高中数学精讲教案-椭圆及其性质

合集下载

高中数学椭圆的性质教案

高中数学椭圆的性质教案

高中数学椭圆的性质教案
教学目标:
1. 理解椭圆的基本概念
2. 掌握椭圆的标准方程
3. 熟练运用椭圆的性质进行问题解答
教学重点:
1. 椭圆的定义及数学性质
2. 椭圆的标准方程
3. 椭圆的焦点、长短轴、离心率等性质
教学难点:
1. 椭圆的属性与其他几何图形的比较
2. 椭圆的运用问题解决
教学过程:
一、导入(5分钟)
通过提问引导学生回顾圆的性质,并引入椭圆的概念,让学生猜测椭圆与圆的异同点。

二、讲解(15分钟)
1. 讲解椭圆的定义及性质,介绍椭圆的标准方程及主要属性。

2. 通过示意图讲解椭圆的焦点、长短轴、离心率等概念。

三、练习(20分钟)
1. 完成课堂练习,巩固椭圆的基本算法。

2. 组织学生进行小组讨论,解决椭圆相关问题。

四、拓展(10分钟)
探讨椭圆在实际生活中的应用,如卫星轨道、天文测量等。

五、作业布置(5分钟)
布置课后作业,要求学生继续复习椭圆相关知识,并尝试解决相关问题。

教学反思:
在教学过程中,要注重引导学生思考,让他们通过实际问题解决来理解椭圆的性质和应用。

同时,要注重椭圆与其他几何图形的比较,帮助学生更好地理解椭圆的特点。

高中数学椭圆的应用教案

高中数学椭圆的应用教案

高中数学椭圆的应用教案
教学目标:
1. 了解椭圆的定义和特性;
2. 掌握椭圆的标准方程和参数方程;
3. 能够应用椭圆解决实际问题。

教学重难点:
1. 椭圆的基本概念和性质;
2. 椭圆参数方程的应用。

教学准备:
1. 教师准备课件和教学素材;
2. 学生准备纸笔和计算器。

教学过程:
1. 导入:通过提问和讨论引导学生了解椭圆的定义和特性;
2. 讲解:讲解椭圆的标准方程和参数方程,并介绍椭圆在实际问题中的应用;
3. 练习:通过一些例题和实际问题,让学生练习应用椭圆求解问题;
4. 总结:总结椭圆的相关知识点,并强调学生需要多做练习提高应用能力。

教学延伸:
1. 学生可以通过阅读相关资料和解决实际问题,进一步理解和应用椭圆;
2. 学生可以尝试在数学建模比赛中运用椭圆解决问题,提升自己的数学建模能力。

课后作业:
1. 复习椭圆的相关知识点,并做相关习题;
2. 思考如何运用椭圆解决实际问题,并进行尝试。

教学反思:
通过本节课的教学,学生应该对椭圆的定义、性质和应用有了初步的了解,并能够运用相关知识解决实际问题。

教师可以根据学生的掌握情况进一步调整教学方法,提高学生的学习效果。

高中数学椭圆详细教案

高中数学椭圆详细教案

高中数学椭圆详细教案
一、教学目标:
1. 了解椭圆的定义和性质;
2. 能够正确画出椭圆的图像;
3. 掌握椭圆的参数方程和标准方程;
4. 能够求解椭圆的焦点、离心率等相关参数。

二、教学内容:
1. 椭圆的定义和性质;
2. 椭圆的参数方程和标准方程;
3. 椭圆的焦点、离心率等相关参数的求解。

三、教学重点:
1. 椭圆的定义和性质;
2. 椭圆的参数方程和标准方程。

四、教学难点:
1. 椭圆的焦点、离心率等参数的求解。

五、教学过程:
1. 导入新课:通过提问引出学生对椭圆的认识;
2. 学习椭圆的定义和性质;
3. 讲解椭圆的参数方程和标准方程;
4. 指导学生练习绘制椭圆的图像;
5. 讲解椭圆的焦点、离心率等参数的求解方法;
6. 练习题目训练学生解题能力;
7. 总结本节课内容,梳理重点和难点。

六、教学手段:
1. 课件展示;
2. 书本教材;
3. 黑板和彩色粉笔。

七、教学评价:
1. 学生课堂表现;
2. 课后练习题的完成情况。

八、课后作业:
1. 完成课后练习题;
2. 复习本节课内容,准备期末考试。

高中数学备课教案椭圆与双曲线的方程与性质

高中数学备课教案椭圆与双曲线的方程与性质

高中数学备课教案椭圆与双曲线的方程与性质高中数学备课教案:椭圆与双曲线的方程与性质椭圆与双曲线是高中数学中重要的曲线,对于学生的数学素养和应试能力都有一定的影响。

本教案将介绍椭圆与双曲线的方程与性质,帮助学生更好地理解和掌握这两种曲线。

一、椭圆的方程与性质1. 椭圆的定义椭圆是平面上到两个定点的距离之和等于常数的点的集合。

2. 椭圆的方程椭圆的一般方程为:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$其中,a和b分别为椭圆的长半轴和短半轴。

3. 椭圆的性质- 椭圆的焦点:椭圆的焦点是定义椭圆的两个定点。

- 椭圆的顶点:椭圆的顶点是距离椭圆中心最远的点。

- 椭圆的直径:椭圆的直径是穿过椭圆中心并且两端点都在椭圆上的线段。

二、双曲线的方程与性质1. 双曲线的定义双曲线是平面上到两个定点的距离之差等于常数的点的集合。

2. 双曲线的方程双曲线的一般方程为:$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$其中,a和b分别为双曲线的长半轴和短半轴。

3. 双曲线的性质- 双曲线的焦点:双曲线的焦点是定义双曲线的两个定点。

- 双曲线的顶点:双曲线的顶点是距离双曲线中心最远的点。

- 双曲线的渐近线:双曲线有两条渐近线,与双曲线无交点,但无限延伸。

三、椭圆与双曲线的比较在椭圆和双曲线的定义、方程和性质中,我们可以看到它们的一些不同之处。

1. 定义的不同- 椭圆:到两个定点的距离之和等于常数。

- 双曲线:到两个定点的距离之差等于常数。

2. 方程的不同- 椭圆:方程形式为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$。

- 双曲线:方程形式为$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$。

3. 性质的不同- 椭圆:有两个焦点和两条对称轴。

- 双曲线:有两个焦点、两条渐近线和两条对称轴。

四、实例分析接下来,我们通过两个实例来进一步理解椭圆与双曲线的方程与性质。

高中数学椭圆定义讲解教案

高中数学椭圆定义讲解教案

高中数学椭圆定义讲解教案
一、教学目标:
1. 理解椭圆的定义;
2. 掌握椭圆的性质;
3. 能够应用椭圆解决实际问题。

二、教学重点:
椭圆的定义与性质。

三、教学难点:
如何确定椭圆的方程。

四、教学过程:
1. 引入:通过让学生观察椭圆的形状,引出椭圆的定义。

2. 概念讲解:讲解椭圆的定义,即平面上到两个固定点的距离之和等于定值的点的集合称
为椭圆。

3. 性质讲解:讲解椭圆的性质,如焦点、长轴、短轴等。

4. 示例分析:通过实例讲解如何确定椭圆的方程,以及如何应用椭圆解决实际问题。

5. 练习巩固:让学生做一些练习题,巩固所学知识。

6. 拓展延伸:让学生思考椭圆在现实生活中的应用,如椭圆形的运动轨迹等。

五、课堂总结:
椭圆是平面上到两个固定点的距离之和等于定值的点的集合,具有特定的性质和方程形式。

通过本节课的学习,我们对椭圆有了更深入的了解,能够解决相关问题。

六、作业布置:
布置相关练习题,巩固所学知识。

七、教学反思:
本节课通过引入、讲解、示例分析等环节,达到了教学目标。

但是在课堂练习环节的设置
上可以更具体一些,以加深学生对椭圆的理解。

高中数学必修五椭圆教案

高中数学必修五椭圆教案

高中数学必修五椭圆教案一、椭圆的定义1. 椭圆是平面上到两个给定点的距离之和等于常数的点的轨迹。

2. 两个给定点称为椭圆的焦点,常数称为椭圆的长轴长度。

二、椭圆的性质1. 椭圆的长轴和短轴分别为2a和2b,焦距为2c,满足a^2 = b^2 + c^2。

2. 椭圆的离心率e = c/a,0<e<1,e越接近0,椭圆越扁。

3. 椭圆的焦点到椭圆上任意一点的距离之和等于椭圆的长轴长度。

4. 椭圆的方程为(x-h)^2/a^2 + (y-k)^2/b^2 = 1,其中(a>b)。

5. 椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1。

6. 椭圆的一个重要性质是对称性,椭圆关于x轴、y轴对称,关于原点对称。

三、椭圆的应用1. 椭圆在椭圆运动、工程设计、图像处理等领域有广泛的应用。

2. 椭圆在几何学、物理学、天文学等学科中起着重要作用。

3. 学生可以通过椭圆的性质和方程解决实际问题,提升数学分析和问题解决能力。

四、教学内容安排第一节:椭圆的定义和基本性质1. 理解椭圆的定义和基本性质。

2. 掌握椭圆的方程及其标准形式。

3. 通过例题训练椭圆的相关计算和推理能力。

第二节:椭圆的图形和对称性1. 了解椭圆的图形特点。

2. 掌握椭圆的对称性质。

3. 利用椭圆的对称性解决相关问题。

第三节:椭圆的参数和离心率1. 学习椭圆的参数和离心率的概念。

2. 理解椭圆参数和离心率的计算方法。

3. 通过实例练习掌握椭圆参数和离心率的应用。

五、教学方法和评价方式1. 采用讲解、示范、练习相结合的教学方法,引导学生理解和掌握椭圆的相关知识。

2. 通过课堂练习、作业和考试等方式评价学生对椭圆的掌握程度。

3. 鼓励学生在实际问题中运用椭圆知识进行分析和解决,提高综合应用能力。

六、教学反思和展望1. 针对学生掌握情况和学习反馈,及时调整教学方法和内容,提高教学效果。

2. 拓展椭圆的应用领域,引导学生深入理解椭圆的物理和几何意义。

高中数学椭圆教案

高中数学椭圆教案

高中数学椭圆教案教案需要明确教学目标,确保学生能够掌握椭圆的基本概念,包括其标准方程和图形特征。

通过教学活动,学生应能够推导出椭圆的焦点和准线的性质,并能够解决一些与椭圆相关的实际问题。

教学内容的设计要围绕椭圆的定义展开。

可以从简单的几何形状出发,引导学生观察不同圆的压缩变形过程,自然过渡到椭圆的概念。

通过动态演示或实物操作,让学生直观感受到椭圆的形成过程。

在讲解椭圆的标准方程时,教案应包含对椭圆中心、长轴、短轴、焦点等基本元素的介绍。

教师可以通过图像辅助,展示不同位置和大小的椭圆,帮助学生形成清晰的视觉印象。

为了加深学生对椭圆性质的理解,教案中应设计一些探究活动。

例如,让学生动手测量椭圆的长轴和短轴,寻找焦点的位置,并通过实际计算验证椭圆的几何性质。

可以设置一些实验性的学习任务,如利用绘图软件绘制椭圆,或者使用物理方法模拟椭圆的反射和折射现象。

在教学方法上,教案鼓励采用启发式和探究式的教学方式。

通过提问和讨论,激发学生的好奇心和探索欲,引导他们自主发现问题并寻求解决方案。

同时,教师应根据学生的学习情况适时给予指导和帮助。

评价与反馈环节也是教案的重要组成部分。

教案建议通过作业、小测验和课堂表现等多种方式对学生的学习效果进行评估。

及时的反馈可以帮助学生了解自己的学习进度,同时也为教师提供了调整教学策略的依据。

教案还应该包含一些拓展内容,如椭圆在天文学、工程学和其他科学领域的应用案例。

这些实际应用的介绍不仅能够增加学生对数学学科的兴趣,还能够帮助他们认识到数学知识在现实世界中的重要性。

这份高中数学椭圆教案范本旨在通过直观的教学活动和深入的探究学习,帮助学生全面而深刻地理解椭圆的知识。

通过这样的教学设计,我们期望学生不仅能够掌握椭圆的数学理论,还能够将所学知识应用于实际问题,培养他们的综合运用能力和创新思维。

高中数学选择性必修一精讲精炼 1 椭圆的简单几何性质(精讲)(教师含解析)

高中数学选择性必修一精讲精炼   1  椭圆的简单几何性质(精讲)(教师含解析)

3.1.2 椭圆的简单几何性质(精讲)考点一离心率【例1】(1)(2021·四川高二期末(文))椭圆()222210x ya ba b+=>>的左右焦点分别是1F,2F,以2F为圆心的圆过椭圆的中心,且与椭圆交于点P,若直线1PF恰好与圆2F相切于点P,则椭圆的离心率为( ).A B C1D(2)(2021·黄冈天有高级中学高二月考)已知12,F F是椭圆的两个焦点,过1F且与椭圆长轴垂直的直线交椭圆于,A B两点,若2ABF是等腰直角三角形,则这个椭圆的离心率是( )A B.2C1D【答案】(1)C(2)C【解析】(1)由题意2PF c=,12PF PF⊥,所以1PF===,所以122PF PF c a++=,所以离心率为1cea=.故选:C.(2)不妨设椭圆方程为()222210x ya ba b+=>>,焦点()()12,0,,0F c F c-,离心率为e,将x c =代入22221c y a b +=可得2b y a =±,所以22bAB a =,又2ABF 是等腰直角三角形,所以212224bAB F F c a===,所以22b c a =即2220c a ac -+=,所以2210e e +-=,解得1e =(负值舍去).故选:C. 【一隅三反】1.(2021·河北石家庄二中高一期末)若焦点在x 轴上的椭圆 22116x y m +=+m = A .31 B .28 C .25 D .23【答案】D【解析】焦点在x 轴上,所以221,6a m b =+= 所以2165c m m =+-=-离心率e =,所以2225314c m e a m -===+解方程得m=23 所以选D2.(2021·江苏高二期末)设1F ,2F 为椭圆2222:1(0)x y C a b a b +=>>的两个焦点,点P 在C 上,且1122,,PF F F PF 成等比数列,则C 的离心率的最大值为( ) A .12 B .23C .34D .1【答案】A【解析】设()2120F F c c =>,122PF PF a +=, 因为1122,,PF F F PF 成等比数列, 所以2212124F F PF PF c =⨯=,由12PF PF +≥2a ≥ 即12c e a =≤,当且仅当12PF PF =等号成立, 所以椭圆C 的离心率最大值为12. 故选:A.3.(2021·全国高二课时练习)在Rt ABC 中,1AB AC ==,如果一个椭圆通过A 、B 两点,它的一个焦点为点C ,另一个焦点在AB 上,则这个椭圆的离心率e =( )A B 1C 1D -【答案】D【解析】设另一个焦点为F ,如图所示,∵||||1AB AC ==,||BC42AB AC BC a ++==a =,设FA x =,则12x a +=,12x a -=,∴x =2214c +=,c =c e a ==故选:D.考点二 点与椭圆的位置关系【例2】(1)(2021·广西平果二中(理))点(1,1)与椭圆22132x y +=的位置关系为( )A .在椭圆上B .在椭圆内C .在椭圆外D .不能确定(2)(【新教材精创】3.1.2 椭圆的简单几何性质(2) 导学案-人教A 版高中数学选择性必修第一册)若点(),1P a 在椭圆22123x y +=的外部,则a 的取值范围为( )A .⎛ ⎝⎭B .,⎫⎛+∞⋃-∞⎪ ⎪ ⎝⎭⎝⎭C .4,3⎛⎫+∞ ⎪⎝⎭D .4,3⎛⎫-∞- ⎪⎝⎭【答案】(1)B(2)B【解析】(1)1151326+=<,可知点(1,1)在椭圆内.故选:B.(2)因为点(),1P a 在椭圆22123x y +=的外部,所以221123a +>,即243a >,解得a >a <.故选:B. 【一隅三反】1.(2021·安徽定远二中)点()1,0.7P 与椭圆2212x y +=的位置关系为( )A .在椭圆内B .在椭圆上C .在椭圆外D .不能确定【答案】A【解析】2210.70.9912+=<,所以,点P 在椭圆2212x y +=内.故选:A.2.(2021·甘肃省民乐县第一中学高三二模(理))若直线9mx ny +=和圆229x y +=没有交点,则过点(,)m n 的直线与椭圆221916x y +=的交点个数为( )A .1个B .至多一个C .2个D .0个【答案】C【解析】因为直线9mx ny +=和圆229x y +=没有交点, 3>,即229m n +<,所以2222191699m n m n +≤+<,即点(,)m n 在椭圆221916x y +=内, 所以过点(,)m n 的直线与椭圆221916x y +=的交点个数为2个. 故选:C考点三 直线与椭圆的位置关系【例3】(2021·安徽省泗县第一中学)已知椭圆的长轴长是(,. (1)求这个椭圆的标准方程;(2)如果直线y x m =+与这个椭圆交于两不同的点,求m 的取值范围.【答案】(1)2213x y +=;(2)22m -<<.【解析】(1)由已知得2a =c = 解得a =2321b ∴=-=,∴椭圆的标准方程为2213x y +=. (2)由2213y x m x y =+⎧⎪⎨+=⎪⎩,解方程组并整理得2246330x mx m ++-=, 有两个不同的交点∴222(6)44(33)12(4)0m m m ∆=-⨯⨯-=-->.解不等式得22m -<<. m ∴的取值范围(2,2)-.【一隅三反】1.(2021·上海市长征中学)设直线与椭圆的方程分别为 2y x b =+与2217525x y +=,问b 为何值时,(1)直线与椭圆有一个公共点; (2)直线与椭圆有两个公共点; (3)直线与椭圆无公共点.【答案】(1)b =±(2)b -<(3)b <-b >【解析】设直线与椭圆的方程分别为 2y x b =+与2217525x y +=,问b 为何值时, 由22217525y x b x y =+⎧⎪⎨+=⎪⎩得2213172530x bx b ++=-.(1)当()()22124133075b b =--∆⨯⨯=,即b =±(2)当()()22124133075b b =--∆⨯⨯>,即b -<(3)()()22124133075b b =--∆⨯⨯<即b <-b >时直线与椭圆无公共点.2.(2021·广东高二期末)在平面直角坐标系xOy 中,已知点P到两点(M N 的距离之和等于4,设点P 的轨迹为曲线C .(1)求曲线C 的方程.(2)若直线2y kx =+与曲线C 有公共点,求实数k 的取值范围. 【答案】(1)2214x y +=;(2)|k k k ⎧⎪≤≥⎨⎪⎪⎩⎭.【解析】(1)由己知得4PM PN MN +=>=由椭圆定义可知,轨迹C 是以M ,N为焦点,焦距长2c =24a =的椭圆. 所以222431b a c =-=-=,所以曲线C 的方程是2214x y +=.(2)由22214y kx x y =+⎧⎪⎨+=⎪⎩得()221416120k x kx +++=. ()()22216412146448k k k ∆=-⨯⨯+=-,因为直线2y kx =+与曲线C 有公共点, 所以0∆≥,即264480k -≥,解得k ≤k ≥故实数k的取值范围是|k k k ⎧⎪≤≥⎨⎪⎪⎩⎭.3.(2021·莆田第十五中学高二期末)直线0x y m --=与椭圆2219xy +=有且仅有一个公共点,求m 的值.【答案】m =【解析】将直线方程0x y m --=代入椭圆方程2219x y +=, 消去x 得到:2210290y my m -++=,令0∆=,即()22441090m m -⨯-=解得m =考点四 弦长【例4-1】(2021·全国高二课时练习)直线x -y +1=0被椭圆23x +y 2=1所截得的弦长|AB |等于( )A.2BC.D.【答案】A【解析】由2210,1,3x y x y -+=⎧⎪⎨+=⎪⎩得交点为(0,1),31(,)22--,则|AB |故选:A.【例4-2】(2021·陕西高二期末(理))已知椭圆()2222:10y x E a b a b +=>>的焦距为⎫⎪⎪⎝⎭在椭圆E 上.(1)求椭圆E 的标准方程;(2)设直线1y kx =+与椭圆E 交于M 、N 两点,O 为坐标原点,求OMN 面积的取值范围. 【答案】(1)2214y x +=;(2)⎛ ⎝⎦. 【解析】(1)因为焦距为2c =c =因为点⎫⎪⎪⎝⎭在椭圆E 上,所以221314a b +=,联立222221314c a b a b c ⎧=⎪⎪+=⎨⎪=+⎪⎩,解得24a =,21b =,椭圆E 的标准方程为2214y x +=. (2)设()11,M x y ,()22,N x y ,联立22141y x y kx ⎧+=⎪⎨⎪=+⎩,整理得()224230k x kx ++-=,0∆>,则12224k x x k +=-+,12234x x k =-+,原点到直线1y kx =+,则MON △的面积12S ==令t =t ≥,22211t S t t t==++,令1y t t =+,则221t y t-'=,函数1yt t =+在)+∞上单调递增,故1t t +≥,201t t <≤+OMN 面积的取值范围为⎛ ⎝⎦. 【一隅三反】1.(2021·安徽省泗县第一中学高二开学考试(理))已知椭圆的长轴长是(),).(1)求这个椭圆的标准方程;(2)如果直线y x m =+与这个椭圆交于A 、B两不同的点,若2AB =,求m 的值. 【答案】(1)2213x y +=;(2)1m =±.【解析】(1)由已知得2a =a =c =2221b a c =-=所以椭圆的标准方程2213x y +=(2)由2213y x m x y =+⎧⎪⎨+=⎪⎩消除y 得2246330x mx m ++-= 因为有两个不同的交点,所以()222(6)44(33)1240m m m ∆=-⨯⨯-=-->得m 的取值范围为()2,2- 由韦达定理得:126342m m x x --+== ,212334m x x -=所以2AB ==解得1m =±2.(2021·四川高二期末(文))已知椭圆1C 以直线0x my +=所过的定点为一个焦点,且短轴长为4. (1)求椭圆1C 的标准方程;(2)过点()1,0C 的直线l 与椭圆1C 交于A ,B 两个不同的点,求OAB 面积的最大值. 【答案】(1)22194x y +=;【解析】(1)直线0x my +过定点),即椭圆的一个焦点为),依题意:椭圆1C 的半焦距c =2b =,长半轴长a 有2229a b c =+=, 所以椭圆1C 的标准方程为22194x y +=; (2)显然点()1,0C 在椭圆内部,即直线l 与椭圆必有两个不同的交点, 由题意得直线l 不垂直于y 轴,设直线l 的方程为1x ky =+,由2214936x ky x y =+⎧⎨+=⎩消去x 整理得()22498320k y ky ++-=, 设()11,A x y ,()22,B x y ,则122849k y y k -+=+,1223249y y k -=+, 从而有1212111||||222△△△OAB AOC BOC S S S OC y OC y y y =+=⋅⋅+⋅⋅=-421k =++121=,t 1()4f t t t=+在)+∞单调递增, 则t 0k=时,14t t =+≥=于是有129AOB S ≤△0k =时等号成立, 所以OAB 3.(2021·重庆字水中学高二期末)已知椭圆22:1y E x m +=的下焦点为1F 、上焦点为2F ,其离心率e =过焦点2F 且与x 轴不垂直的直线l 交椭圆于A 、B 两点 (1)求实数m 的值;(2)求ABO (O 为原点)面积的最大值. 【答案】(1)2m =;【解析】(1)由题意可得:21b =,2a m =,可得1b =,a =因为c e a ==c = 因为222a b c =+,所以12mm =+,可得2m =,(2)由(1)知:椭圆22:12y E x +=,上焦点()20,1F ,设()11,A x y ,()22,B x y ,直线:l 1y kx =+, 由22112y kx y x =+⎧⎪⎨+=⎪⎩可得:()222210k x kx ++-=,所以12222k x x k -+=+,12212-=+x x k ,所以()()()()222222121212222222442248842222k k k k x x x x x x k k k k ++-+⎛⎫-=+-=+== ⎪++⎝⎭++,可得:12x x -=所以12211122ABOSx x OF =⨯-⨯==≤即0k =时等号成立,所以ABO (O 为原点)面积的最大值为2. 考点五 中点弦与点差法【例5】(1)(2021·全国高二专题练习)已知椭圆2219x y +=,过点11,22P ⎛⎫ ⎪⎝⎭的直线与椭圆相交于A 、B 两点,且弦AB 被点P 平分,则直线AB 的方程为( ) A .950x y +-= B .940x y --= C .950x y +-=D .940x y -+=(2)(2021·南京市中华中学高二期中)已知椭圆C :22221x y a b +=(0a b >>)的左焦点为F ,过点F的直线0x y -与椭圆C 相交于不同的两点A ,B ,若P 为线段AB 的中点,O 为坐标原点,直线OP 的斜率为12-,则椭圆C 的方程为( )A .22132x y +=B .2214x y +=C .22142x y +=D .22163x y +=【答案】(1)C(2)D【解析】(1)设点()11,A x y 、()22,B x y ,由已知可得121211x x y y +=⎧⎨+=⎩, 因为点A 、B 都在椭圆上,则221122221919x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式作差可得()()()()1212121209x x x x y y y y -++-+=,即()121209x x y y -+-=, 所以,直线AB 的斜率为121219AB y y k x x -==--,因此,直线AB 的方程为111292y x ⎛⎫-=-- ⎪⎝⎭,即950x y +-=. 故选:C.(2)直线0x y -过点F ,令0y =则x =()F,即c =设()()1122,,,A x y B x y ,则2222112222221,1x y x y a b a b +=+=,两式相减并化简得2121221212y y y y b a x x x x +--=⋅+-,所以222222111222b b a b a a ⎛⎫-=-⋅⇒=⇒= ⎪⎝⎭,22223,c a b b b a =-====所以椭圆C 的方程为22163x y +=.故选:D 【一隅三反】1.(2021·浙江嘉兴·高二期中)已知点P Q M ,,是椭圆2222:1(0)x y C a b a b +=>>上的三点,坐标原点O 是PQM的重心,若点M ⎫⎪⎪⎝⎭,直线PQ 的斜率恒为12-,则椭圆C 的离心率为( ) ABCD【答案】D【解析】设()()1122,,,P x y Q x y,又,M ⎫⎪⎪⎝⎭由原点O 是PQM的重心,得1212220,033x x y y ++==,即1212,x x y y +=+=, 又P Q ,是椭圆2222:1(0)x y C a b a b+=>>上的点,2222112222221,1x y x y a b a b∴+=+=, 作差可得:()()()()1212121222x x x x y y y y a b -+-+=-,即()()2212122121212b b x x y y x x a y y ⎛⎫⋅ ⎪+-=-=-=-+⎝⎭,即12b a =,∴c e a===, 故选:D2.(2021·河南新乡·高二期末(理))已知椭圆()2222:10x y G a b a b+=>>的右焦点为()F ,过点F 的直线交椭圆于A 、B 两点.若AB的中点坐标为,则G 的方程为( )A .2213214+=x yB .2213820+=x yC .2214830+=x yD .2213618x y +=【答案】D【解析】设点()11,A x y 、()22,B x y ,则22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两个等式作差得22221212220x x y y a b --+=, 整理可得2221222212y y b x x a-=--, 设线段AB的中点为M,即2121221212AB OMy y y y b k k x x x x a-+⋅=⋅=--+,另一方面12AB MFk k ==,1OM k =-,所以,()2211122b a -=⨯-=-,所以,22222182c a b a b ⎧=-=⎨=⎩,解得223618a b ⎧=⎨=⎩, 因此,椭圆G 的方程为2213618x y +=.故选:D.3.(2021·江苏)已知椭圆C 的方程为2214x y +=,直线AB 与椭圆C 交于A ,B 点,且线段AB 的中点坐标为1(1,)2,则直线AB 的方程为( )A .3220x y --=B .4230--=x yC .2230x y +-=D .+220x y -=【答案】D【解析】设,A B 两点的坐标分别为1122(,),(,)x y x y ,则有221122221414x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得12121212()()()()04x x x x y y y y -++-+=, ∴121212124()y y x xx x y y -+=--+. 又12122,1x x y y +=+=, ∴121221412y y x x -=-=--⨯,即直线AB 的斜率为12-, ∴直线AB 的方程为11(1)22y x -=--,即+220x y -=. 故选:D.4.(2021·河北辛集中学高二期中)过椭圆216x +24y =1内一点M (2,1)引一条弦,使弦被M 点平分.(1)求此弦所在的直线方程; (2)求此弦长.【答案】(1)x +2y -4=0;【解析】(1)设所求直线方程为y -1=k (x -2).代入椭圆方程并整理,得 (4k 2+1)x 2-8(2k 2-k )x +4(2k -1)2-16=0,① 又设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2), 则x 1,x 2是方程的两个根,于是x 1+x 2=228(2)41k k k -+.又M 为AB 的中点,∴122x x +=224(2)41k k k -+=2,解得k =-12,直线方程为11(2)2y x -=--,即x +2y -4=0.(2)由(1)将k =-12代入①得,x 2-4x =0, ∴120,4x x ==, ∴|AB |12|x x -=考点六 最值【例6】(1)(2021·浙江高二期末)点P 、Q 分别在圆(222x y +=和椭圆2214x y +=上,则P 、Q 两点间的最大距离是( )A .B .C .D .(2)(2021·江苏高二开学考试)已知椭圆22:194x y C +=的右顶点为2A ,直线:l x m =与椭圆C 相交于A ,B 两点,当2∠AA B 为钝角时,m 的取值范围是( ). A .150,13⎛⎫⎪⎝⎭B .15,313⎛⎫ ⎪⎝⎭C .1515,00,1313⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭D .15153,,31313⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭【答案】(1)C(2)B【解析】(1)圆(222x y +=的圆心为(C ,半径为r =设点(),Q x y ,则2244x y =-且11y -≤≤,CQ ==,当且仅当3y =-时,等号成立,所以,max max PQ CQ r =+=故选:C.(2)易知33m -<<,x m=代入22194x y +=得y =±AB =由对称性知2AA B 是等腰三角形,AB 是底,设AB 与x 轴交点为M ,如图, 2∠AA B 为钝角,则24AA M π∠>,∴2AM MA >,即3m >-,解得15313m <<.故选:B .【一隅三反】1.(【新东方】高中数学20210429—004【2020】【高二上】)已知P 为椭圆22221x y a b+=上一点,12,F F 是焦点,12F PF ∠取最大值时的余弦值为13,则此椭圆的离心率为_______.【解析】依题意12122,2PF PF a F F c +==,222a b c =+,当12F PF ∠取最大值时,即12cos F PF ∠最小,即12cos F PF ∠的最小值为13.而()222221212121212121224cos 22PF PF PF PF c PF PF F F F PF PF PF PF PF +-⋅-+-∠==⋅⋅222121212424212a PF PF c b PF PF PF PF -⋅-==-⋅⋅, 而()2122124PF PF PF PF a +⋅≤=,当且仅当12PF PF a ==时等号成立,故21222cos 1b F PF a∠≥-,当且仅当12PF PF a ==时等号成立,所以12cos F PF ∠的最小值为222113b a -=,即2223ba =,故c e a ===2.(2021·重庆西南大学附中高二期末)已知椭圆()2222:10x y C a b a b+=>>的左、右焦点为1F 、2F ,离心率为12,过2F 的直线l 交C于A 、B 两点,若1AF B △的周长为8.(1)求椭圆C 的标准方程;(2)若椭圆上存在两点关于直线4y x m =+对称,求m 的取值范围.【答案】(1)22143x y +=;(2)m <<【解析】(1)1AF B △周长为8,即48a =,2a ∴=.又因为12e =,1c ∴=,b =椭圆方程22143x y C +=:,(2)设椭圆上两点11(,)A x y ,22(,)B x y 关于4y x m =+对称,则AB 的方程为14y x t =-+,由2214143y x t x y ⎧=-+⎪⎪⎨⎪+=⎪⎩消去y 有:2213816480x tx t -+-= 由22(8)413(1648)0.t t ∆=--⨯⨯->得213,4t <① 又1212128124,()213413t tx x y y x x t +=+=-++=因为AB 的中点在直线4y x m =+上,所以1212422y y x x m ++=+,即12441313t tm =⨯+ 所以1340m t +=②,由①②得:2413m <,即m <<。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学-圆锥曲线与方程第1讲椭圆及其性质考点一椭圆的标准方程知识点1椭圆的定义(1)定义:在平面内到两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.(2)集合语言:P={M||MF1|+|MF2|=2a,且2a>|F1F2|},|F1F2|=2c,其中a>c>0,且a,c为常数.2椭圆的焦点三角形椭圆上的点P(x0,y0)与两焦点构成的△PF1F2叫做焦点三角形.如图所示,设∠F1PF2=θ.(1)当P为短轴端点时,θ最大.(2)S△PF1F2=12|PF1||PF2|·sinθ=b2·sinθ1+cosθ=b2tanθ2=c|y0|,当|y0|=b,即P为短轴端点时,S△PF1F2取最大值,为bc.(3)焦点三角形的周长为2(a+c).3椭圆的标准方程椭圆的标准方程是根据椭圆的定义,通过建立适当的坐标系得出的.其形式有两种:(1)当椭圆的焦点在x轴上时,椭圆的标准方程为x2a2+y2b2=1(a>b>0).(2)当椭圆的焦点在y轴上时,椭圆的标准方程为y2a2+x2b2=1(a>b>0).4特殊的椭圆系方程(1)与椭圆x2m2+y2n2=1共焦点的椭圆可设为x2m2+k+y2n2+k=1(k>-m2,k>-n2).(2)与椭圆x2a2+y2b2=1(a>b>0)有相同离心率的椭圆可设为x2a2+y2b2=k1(k1>0,焦点在x轴上)或y2a2+x2b2=k2(k2>0,焦点在y轴上).注意点 对椭圆定义的理解当2a >|F 1F 2|时,轨迹为椭圆;当2a =|F 1F 2|时,轨迹为线段F 1F 2;当2a <|F 1F 2|时,轨迹不存在.入门测1.思维辨析(1)平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆.( ) (2)方程mx 2+ny 2=1(m >0,n >0,m ≠n )表示的曲线是椭圆.( ) (3)y 2a 2+x 2b 2=1(a ≠b )表示焦点在y 轴上的椭圆.( ) (4)x 2a 2+y 2b 2=1(a >b >0)与y 2a 2+x 2b 2=1(a >b >0)的焦距相同.( ) 答案 (1)× (2)√ (3)× (4)√ 2.已知方程x 25-m +y 2m +3=1表示椭圆,则m 的取值范围为( ) A .(-3,5) B .(-3,1) C .(1,5) D .(-3,1)∪(1,5)答案 D解析 方程表示椭圆的条件为⎩⎪⎨⎪⎧5-m >0,m +3>0,5-m ≠m +3,解得m ∈(-3,1)∪(1,5).故选D.3.若一个椭圆长轴的长度、短轴的长度和焦距依次成等差数列,则该椭圆的离心率是( ) A.45 B.35 C.25 D.15答案 B解析 由题意知2a +2c =2(2b ),即a +c =2b ,又c 2=a 2-b 2,消去b 整理得5c 2=3a 2-2ac ,即5e 2+2e -3=0,∴e =35或e =-1(舍去).解题法命题法 椭圆的定义和标准方程典例 (1)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 (2)椭圆x 24+y 23=1的左焦点为F ,直线x =m 与椭圆相交于点A ,B .当△F AB 的周长最大时,△F AB 的面积是________.[解析] (1)设A (x 1,y 1),B (x 2,y 2),则x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,两式作差并化简变形得y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2),而y 1-y 2x 1-x 2=0-(-1)3-1=12,x 1+x 2=2,y 1+y 2=-2,所以a 2=2b 2,又a 2-b 2=c 2=9,于是a 2=18,b 2=9.故选D.(2)如图所示,设椭圆右焦点为F ′,直线x =m 与x 轴相交于点C .由椭圆的定义,得|AF |+|AF ′|=|BF |+|BF ′|=2a =4.而|AB |=|AC |+|BC |≤|AF ′|+|BF ′|,所以当且仅当AB 过点F ′时,△ABF 的周长最大. 此时,由c =1,得A ⎝⎛⎭⎫1,32,B ⎝⎛⎭⎫1,-32,即|AB |=3. 所以S △ABF =12|AB ||FF ′|=3.[答案] (1)D (2)3【解题法】 1.椭圆定义的应用的类型及方法(1)利用定义确定平面内的动点的轨迹是否为椭圆.(2)利用定义解决与焦点三角形相关的周长、面积及最值.利用定义和余弦定理可求得|PF 1|·|PF 2|,再结合|PF 1|2+|PF 2|2=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|进行转化,进而求得焦点三角形的周长和面积.2.椭圆方程的求法 (1)定义法根据椭圆的定义确定a 2,b 2的值,再结合焦点位置求出椭圆方程.其中常用的关系有: ①b 2=a 2-c 2.②椭圆上任意一点到椭圆两焦点的距离之和等于2a . ③椭圆上一短轴顶点到一焦点的距离等于实半轴长a . (2)待定系数法一般步骤①判断:根据已知条件确定椭圆的焦点在x 轴上,还是在y 轴上,还是两个坐标轴上都有可能. ②设:根据①中判断设出所需的未知数或者标准方程. ③列:根据题意列关于a ,b ,c 的方程或者方程组. ④解:求解得到方程.对点练1.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B 两点.若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1 B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1 答案 A解析 ∵x 2a 2+y 2b 2=1(a >b >0)的离心率为33,∴c a =33.又∵过F 2的直线l 交椭圆于A ,B 两点,△AF 1B 的周长为43, ∴4a =43,∴a = 3.∴b =2, ∴椭圆方程为x 23+y 22=1,选A.2.设F 1,F 2分别是椭圆E :x 2+y 2b 2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.答案 x 2+32y 2=1解析 不妨设点A 在第一象限,∵AF 2⊥x 轴,∴A (c ,b 2),又|AF 1|=3|F 1B |,∴AF 1→=3F 1B →,得B ⎝⎛⎭⎫-5c 3,-b 23将其代入椭圆方程化简得25c 29+b 29=1,又c 2=1-b 2,得b 2=23,故椭圆E 的方程为x 2+32y 2=1.3.已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN的中点在C 上,则|AN |+|BN |=________.答案 12解析 如图,设MN 的中点为P ,则由F 1是AM 的中点,可知|AN |=2|PF 1|.同理可得可知|BN |=2|PF 2|. ∴|AN |+|BN |=2(|PF 1|+|PF 2|). 根据椭圆定义得|PF 1|+|PF 2|=2a =6, ∴|AN |+|BN |=12.4.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-c,0),离心率为33,点M 在椭圆上且位于第一象限,直线FM被圆x 2+y 2=b 24截得的线段的长为c ,|FM |=433.(1)求直线FM 的斜率; (2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值范围. 解 (1)由已知有c 2a 2=13,又由a 2=b 2+c 2,可得a 2=3c 2,b 2=2c 2.设直线FM 的斜率为k (k >0),则直线FM 的方程为y =k (x +c ).由已知,有⎝⎛⎭⎫kc k 2+12+⎝⎛⎭⎫c 22=⎝⎛⎭⎫b 22,解得k =33. (2)由(1)得椭圆方程为x 23c 2+y 22c 2=1,直线FM 的方程为y =33(x +c ),两个方程联立,消去y ,整理得3x 2+2cx-5c 2=0,解得x =-53c 或x =c .因为点M 在第一象限,可得M 的坐标为⎝⎛⎭⎫c ,233c . 由|FM |=(c +c )2+⎝⎛⎭⎫233c -02=433,解得c =1,所以椭圆的方程为x 23+y 22=1.(3)设点P 的坐标为(x ,y ),直线FP 的斜率为t ,得t =yx +1,即y =t (x +1)(x ≠-1),与椭圆方程联立⎩⎪⎨⎪⎧y =t (x +1),x 23+y 22=1,消去y ,整理得2x 2+3t 2(x +1)2=6.又由已知,得t = 6-2x 23(x +1)2>2,解得-32<x <-1或-1<x <0.设直线OP 的斜率为m ,则m =y x ,即y =mx (x ≠0),与椭圆方程联立,整理可得m 2=2x 2-23.①当x ∈⎝⎛⎭⎫-32,-1时,有y =t (x +1)<0,因此m >0,于是m =2x 2-23,得m ∈⎝⎛⎭⎫23,233.②当x ∈(-1,0)时,有y =t (x +1)>0,因此m <0,于是m =-2x 2-23,得m ∈⎝⎛⎭⎫-∞,-233. 综上,直线OP 的斜率的取值范围是⎝⎛⎭⎫-∞,-233∪⎝⎛⎭⎫23,233. 5.平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,左、右焦点分别是F 1,F 2.以F 1为圆心以3为半径的圆与以F 2为圆心以1为半径的圆相交,且交点在椭圆C 上.(1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b 2=1,P 为椭圆C 上任意一点.过点P 的直线y =kx +m 交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q .(ⅰ)求|OQ ||OP |的值;(ⅱ)求△ABQ 面积的最大值. 解 (1)由题意知2a =4,则a =2. 又c a =32,a 2-c 2=b 2,可得b =1, 所以椭圆C 的方程为x 24+y 2=1.(2)由(1)知椭圆E 的方程为x 216+y 24=1.(ⅰ)设P (x 0,y 0),|OQ ||OP |=λ,由题意知Q (-λx 0,-λy 0). 因为x 204+y 20=1, 又(-λx 0)216+(-λy 0)24=1,即λ24⎝⎛⎭⎫x 204+y 20=1, 所以λ=2,即|OQ ||OP |=2. (ⅱ)设A (x 1,y 1),B (x 2,y 2). 将y =kx +m 代入椭圆E 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-16=0. 由Δ>0,可得m 2<4+16k 2.①则有x 1+x 2=-8km1+4k 2,x 1x 2=4m 2-161+4k 2.所以|x 1-x 2|=416k 2+4-m 21+4k 2.因为直线y =kx +m 与y 轴交点的坐标为(0,m ), 所以△OAB 的面积S =12|m ||x 1-x 2|=216k 2+4-m 2|m |1+4k 2=2(16k 2+4-m 2)m 21+4k 2=2⎝⎛⎭⎫4-m 21+4k 2m 21+4k 2. 设m 21+4k 2=t . 将y =kx +m 代入椭圆C 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-4=0, 由Δ≥0,可得m 2≤1+4k 2.② 由①②可知0<t ≤1.因此S =2(4-t )t =2-t 2+4t . 故S ≤23,当且仅当t =1,即m 2=1+4k 2时取得最大值2 3. 由(ⅰ)知,△ABQ 面积为3S , 所以△ABQ 面积的最大值为6 3.6.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点P (0,1)和点A (m ,n )(m ≠0)都在椭圆C 上,直线P A 交x轴于点M .(1)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(2)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得∠OQM =∠ONQ ?若存在,求点Q 坐标;若不存在,说明理由.解 (1)由题意得⎩⎪⎨⎪⎧b =1,c a =22,a 2=b 2+c 2.解得a 2=2.故椭圆C 的方程为x 22+y 2=1.设M (x M,0).因为m ≠0,所以-1<n <1. 直线P A 的方程为y -1=n -1m x ,所以x M =m1-n ,即M ⎝⎛⎭⎫m 1-n ,0. (2)因为点B 与点A 关于x 轴对称,所以B (m ,-n ). 设N (x N,0),则x N =m1+n. “存在点Q (0,y Q )使得∠OQM =∠ONQ ”等价于“存在点Q (0,y Q )使得|OM ||OQ |=|OQ ||ON |”,即y Q 满足y 2Q =|x M ||x N |. 因为x M =m 1-n ,x N =m 1+n ,m 22+n 2=1,所以y 2Q =|x M ||x N |=m 21-n 2=2. 所以y Q =2或y Q =- 2.故在y 轴上存在点Q ,使得∠OQM =∠ONQ .点Q 的坐标为(0,2)或(0,-2).考点二椭圆的几何性质知识点1椭圆的几何性质2点P(x0,y0)和椭圆x2a2+y2b2=1的关系(1)P(x0,y0)在椭圆内⇔x20a2+y20b2<1;(2)P(x0,y0)在椭圆上⇔x20a2+y20b2=1;(3)P(x0,y0)在椭圆外⇔x20a2+y20b2>1.注意点椭圆上的点到焦点的距离的范围F1,F2为椭圆的两个焦点,P是椭圆上一点,则a-c≤|PF1|≤a+c,a-c≤|PF2|≤a+c.入门测1.思维辨析(1)椭圆上一点P 与两焦点F 1,F 2构成△PF 1F 2的周长为2a +2c (其中a 为椭圆的长半轴长,c 为椭圆的半焦距).( )(2)椭圆的离心率e 越大,椭圆就越圆.( ) (3)椭圆既是轴对称图形,又是中心对称图形.( ) 答案 (1)√ (2)× (3)√2.已知椭圆x 210-m +y 2m -2=1的焦距为4,则m 等于( )A .4B .8C .4或8D .以上均不对答案 C解析 由⎩⎪⎨⎪⎧10-m >0m -2>0,得2<m <10,由题意知(10-m )-(m -2)=4或(m -2)-(10-m )=4, 解得m =4或m =8.3.已知椭圆的焦点在y 轴上,若椭圆x 22+y 2m =1的离心率为12,则m 的值是( )A.23 B.43 C.53 D.83答案 D解析 由题意知a 2=m ,b 2=2,∴c 2=m -2. ∵e =12,∴c 2a 2=14,∴m -2m =14,∴m =83.解题法[考法综述] 椭圆的几何性质非常丰富,尤其对于离心率的考查是高考热点.本考点对数形结合思想的要求很高,方法灵活.命题法 求椭圆的离心率或范围典例 (1)设F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,点P 在椭圆C 上,线段PF 1的中点在y轴上,若∠PF1F2=30°,则椭圆的离心率为()A.16 B.13C.36 D.33(2)椭圆x2a2+y2b2=1(a>b>0)的左、右顶点分别是A、B,左、右焦点分别是F1、F2.若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为________.[解析](1)设PF1的中点为M,连接PF2,由于O为F1F2的中点,则OM为△PF1F2的中位线,所以OM∥PF2,所以∠PF2F1=∠MOF1=90°.由于∠PF1F2=30°,所以|PF1|=2|PF2|,由勾股定理得|F1F2|=|PF21|-|PF22|=3|PF2|,由椭圆定义得2a=|PF1|+|PF2|=3|PF2|⇒a=3|PF2|2,2c=|F1F2|=3|PF2|⇒c=3|PF2|2,所以椭圆的离心率为e=ca=3|PF2|2·23|PF2|=33.故选D.(2)∵|AF1|=a-c,|BF1|=a+c,|F1F2|=2c,则有4c2=(a-c)(a+c),得e=ca=55. [答案](1)D(2)55【解题法】 与椭圆的离心率有关问题的解题策略(1)求椭圆的离心率①求出a ,c ,直接求出e :已知椭圆的标准方程或a ,c 易求时,可利用离心率公式e =ca 求解.②变用公式,整体求出e :利用e =c 2a 2=a 2-b 2a 2=1-b 2a2,e =c 2c 2+b 2=11+b 2c 2,只需明确b a 或b c,便可求解e .③构造a ,c 的齐次式,解出e :根据题设条件,借助a ,b ,c 之间的关系,构造出a ,c 的齐次式,通过两边除以a 2,进而得到关于e 的方程,通过解方程得出离心率e 的值.(2)求椭圆离心率范围求解离心率的范围关键在于找到含有a 与c 的不等关系,从而得到关于离心率的不等式,进而求其范围.常见的途径归纳如下:①椭圆的几何性质,设P (x 0,y 0)为椭圆x 2a 2+y 2b 2=1(a >b >0)上一点,则|x 0|≤a ,a -c ≤|PF 1|≤a +c 等.②涉及直线与椭圆相交时,直线方程与椭圆方程联立消元后所得到的一元二次方程的判别式大于0. ③题目中给出的或能够根据已知条件得出的不等关系式.对点练1.一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.答案 ⎝⎛⎭⎫x -322+y 2=254解析 由题意知,圆过椭圆的三个顶点(4,0),(0,2),(0,-2),设圆心为(a,0),其中a >0,由4-a =a 2+4,解得a =32,所以该圆的标准方程为⎝⎛⎭⎫x -322+y 2=254. 2.过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于________.答案22解析 设A (x 1,y 1),B (x 2,y 2),则x 21a 2+y 21b 2=1①, x 22a 2+y 22b2=1②. ①、②两式相减并整理得y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2.把已知条件代入上式得,-12=-b 2a 2×22,∴b 2a 2=12,故椭圆的离心率e =1-b 2a 2=22.3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|AF |=6,cos ∠ABF =45,则C 的离心率e =________.答案57解析 如图,设右焦点为F 1,|BF |=x ,则cos ∠ABF =x 2+102-6220x =45.解得x =8,故∠AFB =90°.由椭圆及直线关于原点对称可知|AF 1|=8,且∠F AF 1=90°,△F AF 1是直角三角形,|F 1F 2|=10,故2a =8+6=14,2c =10,e =c a =57.4.设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a,0),点B 的坐标为(0,b ),点M在线段AB 上,满足|BM |=2|MA |,直线OM 的斜率为510. (1)求E 的离心率e ;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程.解 (1)由题设条件知,点M 的坐标为⎝⎛⎭⎫23a ,13b ,又k OM =510,从而b 2a =510,进而得a =5b ,c =a 2-b 2=2b ,故e =c a =255.(2)由题设条件和(1)的计算结果可得,直线AB 的方程为x 5b +y b=1,点N 的坐标为⎝⎛⎭⎫52b ,-12b .设点N 关于直线AB 的对称点S 的坐标为⎝⎛⎭⎫x 1,72,则线段NS 的中点T 的坐标为⎝⎛⎭⎫54b +x 12,-14b +74.又点T 在直线AB 上,且k NS ·k AB =-1,从而有⎩⎪⎨⎪⎧5b 4+x 125b+-14b +74b =1,72+12bx 1-52b=5,解得b =3.所以a =35, 故椭圆E 的方程为x 245+y 29=1.5.如图,椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1.(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程; (2)若|PF 1|=|PQ |,求椭圆的离心率e .解 (1)由椭圆的定义,2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2. 设椭圆的半焦距为c ,由已知PF 1⊥PF 2, 因此2c =|F 1F 2|=|PF 1|2+|PF 2|2 =(2+2)2+(2-2)2=23,即c =3,从而b =a 2-c 2=1. 故所求椭圆的标准方程为x 24+y 2=1.(2)解法一:连接QF 1,如下图,设点P (x 0,y 0)在椭圆上,且PF 1⊥PF 2,则x 20a 2+y 20b2=1,x 20+y 20=c 2,求得x 0=±a c a 2-2b 2,y 0=±b2c.由|PF 1|=|PQ |>|PF 2|得x 0>0,从而|PF 1|2=⎝⎛⎭⎫a a 2-2b 2c +c 2+b 4c 2=2(a 2-b 2)+2a a 2-2b 2=(a +a 2-2b 2)2.由椭圆的定义,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a . 从而由|PF 1|=|PQ |=|PF 2|+|QF 2|,有|QF 1|=4a -2|PF 1|. 又由PF 1⊥PF 2,|PF 1|=|PQ |,知|QF 1|=2|PF 1|, 因此(2+2)|PF 1|=4a ,即(2+2)(a +a 2-2b 2)=4a , 于是(2+2)(1+2e 2-1)=4,解得 e =12⎣⎡⎦⎤1+⎝⎛⎭⎫42+2-12=6- 3. 解法二:连接QF 1,如上图,由椭圆的定义,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a .从而由|PF 1|=|PQ |=|PF 2|+|QF 2|,有|QF 1|=4a -2|PF 1|.又由PF 1⊥PQ ,|PF 1|=|PQ |,知|QF 1|=2|PF 1|,因此,4a -2|PF 1|=2|PF 1|. |PF 1|=2(2-2)a ,从而|PF 2|=2a -|PF 1|=2a -2(2-2)a =2(2-1)a . 由PF 1⊥PF 2,知|PF 1|2+|PF 2|2=|F 1F 2|2=(2c )2, 因此e =ca =|PF 1|2+|PF 2|22a=(2-2)2+(2-1)2=9-62=6- 3.6.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的半焦距为c ,原点O 到经过两点(c,0),(0,b )的直线的距离为12c .(1)求椭圆E 的离心率;(2)如图,AB 是圆M :(x +2)2+(y -1)2=52的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方程.解 (1)过点(c,0),(0,b )的直线方程为bx +cy -bc =0,则原点O 到该直线的距离d =bc b 2+c 2=bca, 由d =12c ,得a =2b =2a 2-c 2,解得离心率c a =32.(2)解法一:由(1)知,椭圆E 的方程为 x 2+4y 2=4b 2.①依题意,圆心M (-2,1)是线段AB 的中点,且|AB |=10. 易知,AB 与x 轴不垂直,设其方程为y =k (x +2)+1,代入①得 (1+4k 2)x 2+8k (2k +1)x +4(2k +1)2-4b 2=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-8k (2k +1)1+4k 2,x 1x 2=4(2k +1)2-4b 21+4k 2.由x 1+x 2=-4,得-8k (2k +1)1+4k 2=-4,解得k =12.从而x 1x 2=8-2b 2. 于是|AB |=1+⎝⎛⎭⎫122|x 1-x 2|=52(x 1+x 2)2-4x 1x 2=10(b 2-2). 由|AB |=10,得10(b 2-2)=10,解得b 2=3. 故椭圆E 的方程为x 212+y 23=1.解法二:由(1)知,椭圆E 的方程为x 2+4y 2=4b 2.②依题意,点A ,B 关于圆心M (-2,1)对称,且|AB |=10. 设A (x 1,y 1),B (x 2,y 2),则x 21+4y 21=4b 2, x 22+4y 22=4b 2,两式相减并结合x 1+x 2=-4,y 1+y 2=2,得-4(x 1-x 2)+8(y 1-y 2)=0. 易知AB 与x 轴不垂直,则x 1≠x 2, 所以AB 的斜率k AB =y 1-y 2x 1-x 2=12.因此直线AB 的方程为y =12(x +2)+1,代入②得x 2+4x +8-2b 2=0.所以x 1+x 2=-4,x 1x 2=8-2b 2. 于是|AB |=1+⎝⎛⎭⎫122|x 1-x 2|=52(x 1+x 2)2-4x 1x 2=10(b 2-2). 由|AB |=10,得10(b 2-2)=10,解得b 2=3.故椭圆E 的方程为x 212+y 23=1.7.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,右顶点为A ,上顶点为B ,已知|AB |=32|F 1F 2|.(1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点F 1,经过原点O 的直线l 与该圆相切.求直线l 的斜率.解 (1)设椭圆右焦点F 2的坐标为(c,0). 由|AB |=32|F 1F 2|,可得a 2+b 2=3c 2. 又b 2=a 2-c 2,则c 2a 2=12.所以椭圆的离心率e =22.(2)由(1)知a 2=2c 2,b 2=c 2.故椭圆方程为x 22c 2+y 2c2=1.设P (x 0,y 0).由F 1(-c,0),B (0,c ), 有F 1P →=(x 0+c ,y 0),F 1B →=(c ,c ).由已知,有F 1P →·F 1B →=0,即(x 0+c )c +y 0c =0. 又c ≠0,故有x 0+y 0+c =0.① 又因为点P 在椭圆上,故x 202c 2+y 20c 2=1.②由①和②可得3x 20+4cx 0=0.而点P 不是椭圆的顶点,故x 0=-43c ,代入①得y 0=c3,即点P 的坐标为⎝⎛⎭⎫-4c 3,c 3. 设圆的圆心为T (x 1,y 1),则x 1=-43c +02=-23c ,y 1=c 3+c 2=23c ,进而圆的半径r =(x 1-0)2+(y 1-c )2=53c . 设直线l 的斜率为k ,依题意,直线l 的方程为y =kx .由l 与圆相切,可得|kx 1-y 1|k 2+1=r ,即⎪⎪⎪⎪k ⎝⎛⎭⎫-2c 3-2c 3k 2+1=53c ,整理得k 2-8k +1=0,解得k =4±15. 所以,直线l 的斜率为4+15或4-15. 8.已知椭圆C 的中心在原点,离心率e =32,右焦点为F (3,0). (1)求椭圆C 的方程;(2)设椭圆的上顶点为A ,在椭圆C 上是否存在点P ,使得向量OP →+OA →与F A →共线?若存在,求直线AP 的方程;若不存在,简要说明理由.解 (1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),又离心率e =32,右焦点为F (3,0), ∴c a =32,c =3,∴a =2,b 2=1, 故椭圆C 的方程为x 24+y 2=1.(2)假设椭圆C 上存在点P (x 0,y 0),使得向量OP →+OA →与F A →共线. ∵OP →+OA →=(x 0,y 0+1),F A →=(-3,1), ∴x 0=-3(y 0+1). ①又点P (x 0,y 0)在椭圆x 24+y 2=1上,∴x 204+y 20=1. ② 由①②解得⎩⎪⎨⎪⎧x 0=0,y 0=-1或⎩⎨⎧x 0=-837,y 0=17.∴P (0,-1)或P ⎝⎛⎭⎫-837,17. 当点P 的坐标为(0,-1)时,直线AP 的方程为x =0, 当点P 的坐标为P ⎝⎛⎭⎫-837,17时,直线AP 的方程为3x -4y +4=0, 故存在满足题意的点P ,直线AP 的方程为x =0或3x -4y +4=0.9.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b ≥1)的离心率e =32,且椭圆C 上一点N 到Q (0,3)距离的最大值为4,过点M (3,0)的直线交椭圆C 于点A 、B .(1)求椭圆C 的方程;(2)设P 为椭圆上一点,且满足OA →+OB →=tOP →(O 为坐标原点),当|AB |<3时,求实数t 的取值范围. 解 (1)∵e 2=c 2a 2=a 2-b 2a 2=34,∴a 2=4b 2,资*源%库则椭圆方程为x 24b 2+y 2b 2=1,即x 2+4y 2=4b 2.设N (x ,y ),则|NQ |=(x -0)2+(y -3)2 =4b 2-4y 2+(y -3)2 =-3y 2-6y +4b 2+9 =-3(y +1)2+4b 2+12.当y =-1时,|NQ |有最大值4b 2+12,则4b 2+12=4, 解得b 2=1,∴a 2=4,故椭圆方程是x 24+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),P (x ,y ), 直线AB 的方程为y =k (x -3), 由⎩⎪⎨⎪⎧y =k (x -3),x 24+y 2=1,整理得(1+4k 2)x 2-24k 2x +36k 2-4=0. 则x 1+x 2=24k 21+4k 2,x 1·x 2=36k 2-41+4k 2,Δ=(-24k 2)2-16(9k 2-1)(1+4k 2)>0,解得k 2<15.由题意得OA →+OB →=(x 1+x 2,y 1+y 2)=t (x ,y ), 则x =1t (x 1+x 2)=24k 2t (1+4k 2),y =1t (y 1+y 2)=1t [k (x 1+x 2)-6k ]=-6k t (1+4k 2).由点P 在椭圆上,得(24k 2)2t 2(1+4k 2)2+144k 2t 2(1+4k 2)2=4,化简得36k 2=t 2(1+4k 2).① 由|AB |=1+k 2|x 1-x 2|<3,得(1+k 2)[(x 1+x 2)2-4x 1x 2]<3,将x 1+x 2,x 1x 2代入得 (1+k 2)⎣⎡⎦⎤242k 4(1+4k 2)2-4(36k 2-4)1+4k 2<3, 化简,得(8k 2-1)(16k 2+13)>0, 则8k 2-1>0,即k 2>18,∴18<k 2<15.② 由①得t 2=36k 21+4k 2=9-91+4k 2,由②得3<t2<4,∴-2<t<-3或3<t<2.故实数t的取值范围为-2<t<-3或3<t<2.已知椭圆x24+y2m=1的离心率等于32,则m=_______.[错解][错因分析]本题易出现的问题就是误以为给出的椭圆的焦点在x轴上,从而导致漏解.该题虽然给出了椭圆的方程,但并没有确定焦点所在的坐标轴,所以应该根据其焦点所在的坐标轴进行分类讨论.[正解](1)当椭圆的焦点在x轴上时,则由方程,得a2=4,即a=2.又e=ca=32,所以c=3,m=b2=a2-c2=22-(3)2=1.(2)当椭圆的焦点在y轴上时,椭圆的方程为y2m+x24=1.则由方程,得b2=4,即b=2.又e=ca=32,故a2-b2a=32,解得ba=12,即a=2b,所以a=4.故m=a2=16. 综上,m=1或16.[心得体会]课时练基础组1若曲线ax 2+by 2=1为焦点在x 轴上的椭圆,则实数a ,b 满足( ) A .a 2>b 2 B.1a <1b C .0<a <b D .0<b <a答案 C解析 由ax 2+by 2=1,得x 21a +y 21b=1,因为焦点在x 轴上,所以1a >1b >0,所以0<a <b .2.设F 1、F 2分别是椭圆x 24+y 2=1的左、右焦点,若椭圆上存在一点P ,使(OP →+OF 2→)·PF 2→=0(O 为坐标原点),则△F 1PF 2的面积是( )A .4B .3C .2D .1答案 D解析 ∵(OP →+OF 2→)·PF 2→=(OP →+F 1O →)·PF 2→=F 1P →·PF 2→=0,∴PF 1⊥PF 2,∠F 1PF 2=90°. 设|PF 1|=m ,|PF 2|=n ,则m +n =4,m 2+n 2=12,2mn =4,∴S △F1PF 2=12mn =1,故选D.3.已知点P 是椭圆x 216+y 28=1(x ≠0,y ≠0)上的动点,F 1、F 2分别为椭圆的左、右焦点,O 是坐标原点,若M 是∠F 1PF 2的平分线上一点,且F 1M →·MP →=0,则|OM →|的取值范围是( )A .[0,3)B .(0,22)C .[22,3)D .(0,4]答案 B解析 延长F 1M 交PF 2或其延长线于点G . ∵F 1M →·MP →=0,∴F 1M →⊥MP →,又MP 为∠F 1PF 2的平分线,∴|PF 1|=|PG |且M 为F 1G 的中点,∵O 为F 1F 2的中点,∴OM 綊12F 2G .∵|F 2G |=|PG |-|PF 2|=||PF 1|-|PF 2||,∴|OM →|=12|2a -2|PF 2||=|4-|PF 2||.∵4-22<|PF 2|<4或4<|PF 2|<4+22,∴|OM →|∈(0,22). 4.在△ABC 中,AB =BC ,cos B =-718.若以A ,B 为焦点的椭圆经过点C ,则该椭圆的离心率为( ) A.34 B.37 C.38 D.318答案 C解析 依题意知AB =BC =2c ,AC =2a -2c ,在△ABC 中,由余弦定理得(2a -2c )2=8c 2-2×4c 2×⎝⎛⎭⎫-718,故16e 2+18e -9=0,解得e =38.5.如图,F 1,F 2是双曲线C 1:x 2-y 23=1与椭圆C 2的公共焦点,点A 是C 1,C 2在第一象限的公共点.若|F 1F 2|=|F 1A |,则C 2的离心率是( )A.13 B.23C.15 D.25答案 B解析由题知|AF1|+|AF2|=2a(设a为椭圆的长半轴),|AF1|-|AF2|=2,而|F1F2|=|F1A|=4,因此可得2×|F1A|=2a+2,∴8=2a+2,∴a=3,又c=2,故C2的离心率e=2 3.6已知F1,F2分别是椭圆x24+y23=1的左、右焦点,A是椭圆上一动点,圆C与F1A的延长线、F1F2的延长线以及线段AF2相切,若M(t,0)为一个切点,则()A.t=2 B.t>2C.t<2 D.t与2的大小关系不确定答案 A解析如图,P,Q分别是圆C与F1A的延长线、线段AF2相切的切点,|MF2|=|F2Q|=2a-(|F1A|+|AQ|)=2a-|F1P|=2a -|F1M|,即|F1M|+|MF2|=2a,所以t=a=2.故选A.7.椭圆x 2a 2+y 2b 2=1(a >b >0)上一点A 关于原点的对称点为B ,F 为其右焦点,若AF ⊥BF ,设∠ABF =α,且α∈⎣⎡⎦⎤π12,π4,则该椭圆离心率的取值范围为( )A.⎣⎡⎦⎤22,63 B.⎣⎡⎦⎤22,32 C.⎣⎡⎭⎫63,1 D.⎣⎡⎭⎫22,1 答案 A解析 由题知AF ⊥BF ,根据椭圆的对称性,AF ′⊥BF ′(其中F ′是椭圆的左焦点),因此四边形AFBF ′是矩形,于是|AB |=|FF ′|=2c ,|AF |=2c sin α,根据椭圆的定义,|AF |+|AF ′|=2a ,∴2c sin α+2c cos α=2a ,∴e∴α+π4∈⎣⎡⎦⎤π3,π2,∴sin ⎝⎛⎭⎫α+π4∈⎣⎡⎦⎤32,1,故e ∈⎣⎡⎦⎤22,63,故选A. 8.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0)、F 2(c,0),若椭圆上存在点P 使asin ∠PF 1F 2=csin ∠PF 2F 1,则该椭圆离心率的取值范围为( )A .(0,2-1) B.⎝⎛⎭⎫22,1 C.⎝⎛⎭⎫0,22 D .(2-1,1)答案 D解析 根据正弦定理得|PF 2|sin ∠PF 1F 2=|PF 1|sin ∠PF 2F 1,所以由a sin ∠PF 1F 2=c sin ∠PF 2F 1可得a |PF 2|=c |PF 1|,即|PF 1||PF 2|=ca =e ,所以|PF 1|=e |PF 2|,又|PF 1|+|PF 2|=e |PF 2|+|PF 2|=|PF 2|·(e +1)=2a ,则|PF 2|=2ae +1,因为a -c <|PF 2|<a +c (不等式两边不能取等号,否则分式中的分母为0,无意义),所以a -c <2a e +1<a +c ,即1-c a <2e +1<1+c a ,所以1-e <2e +1<1+e ,即⎩⎪⎨⎪⎧(1-e )(1+e )<2,2<(1+e )2,解得2-1<e <1,选D. 9.已知椭圆的焦点在x 轴上,一个顶点为A (0,-1),其右焦点到直线x -y +22=0的距离为3,则椭圆的方程为________.答案 x 23+y 2=1解析 据题意可知椭圆方程是标准方程,故b =1.设右焦点为(c,0)(c >0),它到已知直线的距离为|c +22|2=3,解得c =2,所以a 2=b 2+c 2=3,故椭圆的方程为x 23+y 2=1.10如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A 分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点.则PF →·P A →的最大值为________.答案 4解析 设P 点坐标为(x 0,y 0).由题意知a =2, ∵e =c a =12,c =1,∴b 2=a 2-c 2=3.故所求椭圆方程为x 24+y 23=1.∴-2≤x 0≤2,-3≤y 0≤ 3. ∵F (-1,0),A (2,0), PF →=(-1-x 0,-y 0),P A →=(2-x 0,-y 0), ∴PF →·P A →=x 20-x 0-2+y 20=14x 20-x 0+1=14(x 0-2)2. 即当x 0=-2时,PF →·P A →取得最大值4.11已知椭圆C 的对称中心为原点O ,焦点在x 轴上,左、右焦点分别为F 1和F 2,且|F 1F 2|=2,点⎝⎛⎭⎫1,32在该椭圆上.(1)求椭圆C 的方程;(2)过F 1的直线l 与椭圆C 相交于A ,B 两点,若△AF 2B 的面积为1227,求以F 2为圆心且与直线l 相切的圆的方程.解 (1)由题意知c =1,2a =32+⎝⎛⎭⎫322+22=4,a =2,故椭圆C 的方程为x 24+y 23=1. (2)①当直线l ⊥x 轴时,可取A ⎝⎛⎭⎫-1,-32,B ⎝⎛⎭⎫-1,32,△AF 2B 的面积为3,不符合题意. ②当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x +1),代入椭圆方程得(3+4k 2)x 2+8k 2x +4k 2-12=0,显然Δ>0成立,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8k 23+4k 2,x 1·x 2=4k 2-123+4k 2,可得|AB |=12(k 2+1)3+4k 2,又圆F 2的半径r =2|k |1+k2,∴△AF 2B 的面积为12|AB |r =12|k |k 2+13+4k 2=1227,化简得:17k 4+k 2-18=0,得k∴r =2,圆的方程为(x -1)2+y 2=2.12如图,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为⎝⎛⎭⎫43,13,且BF 2=2,求椭圆的方程; (2)若F 1C ⊥AB ,求椭圆离心率e 的值. 解 设椭圆的焦距为2c ,则F 1(-c,0),F 2(c,0). (1)因为B (0,b ),所以|BF 2|=b 2+c 2=a . 又|BF 2|=2,故a = 2.因为点C ⎝⎛⎭⎫43,13在椭圆上,所以169a 2+19b 2=1.解得b 2=1. 故所求椭圆的方程为x 22+y 2=1.(2)因为B (0,b ),F 2(c,0)在直线AB 上, 所以直线AB 的方程为x c +yb=1.解方程组⎩⎨⎧x c +yb=1,x 2a 2+y2b 2=1,得⎩⎨⎧x 1=2a 2ca 2+c 2,y 1=b (c 2-a 2)a 2+c 2,或⎩⎪⎨⎪⎧x 2=0,y 2=b . 所以点A 的坐标为⎝⎛⎭⎫2a 2c a 2+c2,b (c 2-a 2)a 2+c 2.又AC 垂直于x 轴,由椭圆的对称性,可得点C 的坐标为⎝⎛⎭⎫2a 2c a 2+c2,b (a 2-c 2)a 2+c 2.因为直线F 1C 的斜率为b (a 2-c 2)a 2+c 2-02a 2c a 2+c 2-(-c )=b (a 2-c 2)3a 2c +c 3,直线AB 的斜率为-bc ,且F 1C ⊥AB ,所以b (a 2-c 2)3a 2c +c 3·⎝⎛⎭⎫-b c =又b 2=a 2-c 2,整理得a 2=5c 2.故e 2=15.因此e =55.能力组13. 过椭圆x 2a 2+y 2b 2=1(a >b >0)左焦点F ,且斜率为1的直线交椭圆于A ,B 两点,向量OA →+OB →与向量a =(3,-1)共线,则该椭圆的离心率为( )A.33B.63C.34D.23答案 B解析 设椭圆的左焦点为F (-c,0),A (x 1,y 1),B (x 2,y 2),则OA →+OB →=(x 1+x 2,y 1+y 2),直线AB 的方程为y=x +c ,代入椭圆方程并整理得(a 2+b 2)x 2+2a 2cx +a 2c 2-a 2b 2=0.由韦达定理得x 1+x 2=-2a 2c a 2+b 2,所以y 1+y 2=x 1+x 2+2c =2b 2ca 2+b 2. 根据OA →+OB →与a =(3,-1)共线,得x 1+x 2+3(y 1+y 2)=0, 即-2a 2c a 2+b 2+3×2b 2c a 2+b 2=0,解得b 2a 2=13,所以e =1-b 2a 2=63,故选B. 14.已知点A ,D 分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点和上顶点,点P 是线段AD 上的任意一点,点F 1,F 2分别是椭圆的左,右焦点,且PF 1→·PF 2→的最大值是1,最小值是-115,则椭圆的标准方程为________.答案 x 24+y 2=1解析 设点P (x ,y ),F 1(-c,0),F 2(c,0),则PF 1→=(-c -x ,-y ),PF 2→=(c -x ,-y ),所以PF 1→·PF 2→=x 2+y 2-c 2.因为点P 在线段AD 上,所以x 2+y 2可以看作原点O 至点P 的距离的平方,易知当点P 与点A 重合时,x 2+y 2取最大值a 2,当OP ⊥AD 时,x 2+y 2取最小值a 2b 2a 2+b 2.由题意,得⎩⎪⎨⎪⎧a 2-c 2=1a 2b 2a 2+b 2-c 2=-115,解得a 2=4,b 2=1.即椭圆的标准方程为x 24+y 2=1. 15已知圆O :x 2+y 2=4,点A (3,0),以线段AB 为直径的圆内切于圆O ,记点B 的轨迹为Γ. (1)求曲线Γ的方程;(2)直线AB 交圆O 于C ,D 两点,当B 为CD 的中点时,求直线AB 的方程.解 (1)设AB 的中点为M ,切点为N ,连接OM ,MN ,则|OM |+|MN |=|ON |=2,取A 关于y 轴的对称点A ′,连接A ′B ,故|A ′B |+|AB |=2(|OM |+|MN |)=4.所以点B 的轨迹是以A ′,A 为焦点,4为长轴长的椭圆. 其中,a =2,c =3,b =1, 则曲线Γ的方程为x 24+y 2=1.(2)因为B 为CD 的中点,所以OB ⊥CD , 则OB →⊥AB →.设B (x 0,y 0), 则x 0(x 0-3)+y 20=0.又x 204+y 20=1,解得x 0=23,y 0=±23 则k OB =±22,所以k AB =±2, 则直线AB 的方程为2x +y -6=0或2x -y -6=0.16. 已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,点P (-2,1)在椭圆上,线段PF 2与y 轴的交点M 满足PM →+F 2M →=0.(1)求椭圆C 的方程;(2)椭圆C 上任一动点N (x 0,y 0)关于直线y =2x 的对称点为N 1(x 1,y 1),求3x 1-4y 1的取值范围. 解 (1)点P (-2,1)在椭圆上, ∴2a 2+1b2=1.① 又∵PM →+F 2M →=0,M 在y 轴上, ∴M 为PF 2的中点, ∴-2+c =0,c = 2. ∴a 2-b 2=2,②联立①②,解得b 2=2(b 2=-1舍去), ∴a 2=4.故所求椭圆C 的方程为x 24+y 22=1.(2)∵点N (x 0,y 0)关于直线y =2x 的对称点为N 1(x 1,y 1), ∴⎩⎨⎧ y 0-y1x 0-x1×2=-1,y 0+y 12=2×x 0+x12.解得⎩⎨⎧x 1=4y 0-3x 05,y 1=3y 0+4x5.∴3x 1-4y 1=-5x 0.∵点N (x 0,y 0)在椭圆C :x 24+y 22=1上,∴-2≤x 0≤2,∴-10≤-5x 0≤10, 即3x 1-4y 1的取值范围为[-10,10].。

相关文档
最新文档