第3章-逻辑门电路

合集下载

数字电子技术基础第三章逻辑门电路

数字电子技术基础第三章逻辑门电路

第一节 常见元器件的开关特性
❖以TTL门电路为例:高电平范围2.4V~3.6V,标准高电平为 3V;低电平范围0V~0.8V,标准低电平为0.3V。
数字电路中,不需要 关注具体电压值,只 需关注电平状态
标准低电平 0.3V
0.8V 0V
0
3.6V
1
2.4V
标准高电 平 3V
TTL门电路中的高、低电 平构成的正逻辑示意图
第一节 常见元器件的开关特性
1.二极管的开关特性
A、晶体二极管静态开关特性
VON :门槛电压或称阈值电压、开启电压 VD :导通电压降
二极管正向导通时 的等效电路
VD =0.7V 视为硅二极管导通的条件(锗二极管0.3V)
第一节 常见元器件的开关特性
1.二极管的开关特性
A、晶体二极管静态开关特性
第一节 常见元器件的开关特性
2.三极管的开关特性
B、晶体三极管动态开关特性
ton和toff一般约在几十纳秒(ns=10-9 s)范围。通常都
有toff > ton,而且ts > tf 。
ts 的大小是影响三极管速度的最主要因素,要提高三极 管的开关速度就要设法缩短ton与toff ,特别是要缩短ts 。
第一节 常见元器件的开关特性
❖数字集成电路绝大多数都是由双极型二极管、三极管或单极 型场效应管组成。这些晶体管大部分工作在导通和截止状态
,相当于开关的“接通”和“断开”,故门电路又称为电子
开关。
静态开关特性 : 什么条件下导通,什么条件下截止
开关特性
动态开关特性 : 导通与截止两种状态之间转换过程的特性
数字电子技术基础第三 章逻辑门电路
2020/8/1

第3章门电路

第3章门电路

&Y
4
第三章门电路
2.二极管或门
图3.2.6 二极管或门
A/V B/V Y/V
000 0 3 2.3 3 0 2.3 3 3 2.3
AB
Y
0
0
0
0
1
1
1
0
1
1
1
1
Y=A+B A
B
A
≥1
Y
Y
B
北方工业大学信息工程学院
叶青制作
5
3.3 TTL门电路
第三章门电路
集成电路(IC):在一块半导体基片上制作出一个完整的逻辑电路所 需要的全部元件和连线。使用时接:电源、输入和输出。
北方工业大学信息工程学院
叶青制作
3
第三章门电路
1.二极管与门
设:VCC=5V, VIH=3V, VIL=0V
A/V 0 0 3 3
B/V 0 3 0 3
Y/V 0.7 0.7 0.7 3.7
AB
Y
00
0
01
0
10
0
11
1
图3.2.5 二极管与门
Y=AB
A B
北方工业大学信息工程学院
YA B
叶青制作
1.电路
(5v)
EN:使能端,控制端 R1
R4 R2
VB1 0.9V 4.3V 0.9V
T4
A B
T1
T2
D3 Y 2.9V
T5 (Vo)
3.6V EN 0.2V
D
R3
3.6V
北方工业大学信息工程学院
叶青制作
31
(三)三态输出门电路(TS) 1.电路
第三章门电路

第 三 章 逻辑门电路

第 三 章 逻辑门电路

是构成数字电路的基本单元之一
CMOS 集成门电路 用互补对称 MOS 管构成的逻辑门电路。
TTL 集成门电路 输入端和输出端都用 三极管的逻辑门电路。
CMOS 即 Complementary Metal-Oxide-Semiconductor TTL 即 Transistor-Transistor Logic 按功能特点不同分 普通门 输出 三态门 CMOS (推拉式输出) 开路门 传输门 EXIT
CE(sat) CE
B
C
uI 增大使 uBE > Uth 时,三极管开始导通, iB > 0,三极管工作于放 大导通状态。
uBE < Uth E
三极管 截止状态 等效电路
EXIT
iC 临界饱和线 M T IC(sat) + uBE S Q
放大区
IB(sat)
uI=UIH
饱 和 区
O UCE(sat)
t
uI 负跳变到 iC 下降到 0.1IC(sat) 所需的时间 toff 称 为三极管关断时间。 通常 toff > ton
UCE(sat) O
开关时间主要由于电 通常工作频率不高时, 荷存储效应引起,要提高 可忽略开关时间,而工作 开关速度,必须降低三极 频率高时,必须考虑开关 管饱和深度,加速基区存 速度是否合适,否则导致 储电荷的消散。 不能正常工作。 EXIT t
iB 0,iC 0,C、E 间相当 于开关断开。
三极管 截止状态 等效电路
E
Uth为门限电压 EXIT
iC u S 为放大和饱和的交界点,这时的临界饱和线I 增大使 iB 增大, 放大区 从而工作点上移, iC 增 iB 称临界饱和基极电流,用 IB(sat) 表示; M T 相应地,IC(sat) 为临界饱和集电极电流; S 大,uCEI减小。 IC(sat) B(sat) UBE(sat) 为饱和基极电压; 饱 Q UCE(sat) 为饱和集电极电压。对硅管, 和 截止区 UBE(sat) 0.7V, UCE(sat) 0.3V。在临 A 区 界饱和点三极管仍然具有放大作用。 U O N u

《逻辑门电路 》课件

《逻辑门电路 》课件
能:输入全为1时输出 为0,其他情况输出为1
符号表示:通常用"NAND"表 示
真值表:列出所有输入和输出 组合的真值表
应用:常用于实现逻辑运算, 如与、或、非等
逻辑功能:输入全为1时输出为0,其他情况输出为1 符号表示:输入端A、B,输出端Y 真值表:列出所有输入输出组合及其对应的输出值 应用:用于实现逻辑运算、控制电路等
实现逻辑运算:与、或、非等 基本逻辑运算
控制信号:控制电路的通断、 开关等
数据处理:处理二进制数据, 实现数据传输、存储等
构建复杂电路:通过组合逻辑 门电路,构建更复杂的电路系 统
PART THREE
功能:实现逻辑与 运算
输入:两个输入信 号
输出:一个输出信 号
真值表:当两个输 入信号均为1时, 输出为1;否则输 出为0。
低功耗技术的挑 战与机遇
低功耗技术的未 来展望
人工智能:逻辑门电路是实现人工智能的关键技术之一,未来将在智能机器人、智能语音识别等领域发挥重要作 用。
物联网:逻辑门电路是实现物联网的关键技术之一,未来将在智能家居、智能交通等领域发挥重要作用。
量子计算:逻辑门电路是实现量子计算的关键技术之一,未来将在量子通信、量子加密等领域发挥重要作用。
生物科技:逻辑门电路是实现生物科技的关键技术之一,未来将在基因编辑、生物制药等领域发挥重要作用。
汇报人:
小型化趋势:随着半导 体技术的发展,逻辑门 电路的尺寸越来越小, 提高了集成度和性能
技术挑战:如何实现 更高集成度和更小尺 寸的逻辑门电路,同 时保证性能和可靠性
应用前景:随着物联 网、人工智能等新兴 技术的发展,逻辑门 电路的集成化和小型 化将更加重要。
低功耗技术在逻 辑门电路中的应 用

第三章逻辑门电路

第三章逻辑门电路

➢ 电路类型TTL数字集成电路约有400多个品种,大致可以分为以下几类: 门电路、译码器/驱动器、触发器、计数器、移位寄存器、单稳/双稳电路和多谐
振荡器、 加法器、乘法器、奇偶校验器、 码制转换器、线驱动器/线接收器、多路 开关、存储器
2020/4/21
6
CMOS集成电路
➢ CMOS,全称Complementary Metal Oxide Semiconductor,即互补金属
2020/4/21
26
2020/4/21
27
VDS增加到使VGD=VGS-VDS =VT时, 导电沟道在靠近漏极的一点刚开始出现夹断,称为预夹断。 此时的漏极电流ID 基本饱和。
VDS继续增加使VGD=VGS-VDS <VT
导电沟道夹断的区域向源极方 向延伸,对应特性曲线的饱和 区,VDS增加的部分基本降落 在随之加长的夹断沟道上, ID基本趋于不变。
输入高电平的下限值 VIH(min)
输出高电平的下限值 VOH(min)
输出低电平的上限值 VOL(max)
2020/4/21
11
注意:
1. VH 和 VL都是对具体门输入/输出高、低电平电压值的要 求。
2. 在正逻辑体制中,用逻辑1和0分别表示高、低电平。 3. 高电平表示逻辑状态1,低电平表示逻辑状态0,一种状态
74LS系列
74AS系列
2020/4/21
74ALS
9
3.1.2 逻辑电路的一般特性
▪ 输入和输出的高、低电平 ▪ 噪声容限 ▪ 传输延迟时间 ▪ 功耗(静态和动态) ▪ 延时–功耗积 ▪ 扇入数与扇出数
2020/4/21
10
1. 输入和输出的高、低电平
1输出 0输出

数电-第三章逻辑门电路

数电-第三章逻辑门电路
典型时序逻辑电路
了解和掌握常见时序逻辑电路的原理和应用,如寄存器、 计数器、顺序脉冲发生器等。
可编程逻辑器件应用
1 2
可编程逻辑器件简介
了解可编程逻辑器件的基本概念和分类,如PAL、 GAL、CPLD、FPGA等。
可编程逻辑器件编程
学习使用相应的开发工具和编程语言,对可编程 逻辑器件进行编程和配置,实现特定的逻辑功能。
典型组合逻辑电路
了解和掌握常见组合逻辑电路的 原理和应用,如编码器、译码器、
数据选择器、比较器等。
时序逻辑电路分析与设计
时序逻辑电路分析
分析时序逻辑电路的工作原理,包括触发器的状态转换、 时钟信号的作用等,进而理解电路的功能。
时序逻辑电路设计
根据实际需求,设计实现特定功能的时序逻辑电路。包括 确定输入、输出变量,选择适当的触发器类型,画出状态 转换图或时序图等步骤。
数电-第三章逻辑门 电路
• 逻辑门电路基本概念 • 基本逻辑门电路 • 复合逻辑门电路 • 逻辑门电路应用 • 逻辑门电路实验与仿真 • 逻辑门电路总结与展望
目录
Part
01
逻辑门电路基本概念
逻辑门定义与分类
逻辑门定义
逻辑门是数字电路中的基本单元 ,用于实现基本的逻辑运算功能 ,如与、或、非等。
逻辑符号为带有小圆圈的与门符号。
或非门电路
01
02
03
或非门逻辑功能
实现输入信号的逻辑或操 作,并取反输出结果。
或非门符号
逻辑符号为带有小圆圈的 或门符号。
或非门真值表
输入全为0时,输出为1; 输入有1时,输出为0。
异或门电路
异或门逻辑功能
实现输入信号的异或操作, 即输入信号相同时输出为0, 不同时输出为1。

第3章逻辑门电路

第3章逻辑门电路

18
数字电路——分析与设计
(1)A、B有一端为低电平(UL=0.3v)
• UB1=0.7+0.3=1v, T1饱和, UCE1=0.1v。 • UB2=0.1+0.3=0.4v, T2截止, T5亦截止。 • UCC通过R2给T4供以基流IB4, T4、D3导
通(在输出端接负载时)。
• IB4很小,在R2上的压 降亦很小 (约0.2v)。
2020/3/28
北京理工大学 信息科学学院
12
数字电路——分析与设计
第3章 逻辑门电路
§3.3 基本逻辑门电路
1.二极管“与” • 输门入端A、B、C全部输入
U ( 12V) R
为3v(逻辑“1”)则输出
D1
端Y的电平为3.3v(逻辑 A
“1”)。
B

D2 •
Y
A
B
C
Y
• 这是一个“与”门:
C
D3
• 输入端A、B、C全部输入为 0.3v(逻辑“0”)则输出端 Y的电平为0v(逻辑“0”)。
• 这是一个“或”门:
Y = A+B+C。
第3章 逻辑门电路
D1
D2

A
D3
B
Y

Y
C
( a)
R U( 12V)
(b)
二极管“或”门电路
(a) 二极管或门 (b) 逻辑符号
2020/3/28
北京理工大学 信息科学学院
U ( 12V)
R
D1

Y
A
D2
B
Y

C
D3
( b)
0 ~ 0.3v为逻辑“0”; 3v以上为逻辑“1”;

第三章 门电路

第三章 门电路

-
-
当VI为高电平VIH=Vcc时,D截止,Vo=Vcc ,输出高 电平。
当VI为低电平VIL=0时,导通,Vo=0 ,输出低电平.。
实际的二极管特性 曲线如下图:
并非我们假设的理想特性,其特性
i
O
v
即其反向电阻不是无穷大(有反向饱和电流IS),正向 电阻不为0,且其导通有一定的起始电压。
常等效成下列几种情况: 1) 当外电路电源VSS和等效电阻RS都很小时: VON S VSS VSS RS RS D
rD
2) 当二极管的导通压降与外电路电源VSS不能 忽略,二极管的正向电阻与外电路电阻相比可以 忽略时:
VSS RS VSS S VON
D
RS
在数字电路中,高电平一般仅为3V或5V,故VON的影响 不可忽略。所以常等效为这种方式。(硅二极管的导通 压降VON=0.7V,锗二极管的导通压降VON=0.3V。)
为满足输出电平变换、吸收大负载电流、 以及实现线与等需要,有时将输出级电路结构 改为一个漏级开路的MOS管,构成漏级开路输 出的门电路——OD门。
VDD
例:漏级开路 的与非门
VDD
'
Y A B
两个OD门的线与
Y=?
4)CMOS传输门和双向模拟开关
传输 门电 路结 构
T2 vI/ vO
VDD
VGS(th) ----Mos的开启电压。
MOS管的基本开GS< VGS(th) 时,
Mos管截止, iD ≈0 。输出VO为高
电平,Mos管的D—S之间就象一个断
开的开关。 当VI= VGS> VGS(th)时,
Mos管导通, iD =VDD/(RD+rDS). 输出VO= iD* rDS ≈0,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3 逻辑门电路3.1 MOS 逻辑门电路3.1.2 求下列情况下TTL 逻辑门的扇出数:(1)74LS 门驱动同类门;(2)74LS 门驱动74ALS 系列TTL 门。

解:首先分别求出拉电流工作时的扇出数N OH 和灌电流工作时的扇出数N OL ,两者中的最小值即为扇出数。

从附录A 可查得74LS 系列电流参数的数值为I OH =0.4mA ,I OL =8mA ,I IH =0.02mA,I IL =0.4mA ;74ALS 系列输入电流参数的数值为I IH =0.02mA ,I IL =0.1mA ,其实省略了表示电流流向的符号。

(1) 根据(3.1.4)和式(3.1.5)计算扇出数74LS 系列驱动同类门时,输出为高电平的扇出数0.4200.02OH OH IH I mA N I mA=== 输出为低电平的扇出数 8200.4OL OL IL I mA N I mA ===所以,74LS 系列驱动同类门时的扇出数N O 为20。

(2) 同理可计算出74LS 系列驱动74ALS 系列时,有0.4200.02OH OH IH I mA N I mA=== 8800.1OL OL IL I mA N I mA === 所以,74LS 系列驱动74ALS 系列时的扇出数N O 为20。

3.1.4 已知图题3.1.4所示各MOSFET 管的T V =2V ,忽略电阻上的压降,试确定其工作状态(导通或截止)。

解:图题3.1.4(a )和(c )的N 沟道增强型MOS ,图题3.1.4(b )和(d )为P 沟道增强型MOS 。

N 沟道增强型MOS 管得开启电压V T 为正。

当GS V <V T 时,MOS 管处于截止状态;当GS V ≥V T ,且DS v ≥(GS V —V T )时,MOS 管处于饱和导通状态。

对于图题3.1.4(a ),GS V =5V ,DS v =5V ,可以判断该MOS 管处于饱和导通状态。

对于图题3.1.4(c ),GS V =0V <V T ,所以MOS 管处于截止状态。

P 沟道增强型MOS 管得开启电压V T 为负。

当GS V >V T 时,MOS 管处于截止状态;当GS V ≤V T ,且DS v ≤(GS V —V T )时,MOS 管处于饱和导通状态。

对于图题3.1.4(b ),GS V =0V >﹣2V ,该MOS 管处于截止状态。

对于图题3.1.4(d ),GS V =-5V ,GS V =﹣5V ,可以判断该MOS 管处于饱和导通状态。

3.1.5 为什么说74HC 系列CMOS 与非门在﹢5V 电源工作时,输入端在以下四种接法下都属于逻辑0:(1)输入端接地;(2)输入端低于1.5V 的电源;(3)输入端同类与非门的输出低电压0.1V ;(4)输入端接10k Ω的电阻到地。

解:对于74HC 系列CMOS 门电路来说,输出和输入低电平的标准电压值为:V OL =0.1V , V IL =1.5V 。

因此,有:(1) I v =0<V IL =1.5V ,属于逻辑0。

(2) I v <1.5V=V IL ,属于逻辑0。

(3) I v =0.1V <V IL =1.5V ,属于逻辑0。

(4) 由于CMOS 管得栅极电流非常小,通常小于1uA ,在10k Ω电阻上产生的压降小于10mV 即I v <0.01V <V IL =1.5V ,故亦属于逻辑0。

3.1.6 试分析图题3.1.6所示的电路,写出其逻辑表达式,说明它是说明逻辑电路?解:该电路由两部分组成,如图题3.1.6所示,细线左边为一级与非门,虚线右边组成与或非门,其中T 1N 和T 2N 并联实现与功能,两者再与T 3N 串联实现或功能。

与非门的输出X AB =。

与或非门的输出L 为()()L A B X A B AB AB AB A B =+=+=+=e该电路实现同或功能。

3.1.7 求图题3.1.7所示电路的输出逻辑表达式。

解:图题3.1.7所示电路中,1234,,,L AB L BC L D L ===实现与功能,即4123L L L L =⋅⋅,而4L L E =⋅,所以输出逻辑表达式为L AB BC D E =⋅⋅⋅。

3.1.8 用三个漏极开路与非门74HC03和一个TTL 与非门74LS00实现图题3.1.7所示的电路,已知CMOS 管截止时的漏电流I OZ =5uA, 试计算R P(min)和R P(max)。

解:第一级的两个与非门和一个非门用漏极开路与非门74HC03组成,第二级的与非门用TTL 与非门74LS00实现。

从附录A 查得74HC 系列的参数为:V OL(max)=0.33V ,I OL(max)=4 mA ,V OH(min)=3.84V ;74LS 系列的参数为:I IL(max)=0.4mA ,I IH(max)=0.02mA 。

因为三个漏极开路门的公共上拉电阻R P 的下端74LS00的一个输入端,即:在灌电流情况下,求出R P 的最小值:(max)(min)(max)()(50.33) 1.3(40.4)DD OL p OL IL total V V V R k I I mA--==≈Ω-- 在拉电流情况下,求出R P 的最大值(min)(max)()()(5 3.84)33.1(0.00530.02)DD OH p OZ total IH total V V V R k I I mA--==≈Ω+⨯+ 3.1.9 .图题.3.1.9表示三态门作总线传输的示意图,图中n 个三态门的输出接数据传输总线,D 1、D 2、…、n D 为数据输入端,CS 1、CS 2、…、i CS 为片选信号输入端。

试问:(1)CS 信号如何进行控制,以便数据D 1、D 2、…、n D 通过该总线进行正常传输;(2)CS 信号能否有两个或两个以上同时有效?如果CS 出现两个或两个以上有效,可能发生什么情况?(3)如果CS 信号均无效,总线处在什么状态?解:(1)根据图题3.1.9可知,片选信号CS 1、CS 2、…、i CS 为高电平有效,当i CS =1时,第i 个三态门被选中,其输入数据被送到数据传输总线上。

根据数据传输的速度,分时地给CS 1、CS 2、…、i CS 端以正脉冲信号,使其相应的三态门的输出数据能分时地到达总线上。

(2)CS 信号不能有两个或两个以上同时有效,否则两个不同的信号将在总线上发生冲突。

即总线不能同时既为0又为1。

(3)如果所有CS 信号均无效,总线处于高阻状态。

3.1.10 某厂生产的双互补对及反相器(4007)引出端如图题3.1.10所示,试分别连接:(1)三个反相器;(2)三输入端或非门;(3)三输入端与非门;(4)或与非门[()L C A B =+];(5)传输门(一个非门控制两个传输门分时传送)。

解:(1)三个反相器将图题3.1.10所示电路按下列方式连接,可以得到三个反相器。

①8、13相连,6端为输入,8端为输出,14端接V DD,7端接地;②1、5相连,3端为输入,5端为输出,2端接V DD,4端接地;③10端为输入,12端为输出,11端接V DD,9端接地。

(2)三输入端或非门电路图如图题解3.1.10(a)所示。

(3)三输入端与非门电路图如图题解3.1.10(b)所示。

(4)或与非门电路图如图题解3.1.10(c)所示。

(5)传输门电路图如图题解3.1.10(d)所示,由6端输入的信号控制TG1、TG2、分时传送数据。

6端接低电平时,TG1、导通,2端得数据传送到12端;6端接高电平时,TG2导通,4端得数据传送到12端。

3.1.11试分析图题3.1.11所示某CMOS器件的电路,写出其逻辑表达式,说明它是什么逻辑电路。

解:电路由两个输入反相器、一个输出反相器、一个传输门T1、T2、和T3构成的电路组成。

传输门由B和B控制,当B=0时传输门导通,当B=1时传输门截止。

T1、T2、和T3构成电路的工作状态由B控制,当B=1时T1、T3均截止,T1、T2、和T3构成的电路不工作;当B=0时T1、T3均导通,T1、T2和T3构成的电路工作,并且起反相作用,其输出等于A。

综上所述,当B=0时,T1、T2、和T3构成的电路不工作,传输门导通,输出L=A;当B=1=。

列出真值表如表题解3.1.11时T1、T2、和T3构成的电路工作,传输门截止,输出L A=+=⊕,故电路为异或门电路。

所示。

其逻辑表达式L AB AB A B3.1.12试分析图题3.1.12所示的CMOS电路,说明它们的逻辑功能。

解:对于图题3.1.12(a)所示的CMOS电路,当EN=0时,T P2和T N2均导通,T P1和=;当EN=1时,T P2和T N2均截止,无论A为高电平T N2构成的的反相器正常工作,L A还是低电平,输出端均为高阻状态,其真值表如表题解3.1.12所示,该电路是低电平使能三态非门,其表示符号如图题解3.1.12(a)所示。

图题3.1.12(b)所示的CMOS电路,EN=0时,T P2导通,或非门打开,T P1和T N1构成的反相器正常工作,L=A;当EN=1时,T P2截止,或非门输出低电平,使T N1截止,输出端处于高阻状态,该电路是低电平使能三态缓冲器,其标示符号如图题解3.1.12(b)所示。

同理可以分析图题3.1.12(c)和图题3.1.12(d)所示的CMOS电路,它们分别为高电平使能三态缓冲器和低电平使能三态非门,其标示符号分别如图题解3.1.12(c)和图题解3.1.12(d )所示。

3.1.13 试分析图题3.1.13所示传输门的电路,写出其逻辑表达式,说明它是说明逻辑电路。

解:对于图题3.1.13所示的电路,输入信号A 作为传输门的控制信号,输入信号B 通过传输门与输出L 相连。

当A=0时,传输门TG 1导通,TG 2断开,L=B ;当A=1时,传输门TG 1断开,TG 2导通,L B =;其真值表如表题解3.1.13所示,该电路实现异或功能,L A B =⊕。

3.1.14 由CMOS 传输门构成的电路如图题3.1.14所示,试列出其真值表,说明该电路的逻辑功能。

解:当CS=1时,4个传输门均为断开状态,输出处于高阻状态。

当CS=0时,4个传输门的工作状态由A 和B 决定,A=B=0时,TG 1和TG 2导通,TG 3和TG 4截止,L=1。

依此分析电路可以列出真值表如表题解3.1.14所示,根据真值表可得L A B =+。

该电路实现三态输出的2输入的或非功能。

3.2 TTL逻辑门电路3.2.2为什么说TTL与非门的输入端在以下四种接法下,都属于逻辑1:(1)输入端悬空;(2)输入端接高于2V的电源;(3)输入端接同类与非门的输出高电压3.6V;(4)输入端接10kΩ电阻到地。

相关文档
最新文档