高中数学椭圆的教学设计
高中数学椭圆的性质教案

高中数学椭圆的性质教案
教学目标:
1. 理解椭圆的基本概念
2. 掌握椭圆的标准方程
3. 熟练运用椭圆的性质进行问题解答
教学重点:
1. 椭圆的定义及数学性质
2. 椭圆的标准方程
3. 椭圆的焦点、长短轴、离心率等性质
教学难点:
1. 椭圆的属性与其他几何图形的比较
2. 椭圆的运用问题解决
教学过程:
一、导入(5分钟)
通过提问引导学生回顾圆的性质,并引入椭圆的概念,让学生猜测椭圆与圆的异同点。
二、讲解(15分钟)
1. 讲解椭圆的定义及性质,介绍椭圆的标准方程及主要属性。
2. 通过示意图讲解椭圆的焦点、长短轴、离心率等概念。
三、练习(20分钟)
1. 完成课堂练习,巩固椭圆的基本算法。
2. 组织学生进行小组讨论,解决椭圆相关问题。
四、拓展(10分钟)
探讨椭圆在实际生活中的应用,如卫星轨道、天文测量等。
五、作业布置(5分钟)
布置课后作业,要求学生继续复习椭圆相关知识,并尝试解决相关问题。
教学反思:
在教学过程中,要注重引导学生思考,让他们通过实际问题解决来理解椭圆的性质和应用。
同时,要注重椭圆与其他几何图形的比较,帮助学生更好地理解椭圆的特点。
椭圆优质教学设计

椭圆优质教学设计引言:优质的教学设计对于学生的学习效果具有重要的影响。
椭圆是数学中重要的概念之一,其在几何学和物理学等领域都有广泛的应用。
本文将以椭圆为主题,介绍一种优质的教学设计,旨在帮助学生更好地理解和掌握椭圆的基本概念和性质。
一、教学目标本教学设计的主要目标是让学生掌握椭圆的基本概念和性质,能够准确地绘制椭圆和判断椭圆的特征。
具体来说,教学目标包括:1. 理解椭圆的定义,能够准确地描述椭圆的几何特征;2. 掌握椭圆的离心率等重要概念,能够进行离心率的计算;3. 学会使用几何方法绘制椭圆,并理解椭圆的标准方程及其性质;4. 能够判断给定曲线是否为椭圆,并进行椭圆的相关计算。
二、教学内容1. 椭圆的定义:引入椭圆的基本概念,通过数学符号和几何图形的结合形象地描述椭圆;2. 椭圆的性质:介绍椭圆的几何性质,包括离心率、主轴、焦点等,并通过例题帮助学生理解和应用这些概念;3. 椭圆的标准方程:通过推导和解析几何的方法,引导学生学习椭圆的标准方程及其性质,如长轴与短轴的长度、中心坐标等;4. 椭圆的绘制:以椭圆的标准方程为基础,通过几何方法引导学生绘制椭圆,并帮助学生理解绘制过程中各个要素的含义;5. 椭圆的判定:介绍判定给定曲线是否为椭圆的方法,包括计算离心率、检验焦点位置等,通过实例让学生巩固理论知识并提高解题能力。
三、教学方法1. 讲授法:通过教师讲解和演示的方式介绍椭圆的定义、性质和标准方程等知识点,帮助学生建立起对椭圆的初步认识;2. 实例演练法:通过大量的例题演练,引导学生灵活应用椭圆的概念和性质,提高解题能力和运用能力;3. 探究法:设计一些探究性的问题,激发学生的兴趣,并引导学生主动思考和探索椭圆的相关性质和应用。
四、教学流程1. 引入:介绍椭圆这一几何概念的重要性和应用领域,激发学生的兴趣;2. 基础知识讲解:通过讲解椭圆的基本定义和几何性质,帮助学生建立起对椭圆的认识;3. 实例演练:以一些简单的例题为起点,引导学生想象和绘制椭圆,并帮助他们理解椭圆的标准方程;4. 深入探究:设计一些问题,让学生发现椭圆的一些有趣性质和规律,并引导学生进行推理和证明;5. 综合应用:通过一些综合性的例题和应用题,检验学生对已学知识的掌握情况,并培养他们运用椭圆知识解决实际问题的能力;6. 总结归纳:对椭圆的定义、性质和应用做一个简要的总结,帮助学生巩固所学知识。
椭圆定义教学设计方案

一、教学目标1. 知识与技能:理解椭圆的定义,掌握椭圆的性质,能够绘制椭圆。
2. 过程与方法:通过观察、实验、讨论等方式,培养学生分析问题和解决问题的能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的审美情趣,树立科学的世界观。
二、教学重点与难点1. 教学重点:椭圆的定义、性质和绘制方法。
2. 教学难点:椭圆定义的理解和椭圆性质的掌握。
三、教学过程(一)导入1. 教师展示生活中常见的椭圆图形,如地球的形状、鸡蛋、卫星轨道等,引导学生思考这些图形的共同特点。
2. 学生自由发言,教师总结:这些图形都是椭圆形状,它们具有相似的特点。
(二)新授课1. 教师引导学生回顾圆的定义,并提出问题:如果圆的定义改为“平面内到一个固定点的距离等于定长的点的轨迹”,那么这个图形会是什么形状?2. 学生讨论,教师引导学生思考:这个固定点可以看作是椭圆的两个焦点,定长可以看作是椭圆的长轴。
3. 教师给出椭圆的定义:平面内到两个定点距离之和为定值的点的轨迹叫做椭圆。
4. 教师讲解椭圆的性质,如椭圆的长轴、短轴、焦距、离心率等,并结合实际例子进行说明。
5. 学生分组实验,利用直尺、圆规等工具绘制椭圆,观察椭圆的性质。
(三)巩固练习1. 教师提出问题:已知椭圆的两个焦点和长轴的长度,求椭圆的方程。
2. 学生独立完成练习,教师巡视指导。
3. 学生展示解题过程,教师点评并总结。
(四)课堂小结1. 教师引导学生回顾本节课所学内容,强调椭圆的定义和性质。
2. 学生总结椭圆在实际生活中的应用,如建筑设计、工程设计等。
(五)布置作业1. 完成课后练习题,巩固椭圆的定义和性质。
2. 查阅资料,了解椭圆在生活中的应用。
四、教学反思1. 本节课通过观察、实验、讨论等方式,让学生自主探究椭圆的定义和性质,提高了学生的动手能力和合作意识。
2. 教师在讲解过程中,注重结合实际例子,帮助学生理解椭圆的性质,使学生对椭圆有了更深入的认识。
3. 在教学过程中,教师应关注学生的个体差异,针对不同学生的学习情况给予针对性的指导。
《椭圆及其标准方程》教学设计一等奖3篇

4、《椭圆及其标准方程》教学设计一等奖一、教学内容解析1、地位与作用:本章是北师大版选修1—1的第二章《圆锥曲线与方程》,是高中数学解析几何的第二大部分。
解析几何是数学中一个重要的分支,它联系了数学中的数与形、代数与几何等最基本对象之间的联系。
在北师大版必修2中,学生已掌握了在平面直角坐标系下研究直线和圆的方法,本章教材进一步利用三种基本圆锥曲线深化代数与几何的关系。
本章教材内容的顺序是:椭圆→抛物线→双曲线→曲线与方程。
这样安排的用意是,先学圆锥曲线,再学曲线与方程,这样的顺序更有利于学生的学习,符合学生从特殊到一般,具体到抽象的认知规律。
在圆锥曲线的学习过程中,不断的渗透曲线与方程的思想,为学生理解并掌握“曲线与方程”这一概念奠定了基础。
本节是北师大版选修1—1的第二章《圆锥曲线与方程》第1节的内容,主要学习椭圆的定义、标准方程及其简单的应用,分为两课时,本节课是第1课时,主要学习椭圆的定义及其标准方程。
教材以椭圆为基础和重点说明了求方程并利用方程讨论几何性质的一般方法,然后在认知抛物线和双曲线中得到了巩固和应用,因此《椭圆及其标准方程》这一节课起到了承上启下的作用。
2、教材处理顺序教材在椭圆的定义这个内容的安排上是:先从直观上认识椭圆,再从画法中提炼出椭圆的几何特征,由此抽象概括出椭圆的定义,最后是椭圆定义的简单应用。
这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解。
教材在本节内容中只研究了中心在原点,焦点在轴上的椭圆的标准方程,让学生自己去归纳焦点在轴上的椭圆的标准方程。
这样的处理给学生提供了一次探究和交流的机会。
有利于学生对抛物线标准方程的理解,有利于学生思维能力的提高和学习兴趣的培养。
3、数学思想方法本节内容蕴含了:数形结合思想、转化化归思想等。
在推导椭圆标准方程过程中让学生体会移项再平方去根号的方法。
高中数学椭圆的应用教案

高中数学椭圆的应用教案
教学目标:
1. 了解椭圆的定义和特性;
2. 掌握椭圆的标准方程和参数方程;
3. 能够应用椭圆解决实际问题。
教学重难点:
1. 椭圆的基本概念和性质;
2. 椭圆参数方程的应用。
教学准备:
1. 教师准备课件和教学素材;
2. 学生准备纸笔和计算器。
教学过程:
1. 导入:通过提问和讨论引导学生了解椭圆的定义和特性;
2. 讲解:讲解椭圆的标准方程和参数方程,并介绍椭圆在实际问题中的应用;
3. 练习:通过一些例题和实际问题,让学生练习应用椭圆求解问题;
4. 总结:总结椭圆的相关知识点,并强调学生需要多做练习提高应用能力。
教学延伸:
1. 学生可以通过阅读相关资料和解决实际问题,进一步理解和应用椭圆;
2. 学生可以尝试在数学建模比赛中运用椭圆解决问题,提升自己的数学建模能力。
课后作业:
1. 复习椭圆的相关知识点,并做相关习题;
2. 思考如何运用椭圆解决实际问题,并进行尝试。
教学反思:
通过本节课的教学,学生应该对椭圆的定义、性质和应用有了初步的了解,并能够运用相关知识解决实际问题。
教师可以根据学生的掌握情况进一步调整教学方法,提高学生的学习效果。
椭圆的几何性质教案

椭圆的几何性质教案一、教学目标1. 知识与技能:(1)理解椭圆的定义及标准方程;(2)掌握椭圆的几何性质,如焦点、半长轴、半短轴等;(3)能够运用椭圆的性质解决实际问题。
2. 过程与方法:(1)通过观察实物,培养学生的直观思维能力;(2)利用数形结合思想,引导学生发现椭圆的性质;(3)运用合作交流的学习方式,提高学生解决问题的能力。
3. 情感态度与价值观:激发学生对椭圆几何性质的兴趣,培养学生的探究精神,提高学生对数学的热爱。
二、教学重点与难点1. 教学重点:(1)椭圆的定义及标准方程;(2)椭圆的几何性质;(3)运用椭圆性质解决实际问题。
2. 教学难点:(1)椭圆几何性质的推导;(2)运用椭圆性质解决复杂问题。
三、教学过程1. 导入新课:通过展示生活中的椭圆实例,如地球、鸡蛋等,引导学生关注椭圆形状的物体,激发学生对椭圆的兴趣。
2. 知识讲解:(1)介绍椭圆的定义及标准方程;(2)讲解椭圆的几何性质,如焦点、半长轴、半短轴等;(3)引导学生发现椭圆性质之间的关系。
3. 实例分析:通过具体例子,让学生了解如何运用椭圆的性质解决问题,如计算椭圆的长轴、短轴等。
4. 课堂练习:布置一些有关椭圆性质的练习题,让学生巩固所学知识。
四、课后作业1. 复习椭圆的定义及标准方程;2. 熟练掌握椭圆的几何性质;3. 尝试运用椭圆性质解决实际问题。
五、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生对椭圆几何性质的理解和运用能力。
关注学生在学习过程中的困惑,及时解答疑问,提高教学质量。
六、教学活动设计1. 小组讨论:让学生分组讨论,探究椭圆性质之间的内在联系,培养学生合作交流的能力。
2. 课堂展示:每组选代表进行成果展示,分享探讨过程中的发现和感悟,提高学生的表达能力和逻辑思维。
3. 教师点评:对学生的讨论成果进行点评,总结椭圆性质的关键点,引导学生深入理解。
七、教学评价1. 课堂问答:通过提问方式检查学生对椭圆性质的理解程度,及时发现并解决问题。
椭圆的定义教学设计

椭圆是一种平面图形,它的定义如下:•椭圆是一种平面图形,具有两条不相交的长轴和短轴。
•其中长轴和短轴的长度不相等,长轴长于短轴。
•椭圆是由所有距离它两个焦点距离之和相等的点构成的。
下面是一个椭圆的定义的教学设计:一、学习目标1.了解椭圆的定义。
2.掌握椭圆的特点。
3.能够通过绘图软件绘制椭圆。
二、教学内容1.什么是椭圆?2.椭圆的特点是什么?3.椭圆的两个焦点是什么?4.椭圆的长轴和短轴是什么?5.椭圆是如何构成的?三、教学过程1.呈现椭圆的定义,让学生了解椭圆是什么。
2.通过图片展示椭圆的特点,让学生掌握椭圆的特点。
3.讲解椭圆的两个焦点是什么,以及它们的作用。
4.讲解椭圆的长轴和短轴是什么,以及它们的区别。
5.讲解椭圆是如何构成的,并给出相关的示例。
四、教学活动1.让学生自己画出一个椭圆,并解释2.使用绘图软件绘制一个椭圆,让学生了解如何使用绘图软件绘制椭圆。
3.通过游戏的形式,让学生辨别出哪些图形是椭圆,哪些图形不是椭圆。
4.布置作业,让学生用手绘或者使用绘图软件绘制不同的椭圆,并标注出长轴、短轴、焦点等。
五、教学总结1.回顾椭圆的定义和特点。
2.讨论学生在作业中绘制的椭圆的特点,让学生深入理解3.通过练习,让学生能够熟练地使用绘图软件绘制椭圆。
4.总结本节课的学习内容,并预习下一节课的内容。
六、教学反思1.在本节课中,学生对椭圆的定义和特点有了初步的了解。
2.学生在练习中能够熟练地使用绘图软件绘制椭圆。
3.在下一节课中,可以继续讲解椭圆的性质,如椭圆的方程、椭圆的离心率等,并通过练习加深学生的理解。
椭圆及其标准方程》教学设计

椭圆及其标准方程》教学设计一、教学目标:1、知识与技能目标(1)掌握椭圆的定义及焦点、焦距的概念,能正确推导椭圆的标准方程.(2)掌握求椭圆标准方程的定义法和待定系数法.2、过程与方法目标(1)经历椭圆的形成过程,培养学生运动变化的观点,训练学生的动手的能力、合作学习能力和运用所学知识解决实际问题的能力.(2)通过联系曲线方程的求法,推导椭圆的标准方程,培养学生运用类比、分类讨论、数形结合思想解决问题的能力.3、情感态度与价值观目标(1)通过小组合作,培养学生的协作、友爱精神,体验成功的快乐.(2)激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神.二、重点、难点:重点:掌握椭圆的定义及标准方程,理解坐标法的基本思想;难点:椭圆标准方程的推导与化简.三、教学方法:探究式教学法,即教师通过问题诱导f启发讨论f探索结果,引导学生直观观察f归纳抽象f总结规律,使学生在获得知识的同时,能够掌握方法、提升能力.四、教具准备:多媒体课件和自制教具:绘图板、图钉、细绳.五、教学设计情景引入学习探究(一)材料2:地球围绕着太阳旋转;材料3:“嫦娥三号”升空录像.引入课题:椭圆及其标准方程.动手实验:(1)取一定长的细绳,把它的两个端点固定在黑板的同一点处,套上铅笔,拉紧绳子,旋转一周,会得到什么图形?(2)把绳子的两个端点拉开一段距离,再套上铅笔旋转,又会得到什么图形?(3)继续拉远两个端点的距离,直到把绳子拉直,又会得到什么图形?(4)动画演示椭圆的形成过程.师:引导学生观察:椭圆在实际生活中是很常见师:引导学生观察动画,地球运行轨道是椭圆;问“嫦娥三号”的运行轨道是什么?生:常娥三号着陆先是按椭圆轨道运行,再直线着陆.师:板书课题.请学生拿出课前准备的硬纸板、细线、铅笔实验(1)教师演示,学生观察思考.实验(2)、(3),各小组学生利用手中工具在图板上进行实验,一起合作画椭圆.利用学生熟知的地理规律:地球围绕太阳转引入,让学生感到亲切自然;通过“嫦娥三号”的升空录像,让学生感受现实,激发学生的兴趣,培养爱国思想.通过做实验,让学生动手实践,体验椭圆的形成过程,加深对椭圆定义的理解将学生分为四人一组,通过分组讨论、研究,增强学生的合作意识.学习探究(二)【学情预设】学生可能会建系如下几种情况:方案一:把匚、F2建在X轴上,以FF的中点为原点;12方案二:把匚、F2建在X轴上,以匚为原点;方案三:把匚、F2建在x轴上,以F原点;2方案四:把匚、F2建在X轴上,以.F2与x轴的左交点为原点;方案五:把匚、F2建在x轴上,以FF与x轴的右交点为原点;12经过比较确定方案一.下面我们来建立椭圆的方程建系:以F,F所在的直线为x轴,以12线段F]F2的垂直平分线为y轴建立直角坐标系xOy.设点:设点M(x,y)是椭圆上的任意一点,点M到F,F的距离和为2a,焦距12为2c(c〉0),则.(—c,0),F2(C,0)列式:由定义:|M「1+叫=2a,即(2)如何设点?(3)怎样列式?⑷如何化简?建立椭圆的方程是本节课的难点,为降低难度,让学生回顾求曲线方程的步骤,以已有的知识来探求新的知识,温故知新,教师再加以正确的引导,新知会自然形成.生:回顾求曲线方程的步骤:⑴建系,⑵设点,⑶列式,⑷化简.师:引导学生按求曲线方程的步骤建立椭圆的方程.生:思考,回答:(1)怎样建立适当的坐标系生:分析化简的方法,在J(x+c)2+y2+J(x-c)2+y2=2a练习本上完成化简.化简:整理,得(a2一c2)x2+a2y2=a2(a2一c2)•.•a〉0,c〉0,2a〉2c a2(a2—c2)>0.方程的两边都除以a2(a2—c2),得教学环节教学过程师生互动设计思想学习探究(二)OF=OF=c12则|MO|=、.;a2-c2,令b=\;'a2-c2,则b2=a2-c2,那么方程变为:=1(a>b>0).多媒体展示动画:将椭圆的焦点放在y轴上结论:当焦点在y轴是时,椭圆的方程为:y2x2—+一=1(a>b>0).a2b2多媒体展示图表:让学生对照图形、方程理解记忆.师:请同学们在图中找出长度等于a,c的线段,则师:引导学生推出椭圆的标准方程.师:指出其焦点在x轴上,坐标为F](―c,0),F2(C,0)生:观察图像,识记方程.活动过程:点拨-----板演-----点评师:若焦点放在y轴上,方程又怎样?生:小组讨论椭圆的方程,相互交流、补充,得出结论.生:分析方程、图形,识记椭圆的标准方程.师:引导学生如何根据方程判断焦点的位置?实践体验1、你能判断下列椭圆的焦点位置生:根据所学椭圆的标吗?并写出焦点坐标.⑵25x2+16y2=400.准方程,思考后回答.师生共同矫正.生:总结如何判断焦点的位置?椭圆的标准方程的导出,放手给学生有很大的难度,这里采取有意义的接受学习的方式,教师对照图形,加以引导,让学生明白方程中字母的几何意义,对方程的理解有很大的作用.展示动画,通过类比的方法,让学生对照焦点在x轴的情形,写出焦点在y轴上时,椭圆的标准方程.通过图表便于对比,加深学生对两个方程及几何意义的认识.尝试练习,加深对方程及几何意义的理解.六、板书设计:七、布置作业:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修1-1《2.1.1 椭圆及其标准方程》教学设计一、指导思想与理论依据1. 新课程标准理念——高中数学新课程标准指出:“强调本质,注意适度形式化。
高中数学课程应该返璞归真,努力揭示数学概念、法则、结论的发展过程和本质,让学生体会蕴涵在其中的思想方法。
”在“椭圆及其标准方程”的引入与推导中,遵循学生的认识规律,通过动手实践、观察思考、合作交流、应用反思等过程,让学生逐步将认识由感性上升到理性,把学生学习知识当作认识事物的过程来进行教学,努力揭示知识的发生、发展过程。
2. 建构主义理论——建构主义认为:知识不是通过教师讲授得到的,而是学习者在一定的情境即社会文化背景下,借助其他人(包括教师和学习伙伴)的帮助,充分利用各种学习资源(包括文字教材、音像资料、多媒体课件、软件工具以及从Internet上获取的各种教学信息等等),通过意义建构而获得。
由于学习是在一定的情境下借助其他人的帮助即通过人际间的协作活动而实现的意义建构过程,因此建构主义学习理论认为“情境创设”、“协作学习”、“会话交流”是学习环境的基本要素。
二、教学背景分析1. 教材分析解析几何是数学一个重要的分支,它沟通了数学内数与形、代数与几何等最基本对象之间的联系。
平面解析几何问题,就是借助建立适当的坐标系,科学合理地把几何问题代数化,运用代数的方法来研究几何问题。
在必修2中学生已初步掌握了解析几何研究问题的主要方法,并在平面直角坐标系中研究了直线和圆这两个基本的几何图形。
在选修1中,教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题。
本章所研究的三种圆锥曲线都是重要的曲线,因为对这几种曲线研究的问题基本一致,方法相同,所以教材对这三种圆锥曲线的学习的重点放在了椭圆上,通过求椭圆的标准方程,是学生掌握推导出这一类轨迹方程的一般规律和化简的常用方法。
因此,“椭圆及其标准方程”起到了承上启下的重要作用。
2. 学情分析知识方面(1)在必修2第二章里学生已经学习了直线和圆的方程,并初步熟悉了求曲线方程的一般方法和步骤,具备主动探究椭圆知识的基础;(2)根据日常生活中的经验,学生对椭圆有了一定的认识,但仍没有上升到成为“概念”的水平,将感性认识理性化将会是对他们的一个挑战;(3)在初中阶段没有涉及过含两个字母、两个根式的方程化简问题;自身特征方面(1)我所教授的班级是文科班,他们普遍对数学有一定的畏难情绪,但是他们思维比较活跃,对新鲜事物有一定的好奇心和探索欲望,对老师的讲授敢于质疑,有自己的想法和主见,愿意自己去探索是什么和为什么。
并且具备了初步的探索能力;(2)对数学概念的学习只是停留在表面,对概念的形成过程不重视,所以无法深刻理解;(3)对于较复杂的计算问题,往往不知如何动手或懒得动手,计算能力较弱。
但他们同时又乐于小组合作学习,学习气氛浓厚;3. 教学方法及手段新课程倡导学生自主学习,要求教师成为学生学习的引导者、组织者、合作者和促进者,使教学过程成为师生交流、积极互动、共同发展的过程。
本节课采用让学生动手实践、自主探究、合作交流及教师启发引导的教学方法,并以多媒体手段辅助教学,使学生经历实践、观察、交流、分析、概括等理性思维的基本过程,切实改进学生的学习方式,使学生真正成为学习的主人。
根据本节内容的特点,教学过程中可充分发挥信息技术的作用,用几何画板的动态作图优势为学生的数学探究与数学思维提供支持。
三、教学目标及重难点1. 教学目标知识与技能(1)掌握椭圆的定义;(2)理解椭圆标准方程的推导过程,掌握椭圆标准方程的两种形式,会运用待定系数法求椭圆的标准方程;过程与方法(1)经历从具体情境中抽象出椭圆模型的过程,逐步提高学生的观察、分析、归纳、类比、概括能力;(2)通过椭圆标准方程的推导,进一步掌握求曲线方程的一般方法——坐标法,并渗透数形结合、等价转化的数学思想方法。
情感、态度与价值观在动手折纸得出椭圆的定义的学习过程中,培养学生思维的严密性;亲身经历椭圆标准方程的获得过程,感受数学的对称、简洁、和谐美,同时养成扎实严谨的学习习惯,增强学生战胜困难的意志品质和锲而不舍的钻研精神。
2. 教学重难点重点:椭圆的定义和椭圆标准方程的两种形式难点:椭圆的标准方程的建立和推导四、教学流程示意图五、教学过程设计情景引入【折纸活动】请拿出预先准备的圆形纸片(圆心为O,F是圆内异于圆心的一点),将圆纸片翻折,使翻折上去的圆弧通过F点,将折痕用笔画上颜色,继续上述过程,绕圆心一周,观察所得到的图形。
动画演示折纸的过程。
【提问】在我们的日常生活中,椭圆随处可见。
你能举出椭圆形的例子吗?在肯定学生的回答后,老师加以补充。
比如:①嫦娥二号绕月球运行的是椭圆形的轨道;②斜着切起出来的四色卷是椭圆的;③装饰品项链中间的饰物是椭圆形的;由此可见,椭圆是我们生活中一种重要的曲线。
引出课题——椭圆及其标准方程。
动手实践,课前完成学生展示成果学生踊跃回答通过折纸游戏充分调动学生的学习兴趣,激发学生的探究心理。
为引出新知做铺垫。
通过举例和展示生活中椭圆形的图片,让学生认识到椭圆和日常生活关系密切。
概念形成让我们回到折纸活动中,看看得到的椭圆究竟是怎样形成的。
我们不妨来分析其中的一个折叠过程。
此时圆周上的点A与点F重合,连结OA,交折痕BC于点M,那么点M的轨迹是什么?(动画演示)【提问】也就是说,椭圆就是满足一定条件的点M的轨迹,那么点M满足什么条件呢?如学生有困难,可按如下提示铺设认知阶梯:1.如何用数学语言表达点A与定点F重合?2.线段垂直平分线上的点有什么几何性质?3.动点M与定点之间有什么关系?【提问】你能否给椭圆下个定义?预设:与两个定点的距离之和等于定长的点的轨迹叫做椭圆教师引导,学生补充“平面内”。
【提问】要成为椭圆的定义,必须保证它足够严谨,经得起推敲。
那么这个常数是任意实数吗?有什么限制条件吗?回答:就是刚才得到的椭圆学生以组为单位,合作探究,教师巡视指导点A与定点F2关于折痕轴对称,折痕即对称轴是线段AF的垂直平分线到线段两个端点距离相等与两个定点O、F的距离之和等于半径OA预设:点在定圆通过分析动点与定点的关系,使学生经历椭圆概念的生成和完善过程,提高其归纳概括能力,加深对椭圆本质的认识,培养思维的概念形成预设:学生可能会遇到障碍,此时教师提醒:如何体现点在圆的内部?【提问】继续深化问题:如果常数,常数时,将是什么样的情形?的内部即点到圆心的距离小于圆的半径,也就是在定义中需要加上“常数”的限制。
常数,轨迹是线段;常数,轨迹不存在;严谨性经概括总结后得到:【板书】文字语言:平面内与两个定点的距离之和等于定长(大于)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
数学语言:概念深化1. 已知、是定点,,动点满足,则点M的轨迹是()A.椭圆 B. 直线 C.圆 D.线段2.已知是两个定点,,以线段为一边画三角形,试问满足条件“的周长为20”的顶点的轨迹是什么样的图形?为什么?认真思考后回答学生初步理解了椭圆的概念,接下去还必须消化、巩固。
怎么消化巩固?基于“双基”和学生的认知规律,这里设计了两道比较基础的题目(第1题是自编题,第2道选自课本 2.1.1练习B第2题)。
理解数学往往不可能一次完成,通过这两道题,学生来“做”数学,在“做”的过程中,认识到对椭圆定义的理解,一要抓住椭圆上的点所满足的条件,二要注意定义中对“常数”的限定,从而进一步加深对椭圆概念的理解。
方程推导我们已经知道,在直角坐标平面上直线和圆都有相应的方程,从而就可以用代数的方法来研究它们的几何性质、位置关系等。
那么如何求椭圆的方程呢?【提问】求圆的方程的一般步骤是什么?①建系设点:【提问】根据简单和优化的原则,如何建立平面直角坐标系?以两定点、所在直线为轴,线段的垂直平分线为轴,建立直角坐标系(如图).设.,为椭圆上的任意一点,则、.又设与、的距离的和等于.②集合表示:由椭圆定义得:动点M的集合为:③坐标化:用含有动点坐标的方程表示:.④化简:预案:移项后两次平方法引导学生观察椭圆图形和推导出的椭圆方①建系设点②集合表示③坐标化④化简⑤证明(一般省略)回答建立如图坐标系:小组交流,尝试化简观察方程的特点,得出标准方程。
通过对必修2中坐标法研究曲线性质方法的复习,让学生认识到本节课研究椭圆的一般方法和思路。
在标准方程的推导过程中,问题的设问让学生认识到在推导方程的过程中进行等价变形的重要性,培养严谨的数学演算习惯。
提高运算能力,养成不怕困难的钻研精神;感受数学的简洁美、对称美让学生对椭圆的两种标准方程有个清晰的认识,体会问题的本质所在,只是位置的不同,图形是一样的,为后面的应用做准备本题是根据教学需要将课本的例2前置的一道题,目的是加深学生对椭圆的焦点位置与标准方程之间关系的理解,明确不是标准方程的要先将方程化为椭圆的标准方程,确定出,再求出c。
从而进一步认清椭圆标准方程两种形式,再次突破本节课的重点——椭圆标准方程的两种形式。
初步应用例1根据下列条件,求椭圆的标准方程。
(1)两个焦点的坐标分别是(-3,0),(3,0),椭圆上一点P与两焦点的距离的和等于8;(2)两个焦点的坐标分别是(0,-4),(0,4),并且椭圆经过点()(3)已知椭圆的焦距是6,椭圆上的一点到两焦点距离的和等于10学生思考后回答例1(1)(2)小题是教材上的例题,设计目的:一是进一步理解椭圆的焦点位置与椭圆标准方程的关系(注意焦点在轴还是在轴上),掌握运用待定系数法求解椭圆标准方程的方法;二是加深学生对椭圆定义的理解与运用,学会运用椭圆定义求解椭圆标准方程。
(3)小题是对(1)(2)的变式题,其目的是对学生进行分类讨论数学思想的渗透,达到拓展知识、提高能力的目的。
阅读课本33页内容。
阅读课本椭圆的生成方式有多种,课本33页给出了我们另外一种生成的方式,学生通过阅读这部分内容,再一次感受椭圆的形成过程。
目标检测1.已知椭圆的焦点坐标为和,且经过点,求椭圆的标准方程。
(课本练习A 第1题(5))2.设是椭圆上一点,是椭圆的焦点。
如果点与焦点的距离为4,那么点与焦点的距离是多少?(课本练习 A第2题的改编题)学生独立完成这两道题考查的知识点和方法与本节课所讲解的内容完全一致,通过这两个小题对学生进行检测,一方面可以加深学生对本节课的理解,同时也能够及时反馈出学生对本节课知识和方法的落实情况,便于及时调整。
归纳小结【课堂总结】 1. 知识层面 2. 方法层面 3. 学习反思学生小结归纳,不足的地方老师补充说明。
让学生自己小结,不仅仅总结知识,更重要的是总结数学思想方法,这样可帮助学生自行构建知识体系,理清知识脉络,养成良好的学习习惯。