脑和测试设备之间、打印机和台式电脑之间以及蜂窝电话和医疗仪器之间等都具有高频干扰,我们把这种干扰称为电磁干扰(EMI)。
EMC问题来源所有电器和电子设备工作时都会有间歇或连续性电压电流变化,有时变化速率还相当快,这样会导致在不同频率内或一个频带间产生电磁能量,而相应的电路则会将这种能量发射到周围的环境中。
EMI有两条途径离开或进入一个电路:辐射和传导。
信号辐射是通过外壳的缝、槽、开孔或其他缺口泄漏出去;而信号传导则通过耦合到电源、信号和控制线上离开外壳,在开放的空间中自由辐射,从而产生干扰。
很多EMI抑制都采用外壳屏蔽和缝隙屏蔽结合的方式来实现,大多数时候下面这些简单原则可以有助于实现EMI屏蔽:从源头处降低干扰;通过屏蔽、过滤或接地将干扰产生电路隔离以及增强敏感电路的抗干扰能力等。
EMI抑制性、隔离性和低敏感性应该作为所有电路设计人员的目标,这些性能在设计阶段的早期就应完成。
对设计工程师而言,采用屏蔽材料是一种有效降低EMI的方法。
如今已有多种外壳屏蔽材料得到广泛使用,从金属罐、薄金属片和箔带到在导电织物或卷带上喷射涂层及镀层(如导电漆及锌线喷涂等)。
无论是金属还是涂有导电层的塑料,一旦设计人员确定作为外壳材料之后,就可着手开始选择衬垫。
金属屏蔽效率可用屏蔽效率(SE)对屏蔽罩的适用性进行评估,其单位是分贝,计算公式为:。
电磁干扰的屏蔽方法知识

电磁干扰的屏蔽方法知识电磁干扰是指在电磁波传播的过程中,外部电磁波对其他电子设备的干扰现象。
随着电子设备的日益普及和电磁波的频谱增加,电磁干扰问题变得越来越严峻。
为了保证电子设备的正常工作和通信质量,人们不断探索和研究电磁干扰的屏蔽方法。
电磁干扰可以分为传导干扰和辐射干扰两种。
传导干扰是指电磁波通过导线或介质传输到其他设备中,造成设备之间的相互干扰;辐射干扰是指电磁波通过空气传播到其他设备中,也会造成相互干扰。
针对这两种干扰现象,人们采取了多种屏蔽方法。
在传导干扰屏蔽方面,主要包括以下几种方法:1.选择合适的材料:用良好的导电材料制作外壳或覆盖物,能够有效屏蔽传导干扰。
常用的材料有金属、导电橡胶和导电涂层等。
2.设计合理的接地系统:通过合适的接地设计和接地导线的布置,可以有效地降低传导干扰。
接地系统主要包括设备接地、建筑物接地和电气系统接地等。
3.使用滤波器:在输入输出端口上安装合适的滤波器可以有效地抵御传导干扰。
滤波器是根据干扰信号频率特性进行设计,可以提供有效的衰减。
在辐射干扰屏蔽方面,主要包括以下几种方法:1.合理布局:对设备的线路、电缆和天线等进行合理布局,避免产生不必要的电磁辐射。
特别是要避免平行布置的线路和电缆之间产生电磁耦合。
2.屏蔽罩:在干扰源和受干扰设备之间设置屏蔽罩,可以有效地降低辐射干扰。
屏蔽罩可以用金属网、金属板或金属化塑料等材料制作。
3.磁屏蔽:对于强磁场干扰,可以采用磁屏蔽材料进行屏蔽。
常用的磁屏蔽材料有镍铁合金和铁氟龙等。
除了以上屏蔽方法,还有一些其他的技术手段用于电磁干扰的屏蔽:1.圆形线缆:圆形线缆可以减少电磁辐射,降低辐射干扰。
它与矩形线缆相比,能够减小电磁辐射的距离。
2.电磁封闭室:电磁封闭室是一种特殊的屏蔽装置,能够完全屏蔽外界的电磁波,用于测试电磁兼容性和电磁辐射等。
3.使用差模传输线:差模传输线的优点是可以减少传输线上的电磁辐射和传导干扰。
差模传输线可以将正负信号在同一传输线上进行传输,减小电磁辐射。
电磁干扰屏蔽方法

电磁干扰屏蔽方法电磁干扰是指由于电磁场的影响而影响电子设备系统的正常运行的电磁现象,它是一种大的电磁污染源。
电磁干扰可以影响电子设备的性能,也可以影响信号传输的正确性,造成数据传输出现错误,降低系统的运行精度。
因此,需要建立一种电磁干扰屏蔽系统,利用合理的屏蔽结构和材料,来有效地减少或避免干扰。
电磁干扰屏蔽有三种基本方法:屏蔽材料以及屏蔽结构、加电子屏蔽、加功率屏蔽(EMI)。
1、屏蔽材料和结构电磁屏蔽材料的作用是利用它的导电性及对磁场的影响来吸收、重组或反射作用于外界的电磁波,以起到电磁屏蔽的作用。
一般来说,电磁屏蔽材料是指金属结构体或含金属颗粒的绝缘材料以及金属网络或夹层结构体,根据耦合信号传导器的不同,一般来说,应选择合适的抗电磁波的屏蔽材料,如纤维布屏蔽材料、金属布屏蔽材料、全铝箔屏蔽材料、涤纶布屏蔽材料等。
2、电子屏蔽加电子屏蔽的方法有三种:首先是放置就近的设备,应该用来放置重置电容器,其次是添加陷波电路,用来抑制能量密集的脉冲,最后是利用继电器来进行转换。
加电子屏蔽后,可以大大减小外界干扰信号对电子设备的影响。
3、功率屏蔽功率屏蔽(EMI)是电气系统中最常用的一种屏蔽方法,它通过在设备之间添加一个额外的低电阻的电磁屏蔽层来减少电磁波的传播,从而有效地减少电磁干扰。
通常情况下,使用功率屏蔽的设备应被放置在屏蔽物体的外壳内,以避免外部电磁波的干扰。
在以上三种电磁干扰屏蔽方法当中,屏蔽材料最容易使用,且成本较低,但是效果有限。
而在某些现场环境中,有非常强烈的电磁干扰,那么屏蔽材料无法有效地抵消外界电磁干扰,只能使用电子或功率屏蔽。
此外,使用不同类型的屏蔽材料也有一定的要求,必须使用具有足够高的屏蔽效率的材料,以便提高电磁屏蔽的效果。
电磁干扰的屏蔽是一项非常重要的工作,由于外环境的干扰不断变化,在设计电磁干扰屏蔽系统时,应重点考虑合理的屏蔽结构、合适的屏蔽材料和有效的屏蔽方法。
总之,利用合理的电磁屏蔽技术和系统,可以有效地减少外界电磁干扰对设备的影响,从而提高系统的工作精度和可靠性。
电磁干扰对电子设备的影响与防护

电磁干扰对电子设备的影响与防护电磁干扰是指电磁场中的能量在电磁传输路径上发生的干扰现象。
它对电子设备的正常运行造成了诸多问题,因此,对于电磁干扰的影响和防护是非常重要的。
本文将从以下几个方面进行详细介绍。
一、电磁干扰的影响1.对电子设备正常工作的影响:电磁干扰会引起电子设备的干扰电流和干扰电压,从而导致设备的误差和故障。
特别是对于精密电子设备,如医疗器械、航空仪表等,干扰可能导致严重的后果。
2.对通信系统的影响:电磁干扰会导致通信系统的接收信号质量下降,从而影响通信质量和传输速度。
这对于无线通信系统尤为重要,因为它们更容易受到电磁干扰的影响。
3.对生活和工作环境的影响:电磁干扰会产生噪音和电磁波辐射,对人体健康和生活质量造成潜在风险。
尤其是长期处于电磁干扰环境中的人们可能会出现焦虑、失眠等健康问题。
二、电磁干扰的防护措施1.合理导线布局:通过合理布局电器设备之间的导线,避免电源线与信号线交叉布置,减少相互之间的干扰。
2.引入地线:为电子设备引入地线,将干扰电流通过地线引导到地面,减少设备之间的干扰。
3.使用屏蔽材料:在电子设备的外部壳体和关键元件上使用屏蔽材料,以阻挡外部电磁场对设备的干扰。
4.使用滤波器:在电源线路上安装滤波器,以滤除电源中的高频干扰信号。
5.增加设备的抗干扰性能:在设计电子设备时,应优先考虑其抗干扰能力,采取适当的屏蔽和过滤技术,降低其对外界电磁场的敏感度。
6.加强室内电磁环境管理:合理布局电子设备,避免电磁辐射交叉干扰。
减少电子设备数量和使用频率,尽量使用低功率和低辐射设备。
7.加强监测和测试:定期对电子设备进行电磁干扰测试,了解设备的抗干扰性能,并及时采取相应的措施进行修复和维护。
三、注意事项1.合法使用设备:不得使用未经授权或违规的电子设备,避免因不合规使用设备导致电磁干扰问题。
2.保持设备良好状态:定期清洁设备,确保设备的良好接地,避免接地线或连接线松动或断裂。
3.加强员工培训:加强对员工的电磁干扰防护知识的宣传和培训,提高他们对电磁干扰的认识和应对能力。
电磁干扰解决方案

电磁干扰解决方案第1篇电磁干扰解决方案一、背景随着电子信息技术的高速发展,电磁干扰(Electromagnetic Interference, EMI)问题日益凸显,对各类电子设备的正常运行及人类健康造成潜在影响。
本方案旨在针对当前面临的电磁干扰问题,提供一套合法合规的解决策略。
二、目标1. 降低电磁干扰对电子设备的影响,确保设备正常运行。
2. 满足国家相关法规及标准要求,保障人类健康。
3. 提高电磁兼容性,降低故障率和维修成本。
三、解决方案1. 电磁干扰源识别(1)现场勘查:对疑似存在电磁干扰的场所进行现场勘查,了解其周围环境、设备布局等情况。
(2)电磁干扰源定位:利用专业的电磁干扰检测设备,对干扰源进行定位。
(3)数据分析:对检测数据进行详细分析,确定干扰源类型、强度等信息。
2. 电磁干扰抑制(1)设备选型:选择具有良好电磁兼容性的设备,从源头上降低电磁干扰。
(2)屏蔽:采用屏蔽材料或屏蔽结构,减少电磁波的辐射和传播。
(3)滤波:在设备电源输入和输出端安装滤波器,降低电磁干扰。
(4)接地:合理设计接地系统,降低设备间的干扰。
(5)布线优化:优化设备布线,避免长距离平行布线,减少电磁干扰。
3. 法规遵循与检测(1)法规遵循:根据国家相关法规和标准,确保电磁干扰解决方案的合法合规性。
(2)检测与评估:定期对电磁干扰抑制效果进行检测,评估是否符合相关标准。
4. 培训与宣传(1)培训:对相关人员进行电磁兼容知识培训,提高其对电磁干扰的认识。
(2)宣传:加强电磁干扰防护意识,提高全体员工的电磁兼容素养。
四、实施与监督1. 成立专项小组,负责电磁干扰解决方案的制定、实施和监督。
2. 制定详细的实施计划,明确责任人和时间节点。
3. 定期对实施进度和效果进行评估,及时调整方案。
4. 加强与相关部门的沟通协调,确保方案的有效实施。
五、总结本方案针对电磁干扰问题,提出了包括电磁干扰源识别、电磁干扰抑制、法规遵循与检测、培训与宣传等方面的解决方案。
电磁干扰解决方案

电磁干扰解决方案
《电磁干扰的解决方案》
随着现代科技的不断发展,电磁干扰问题也越来越突出。
电磁干扰指的是电磁场对设备或系统正常工作造成的影响,它可能导致通信中断、设备损坏甚至安全事故。
因此,如何解决电磁干扰成为了一个迫在眉睫的问题。
在面对电磁干扰问题时,我们可以采取以下解决方案:
1. 设备屏蔽:为了减少电磁干扰,可以在设备上采用屏蔽措施,如在电路板设计中添加屏蔽层、采用屏蔽壳体等,以阻隔外部电磁波的干扰。
2. 使用滤波器:在通信系统中,可以采用滤波器来削弱或者消除干扰信号,保证信号的稳定传输。
3. 地线布局优化:通过合理设计电子设备的地线布局,减少电磁干扰的传播,从而提高设备的抗干扰能力。
4. 电磁兼容性测试:在产品研发的早期阶段,进行电磁兼容性测试,及时发现并解决潜在的电磁干扰问题。
5. 频谱管理:在无线通信系统中,通过合理的频谱规划和管理,避免不同系统之间的频谱干扰,确保通信质量和可靠性。
总的来说,要解决电磁干扰问题,需要综合考虑设计、测试、
管理等多方面的因素。
通过合理的规划和技术手段,可以有效地解决电磁干扰问题,为现代科技的发展提供稳定的环境和保障。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁场的屏蔽
磁场的屏蔽主要是为了抑制寄生电感耦合(也叫磁耦 合)。 磁场屏蔽随着工作频率不同所采用的磁屏蔽材料和磁 屏蔽原理也不同。 1.恒定磁场和低频磁场的屏蔽 对于恒定磁场和低频(低于 100kHZ )磁场采用导磁率 高的铁磁性材料做屏蔽物。其原理是利用铁磁材料的高导 磁率对干扰磁场进行分路。
磁场有磁力线,磁力线通过的主要路径为磁路, 与电路具有电阻一样,磁路也有的 磁阻Rc。
低频变压器的屏蔽
⑴变压器的屏蔽结构。因为铁芯起着集中磁通的作用, 所以变压器的铁芯本身就是一个磁屏蔽物。
若要进一步减小漏磁通的影响,则应采取屏蔽措施。
①简易的屏蔽结构。简易的屏蔽结构有两种:一是在 铁芯侧面包铁皮;一是在线包外面包一圈短路圈。
②单层屏蔽罩。在变压器外面加一个屏蔽罩可 进一步提高屏蔽效果。屏蔽罩的材料应用铁磁材料, 屏蔽罩和铁芯之间和距离,一般留有2~3毫米。 ③多层屏蔽罩。如果对屏蔽的要求很高或屏蔽 的频率范围很宽,则应采用多层屏蔽。当多层屏蔽 物的总厚度与单层屏蔽物的总厚度相同时,多层屏 幕的效果比单层好得多。
(2)电源变压器。
电子产品常用交流市电供电,由于电源变压器 的初、次级绕组之间存在着寄生电容,因此其它产 品在供电电网中产生高频感应电压,就会通过此寄 生电容而带进本产品中来产生干扰。为了抑制寄生 耦合,往往在初、次级绕组之间垫上一层接地的铜 箔作静电屏蔽。但是,此铜箔不应阻碍磁场耦合。 因此,铜箔本身不能短路。
如果在外磁场中放置一块金属板,金属板可以 看成是由若干个彼此短路的圆环所组成。那么,由 于涡流排斥外磁场的作用,反抗外磁场通过金属板 将外磁场排斥到金属板外面。故金属板就成为阻止 外磁场通过的屏蔽物。这种屏蔽方式称为屏蔽物对 磁场排斥。
电磁场的屏蔽
除了静电场和恒定磁场外,电场和磁场总 是同时出现的。 从上面电场屏蔽和高频磁场屏蔽的讨论 中可以看出,只要将高频磁场的屏蔽物良好 地接地,就能同时达到电场屏蔽的要求,即 达到电场和磁场同时屏蔽的目的。
屏蔽罩上缝隙、切口的方向,必须注意不切断涡流的 方向,最好是避免有缝隙和切口 。
(2)线圈及其屏蔽罩的安装
线圈应垂直地安装于底座上。此时,线圈的磁通与底 座的交链最小,在底座中感应的电流也小,底座对线圈的 参数L、Q和分布电容影响也小。此外垂直安装也比较方便。 线圈平行于底座的安装是不正确的。不仅没有垂直安 装的优点,而且由于线圈与底座平行安装,屏蔽罩与底座 的接缝就垂直于涡流的方向,因此若接触不好而切断涡流 或者使涡流减小,则会严重影响屏蔽效果。
式中
μ——相对导磁系数(相对导磁率);
S——磁路横截面积;
lc——磁路长度。
将铁磁材料置于磁场中时,由于铁磁材料的μ 比空气的 μ 高得多,因此,铁磁材料的磁阻Rc比 空气的磁阻Rc小得多,磁通将主要通过铁磁材料, 而通过空气的磁通将大为减小,从而起到磁场屏蔽 作用。
高频磁场的屏蔽
在一个均匀的高频磁场中,放置一金属圆环,那么, 在此金属环中将产生感应涡流,此涡流将产生一个反抗外 磁场变化的磁场。此磁场的磁力线在金属圆环内与外磁场 磁力线方向相反,在圆环外方向相同。结果使得金属圆环 内部的总磁力线减少,即总磁场削弱,而圆环外部的总磁 力线增加,即总磁场加强。从而发生了外磁场从金属圆环 内部被排斥到金属圆环外面去的现象。
3.电路的屏蔽
(1)电路单元的屏蔽 电子产品的正常功能受到破坏的原因,不仅是由于信号在电气装置 连线上产生失真,或在电气安装连线上出现交叉干扰,而且还来源于设 备内不同单元之间的相互干扰。 (2)屏蔽的结构形式与安装 ①屏蔽隔板。 ②共盖屏蔽结构。
屏蔽隔板结构
共盖屏蔽结构
③单独屏蔽。单独屏蔽 , 就是将要屏蔽的电路和元 件、部件装在独立的屏蔽盒中,使之成为一个独立 部件。 ④双层屏蔽。当干扰电场很强时,用单层屏蔽不能 满足要求,而必须采用双层屏蔽,即在一个屏蔽盒 外面再正确地加一个屏蔽盒。
电磁干扰
在电子产品的外部和内部存在着各种电磁干扰,干扰会 影响或破坏产品的正常工作。 外部干扰是指除电子产品所要接收的信号以外的外部电 磁波对产品的影响。其中有些是自然产生的,如宇宙干扰、 地球大气的放电干扰等。有些是人为的,如电焊机、电吹风 所产生干扰等。 内部干扰是由于产品内部存在着寄生耦合。寄生耦合有 电容耦合、电感耦合,这不是人为设计的。 为了保证电子产品正常地工作,就需要防止来自产品外 部和内部的各种电磁干扰。
(3)变压器的安装。
①变压器远离放大器, ②电源变压器的线圈轴线应与底座垂直放置。 ③在安装变压器时,不要让硅钢片紧贴底座,应该用非导 磁材料将变压器铁芯与底座隔开,以减少铁芯内的磁力线 伸展 到底座中去与电路交链后产生交流声。
④多个变压器或线圈安装位置较近时,应该使它们的线圈 轴线相互垂直。
⑤有条件时,电源部分最好单独装在一块底板上。 ⑥电源滤波电容器的接地端与电源变压器的接地点最好用 导线连在一起,以免滤波器只的交流电经过底座耦合到其 它电路。
电场的屏蔽
电场的屏蔽是为了抑制寄生电容耦合(电场耦合),隔 离静电或电场干扰。 寄生电容耦合:由于产品内的各种元件和导线都具有 一定电位,高电位导线相对的低电位导线有电场存在,也 即两导线之间形成了寄生电容耦合。 通常把造成影响的高电位叫感应源,而被影响的低电 位叫受感器。实际上凡是能幅射电磁能量并影响其它电路 工作的都称为感应源(或干扰源),而受到外界电磁干扰的电 路都称为受感器。 电场屏蔽的最简单的方法,就是在感应源与受感器之 间加一块接地良好的金属板,就可以把感应源与受感器之 间的寄生电容短接到地,达到屏蔽的目的。