1.4.1有理数的乘法教案
1.4.1有理数的乘法法则教学设计 2022-2023学年人教版七年级数学上册

1.4.1 有理数的乘法法则教学设计课程背景本次课程是七年级数学上册的第四章“有理数”的第一节课,讲授有理数乘法法则。
在之前的教学中,学生已经学习了有理数的加法和减法,掌握了有理数的运算规律和应用技巧。
在掌握基础概念的基础上,本次教学旨在通过有趣的实例和练习,让学生掌握有理数乘法的基本法则和运算技巧,培养学生的数学思维能力和解决问题的能力。
教学目标1.掌握有理数的乘法法则,理解乘法的基本概念。
2.了解有理数的相反数和绝对值的性质,具有正确的运用能力。
3.熟练计算有理数的乘法运算,掌握一定的计算技巧。
4.培养学生的数学应用和解决问题的能力,在日常生活中能够运用所学知识解决实际问题。
教学重点1.有理数的乘法法则2.有理数的相反数和绝对值的性质3.有理数的乘法运算技巧教学难点1.有理数乘法的应用和技巧2.能够运用所学知识解决实际问题教学过程导入环节(5分钟)1.引入本课程的主题:让学生掌握有理数的乘法法则和计算技巧。
2.提问学生,了解有理数的加减法和乘除法有何不同,为什么有理数的乘法需要学习和掌握。
讲解环节(25分钟)1、有理数的乘法法则1.定义有理数的乘法,用实例让学生掌握乘法概念。
2.讲解有理数乘法的符号和运算法则,规范学生的乘法计算方式。
3.给出有理数乘法的相关问题,让学生通过运算尝试解答。
2、有理数的相反数和绝对值的性质1.定义有理数的相反数和绝对值概念,区分概念的异同和作用。
2.讲解有理数相反数和绝对值的性质,解释其在乘法中的运用。
3.给出相关问题,让学生理解和运用相反数和绝对值。
3、有理数的乘法运算技巧1.教授有理数乘法的基本技巧和运算法则,指出乘法运算中常见的错误。
2.示范乘法运算的技巧,引导学生通过练习熟练掌握技巧。
3.给学生练习题目,让学生在实践中掌握技巧。
练习环节(20分钟)1.让学生进行课堂练习,强化对乘法和技巧的掌握。
2.师生互动,让学生展示自己的答案和思路,检查乘法运算的正确性。
1.4.1有理数的乘法教案

1.4.1有理数的乘法第一课时教学设计授课教师:谈斌授课时间:2014/9/23上午第二节授课地点:七(8)班教学目的:1. 知识与技能掌握有理数乘法的运算法则。
2•过程与方法通过体验有理数的乘法运算, 感悟和归纳出进行乘法运算的一般步骤。
3.情感、态度与价值观通过类比和分类的思想归纳乘法法则,发展举一反三的能力。
教学重点: 应用法则正确地进行有理数乘法运算。
教学难点: 两负数相乘,积的符号为正。
教具准备: 多媒体。
教学过程:、引入前面我们已经学习了有理数的加法运算和减法运算,今天,我们开始研究有理数的乘法运算。
问题一:有理数包括哪些数?回答:有理数包括正数、零和负数。
问题二:按照这种分类,两个有理数的乘法运算会出现哪几种情况?回答:正数乘正数、正数乘零、正数乘负数、负数乘负数、负数乘零、负数乘正数。
二、新课1.思考一:正数与正数相乘学生观察下列算式,找一找运算规律。
回答:共同点:左边都有一个乘数3。
不同点:随着后一个乘数递减1,积逐次递减3。
2. 思考二:正数与负数相乘要使上述规律在引入负数后仍然成立,在下面的空格应该填什么?3X(- 1)= - 33X(- 2)=3X(- 3)=请学生完成填空并模仿上面的过程自己构造一组算式,并说出他们的变化规律。
3. 思考三:负数与正数相乘观察下列算式,你能发现什么规律?回答:随着前一个乘数递减1,积逐次递减3。
要使上述规律在引入负数后仍然成立,在下面的空格应该填什么?(-1)X 3 = - 3(-2)X 3 =(-3)X 3 =从符号和绝对值上述所有算式可以归纳如下: 正数乘正数,积为正数, 正数乘负数,积为负数; 负数乘正数,积为负数;积的绝对值等于各乘数的绝对值的积。
4. 思考四:负数与负数相乘利用上面归纳的结论计算下面的算式,你能发现什么规律?(-3)(-3)(-3)(-3) 回答:随着后一个乘数递减1,积逐次增加3。
按照上述规律,下面的空格可以填什么数?从中可以归纳出什么结论?(-3)X (- 1)(-3)X(- 2)(-3)X (- 3) 结论:负数乘负数,积为正数,积的绝对值等于各乘数的绝对值的积。
有理数的乘法教案(精选多篇)

有理数的乘法教案(精选多篇)第一篇:有理数的乘法1教案1.4.1有理数的乘法一、教学内容人教版七年级数学(上)第一章第四节《有理数的乘除法》,见课本p28.二、学情分析在此之前,本班学生已有探索有理数加法法则的经验,多数学生能在教师指导下探索问题。
由于学生已了解利用数轴表示加法运算过程,我们仍用数轴表示乘法运算过程。
三、教学目标1、知识与技能目标掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、能力与过程目标经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、情感与态度目标通过学生自己探索出法则,让学生获得成功的喜悦。
四、教学重点、难点重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
五、教学手段制作幻灯片,采用多媒体的现代课堂教学手段.六、教学方法注意创设问题情景,选择“情景---探索---发现”的教学模式,通过直观教学,借助多媒体吸引学生的注意力,激发学习兴趣。
在整个学习过程中,以“自主参与,勇于探索,合作交流”的探索式学法为主,从而达到提高学习能力的目的。
七、教学过程1、创设问题情景,激发学生的求知欲望,导入新课。
前面我们学习了有理数的加减法,接下来就应该学习有理数的乘除法.同学们先看下面的问题(出示蜗牛爬的动画幻灯片)教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题.2、学生探索、归纳法则学生分为四个小组活动,进行乘法法则的探索。
(1)教师出示蜗牛在数轴上运动的问题,让学生理解。
蜗牛现在的位置在点o,规定向右的方向为正,向左的方向为负;现在时间后为正,现在时间前为负.a.+ 2 ×(+3)+2看作向右运动的速度,×(+3)看作运动3分钟后。
结果:3分钟后的位置+2 ×(+3)=b. -2 ×(+3)-2看作向左运动的速度,×(+3)看作运动3分钟后。
有理数的乘法教案【6篇】

有理数的乘法教案【6篇】有理数的乘法教案篇1目标:1、学问与技能使同学理解有理数乘法的意义,把握有理数的乘法法则,能娴熟地进行有理数的乘法运算。
2、过程与方法经受探究有理数乘法法则的过程,理解有理数乘法法则,进展观看、探究、合情推理等力量,会进行有理数和乘法运算。
重点、难点:1、重点:有理数乘法法则。
2、难点:有理数乘法意义的理解,确定有理数乘法积的符号。
过程:一、创设情景,导入新1、由前面的学习我们知道,正数的加减法可以扩充到有理数的加减法,那么乘法是可也可以扩充呢?乘法是加法的特别运算,例如5+5+5=5×3,那么请思索:(-5)+(-5)+(-5)与(-5)×3是否有相同的结果呢?本节我们就探究这个问题。
3、在一条由西向东的笔直的公路上,取一点O,以向东的路程为正,则向西的路程为负,假如小玫从点O动身,以5千米的向西行走,那么经过3小时,她走了多远?二、合作沟通,解读探究1、学校学过的乘法的意义是什么?乘法的安排律:a×(b+c)=a×b+a×c假如两个数的和为0,那么这两个数互为相反数。
2、由前面的问题3,依据学校学过的乘法意义,小玫向西一共走了(5×3)千米,即(-5)×3=-(5×3)3、同学活动:计算3×(-5)+3×5,留意运用简便运算通过计算表明3×(-5)与3×5互为相反数,从而有 3×(-5)=-(3×5),由此看出,3×(-5)得负数,并且把肯定值3与5相乘。
类似的,(-5)×(-3)+(-5)×3=(-5)×[(-3)+3]=0由此看出(-5)×(-3)得正数,并且把肯定值5与3相乘。
4、提出:从以上的运算中,你能总结出有理数的乘法法则吗?鼓舞同学自己归纳,并用自己的语舞衫歌扇,并与同伴沟通。
七年级数学1.4.1有理数的乘法(第一课时)优秀教案

1.4.1有理数的乘法(第一课时〕教学目标:1、理解有理数乘法法则,能利用有理数乘法法则计算两个数的乘法.2、 能说出有理数乘法的符号法则,能用例子说明法则的合理性.3、能计算多个有理数相乘。
教学重难点:教学重点:两个有理数相乘的符号法则.教学难点:有理数乘法法则的运用.教学过程一、导入1、复习稳固:〔1〕有理数包括哪些数?〔2〕计算: 3X2= 3X0= 3X = X =2、引入负数后,有理数的乘法有几类?又应该怎么计算?〔揭示课题〕二、探究新知1、在数轴上,向东运动2米,记作+2米;向西运动2米,记作-2米。
例:(1):2x3其中2看作向东运动2米,“x3〞看作沿此方向运动3次,用数轴表示如下:2361230 1 2 3 4 5 6结果怎么样呢?〔向西运动了6米〕所以2x3=6[学生小组合作探究]按照〔1〕的方式完成〔2〕—〔5〕(2)〔-2〕x3(3)2x(-3)(4)(-2)x(-3)(5)(-2)x0 ,0x3 , 0x(-3) , 2x0〔学生小组汇报〕2、从上面一组题中,同学们觉得两个有理数相乘的结果有没有规律可行?建议大家从两个方面进行考虑:(1)积的符号与两个因数的符号有什么关系?(2)积的绝对值与两个因数的绝对值又有怎样的关系?〔学生活动时间〕学生答复,老师完善,得出有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零。
(利用数轴不仅前后知识加以联系,还形象的表达出有理数的乘法,并通过小组合作,加深理解,同时锻炼同学们的观察能力以及合作表达交流的能力。
)活动1:1、确定两个有理数相乘的积的符号。
〔教师任意说出一个算式,让学生口答这个算式的积的符号,最后归纳计算步骤。
〕2、让学生同桌之间互相出题计算,初步熟悉运算法则。
三、稳固练习1、计算6×(-4)= (-8)×(-1 )=(-0.5)× = (-3)×(- )=教师说明:在最后一个运算中我们得到了(-3)×(--)=1.与以前学习过的倒数概念一样。
2021年秋精品教案:1.4.1有理数的乘法(第2课时)

有理数的乘法第2课时教学目标1掌握多个有理数相乘的运算方法2会进行有理数的乘法运算3通过对问题的探索,培养观察、分析和概括能力教学重点难点重点:多个有理数乘法运算符号的确定难点:正确进行多个有理数的乘法运算课前准备多媒体课件教学过程导入新课导入一:问题展示1有理数乘法法则:两数相乘,同号,异号,并把绝对值相乘任何数与0相乘,都得2乘积是的两个数互为倒数3两个有理数可以相乘,那么三个或多个有理数可以相乘吗若可以,如何计算导入二:上一节课,我们学习了有理数乘法法则,并学会了两个数相乘的方法,今天,我们一起来探究多个有理数相乘的方法探究新知1观察下列各式的积是正的还是负的2×3×4×-5,2×3×-4×-5,2×-3×-4×-5,-2×-3×-4×-5师生活动通过观察以上题目,归纳总结多个有理数相乘的法则课件展示下列问题思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系先分组讨论交流,再用自己的语言表达所发现的规律2总结:学生汇报交流的结果,教师用课件展示下列内容多个有理数相乘的法则:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数新知应用例1 你能一下子就看出下列式子的结果吗如果能,理由是什么××0×答案:0师生小结:几个数相乘,如果其中有因数为0,那么积等于0例2 教材第31页例3计算:1-3×56× (−95) ×(−14) ;2-5×6× (−45) ×14请你思考,多个不是0的数相乘,先做哪一步,再做哪一步师生活动让学生带着问题解答教材例题学生先独立在练习本上做,教师巡视,及时发现学生做题中出现的问题,当学生做完后集体订正答案教师:多个不是0的数相乘,先做哪一步,再做哪一步学生:多个不是0的数相乘,先确定积的符号,积的符号由负因数的个数决定:如果负因数的个数是奇数,则积的符号是负的,如果负因数的个数是偶数,则积的符号是正的;积的绝对值就是各因数绝对值的积课堂练习见导学案“当堂达标”参考答案41-4 2-1 36135解:原式=−2 0142 015×−2 0132 014×…×−9991 000=9992 015课堂小结1几个不是0的数相乘,负因数的个数是 时,积是正数;负因数的个数是 时,积是负数2几个数相乘,如果其中有因数为0,那么积等于0板书设计教学反思多个有理数相乘,积的符号的确定是本节课的重点和难点在本节教学的“探究新知”这一环节上设置了4组练习题,先由学生独立完成练习,并思考“几个不是0的数相乘,积的符号与负因数的个数之间有什么关系”,再分组讨论得出积的符号与负因数的个数有关这一教学设计,既培养了学生的观察、概括能力,又做到了难点的有效突破。
新人教七年级上册第一单元第1课时 有理数的乘法教案

新人教七年级上册第一单元1.4 有理数的乘除法1.4.1 有理数的乘法第1课时 有理数的乘法【知识与技能】1.经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证的能力.2.会进行有理数的乘法运算.【过程与方法】通过对问题的变式探索,培养观察、分析、抽象的能力.【情感态度】通过观察、归纳、类比、推断获得数学猜想,体验数学活动中的探索性和创造性.【教学重点】能按有理数乘法法则进行有理数乘法运算.【教学难点】含有负因数的乘法.一、情境导入,初步认识做一做 1.出示一组算式,让学生算出结果.(1)2.5×4=;(2)31×61=; (3)7.7×1.5=;(4)92×27=. 【教学说明】教师出示上面的算式,让学生通过口算和计算器计算的方式算出结果,从而使学生回顾小学时学过的正数的乘法.2.再出示一组算式,让学生思考.(1)5×(-3)=;(2)(-5)×3=;(3)(-5)×(-3)=;(4)(-5)×0=.【教学说明】上面的算式只要求学生通过思考产生疑问,不要求写出结果.教师适时引出新内容.二、思考探究,获取新知【教学说明】让学生阅读教材第28~30页的内容,让学生进行小组交流与讨论,然后教师与学生一起进行探讨.师:刚刚同学们阅读了一下教材的内容,现在让我们先看看教材第28页第一个思考题;先观察上面正数部分的乘法算式,每个算式的后一乘数再逐次递减1,它们的积有什么变化?学生:它们的积逐次递减3.师:那么要使这规律在引入负数后仍然成立,下面的空应填什么?【教学说明】此处学生可能有点疑问,教师可让学生回顾前几个课时学的有理数的加减法内容再填.学生:应填-6和-9.师:现在我们交换一下乘法算式因数的位置,再看第二个思考题,你觉得应该怎样填?学生:应填-3、-6和-9.【教学说明】师生共同探讨此两个思考题后,教师可向学生提问:比较3×(-1)=-3和(-1)×3=-3两个等式,你能总结出正数与负数相乘的法则吗?(教师可提示让学生从符号和绝对值的方面去考虑.)学生可能会有以下答案:①正数与负数相乘或负数与正数相乘的结果都是负数.②积的绝对值和各乘数绝对值的积相等.教师再对学生的回答予以补充,形成以下结论.【归纳结论】正数乘正数,积为正数;正数乘负数,积为负数;负数乘正数,积也是负数,积的绝对值等于各乘数绝对值的积.【教学说明】在完成以上结论后,师生共同探究第三个思考题,用同样的方法和学生一起归纳,最后得到有理数乘法法则.【归纳结论】有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.回到栏目一“做一做”第2题,教师让学生算出结果,并结合教材第29~30页的内容,师生一起总结应注意的问题:①有理数相乘,可以先确定积的符号,再确定积的绝对值.②在有理数中,乘积是1的两个数互为倒数.这个结论仍然成立.③负数乘0仍得0.试一试 教材第30页练习.三、典例精析,掌握新知例1 判断题.(1)两数相乘,若积为正数,则这两个因数都是正数.( )(2)两数相乘,若积为负数,则这两个数异号.( )(3)两个数的积为0,则两个数都是0.( )(4)互为相反数的数之积一定是负数.( )(5)正数的倒数是正数,负数的倒数是负数.( )【答案】(1)X 2)√(3)X 4)X 5)√【教学说明】根据有理数和乘法运算法则来作出判断.例2 填空题.(1)-141×-54=________; (2)(+3)×(-2)=________;(3)0×(-4)=_________;(4)132×-151=________; (5)(-15)×(-31)=________; (6)-|-3|×(-2)=________;(7)输入值a=-4,b=43,输出结果:①ab=_______,②-a ·b=________,③a ·a=________,④b ·(-b )=________.【答案】(1)1 (2)-6 (3)0 (4)-2 (5)5 (6)6(7)①-3 ②3 ③16 ④-169 【教学说明】乘号“×”也可用“·”代替,或省略不写,但要以不引起误会为原则,如a ×b 可表示成a ·b 或ab ,而(-2)×(-5)可表示成(-2)(-5)或(-2)·(-5),凡数字相乘,如果不用括号,用“×”为好,例如2×5不宜写成2·5或25.例3 计算下列各题:(1)35×(-4);(2)(-8.125)×(-8);(3)-174×114;(4)1592×(-1); (5)(-132.64)×0;(6)(-6.1)×(+6.1).【分析】按有理数乘法法则进行计算.第(6)题是两个相反数的积,注意与相反数的和进行区别.解:(1)35×(-4)=-140;(2)(-8.125)×(-8)=65;(3)(-174)×114=-711×114=-74; (4)1592×(-1)=-1592; (5)(-132.64)×0=0;(6)(-6.1)×(+6.1)=-37.21.【教学说明】通过例2和例3的训练和讲解(例3和例2类似,教师可根据教学实际进行选讲),教师向学生进一步强调在进行有理数运算时应注意的问题:①当乘数中有负数时要用括号括起来;②一个数乘1等于它本身,一个数乘-1等于它的相反数.例4 求下列各数的倒数:3,-2,32,-411,0.2,-5.4. 【分析】不等于0的数a 的倒数是a1,再化为最简形式. 解:3的倒数是31,-2的倒数是-21,32的倒数是23,-411的倒数是-114,0.2的倒数是5,-5.4的倒数是-275.【教学说明】负数求倒数与正数求倒数的原理是一样的,教师讲解此例应引导学生回顾小学时学过的求倒数方法:若a ≠0,则a 的倒数为a1.求一个整数的倒数,直接按这个数分之一即可;求分数的倒数,把分数的分子、分母颠倒位置即可;求小数的倒数,先将小数转化成分数,再求其倒数;求一个带分数的倒数,先将带分数化为假分数,再求其倒数.例5 用正、负数表示气温的变化量:上升为正、下降为负.某登山队攀登一座山峰,每登高1km 气温的变化量为-6℃.攀登3km 后,气温有什么变化?(教材第30页例2)【答案】(-6)×3=-18,即下降了18℃.例6 在整数-5,-3,-1,2,4,6中任取二个数相乘,所得的积的最大值是多少?任取两个数相加,所得的和的最小值又是多少?【答案】6×4=24,为最大的积;-5+(-3)=-8,是最小的两数之和.例7 以下是一个简单的数值运算程序:输入x →×(-3)→-2→输出.当输入的x 值为-1时,则输出的数值为.【分析】程序运算式是有理数运算的新形式,该程序所反映的运算过程是-3x-2.当输入x 为-1时,运算式为(-3)×(-1)-2=1.四、运用新知,深化理解1.(-2)×(-3)=_______,(-32)·(-121)=_______. 2.(1)若ab>0,则必有( )A.a>0,b>0B.a<0,b<0C.a>0,b<0D.a ,b 同号(2)若ab=0,则必有( )A.a=b=0B.a=0C.a 、b 中至少有一个为0D.a 、b 中最多有一个为0(3)一个有理数和它的相反数的积( )A.符号必为正B.符号必为负C.一定不大于0D.一定大于0(4)有奇数个负因数相乘,其积为( )A.正B.负C.非正数D.非负数(5)-2的倒数是( ) A.21 B.- 21 C.2D.-23.计算题.(1)(-321)×(-4); (2)-732×3. 4.观察按下列顺序排列的等式.9×0+1=1 9×1+2=119×2+3=21 9×3+4=319×4+5=41 ……猜想,第n 个等式(n 为正整数)用n 表示,可以表示成______.5.现定义两种运算“*”和“”:对于任意两个整数a 、b ,有a*b=a+b-1,a b=ab-1,求4[(6*8)*(35)]的值. 6.若有理数a 与它的倒数相等,有理数b 与它的相反数相等,则2012a+2013b 的值是多少?【教学说明】以上几题先由学生独立思考,然后教师再让学生举手回答1~2题,第3题让4位学生上台板演,教师评讲.【答案】1.6 12.(1)D (2)C (3)C (4)B (5)B3.(1)14 (2)-234.9(n-1)+n=10(n-1)+15.1036.根据已知可求出a=±1,b=0,所以2012a+2013b的值为2012或-2012.五、师生互动,课堂小结1.引导学生理解本节课所学内容:有理数的乘法法则.2.自己操作实践如何应用计算器来计算有理数的乘法.阅读课本第37页内容,并练习用计算器来计算:(1)74×59=4366;(2)(-98)×(-63)=6174;(3)(-49)×(+204)=-9996;(4)37×(-73)=-2701.1.布置作业::从教材习题1.4中选取.2.完成练习册中本课时的练习.本课时是学生在小学学习的数的乘法及刚接受有理数加减法的基础上,进一步学习有理数的基本运算,它既是对前面知识的延续,又是后面有理数除法的铺垫,所以,教学时强调学生自主探索,在互相交流的过程中理解和掌握有理数乘法法则的本质;另外,要求学生在探索有理数乘法法则的过程中,初步体验分类讨论的数学思想,鼓励学生归纳和总结,形成良好的数学心理品质.。
有理数的乘法(第一课时)教案

1.4.1有理数的乘法(第一课时)一、教学目标知识与技能1.使学生在了解乘法的基础上,理解有理数乘法法则.2.能熟练地进行有理数乘法运算过程与方法在积极参与探索有理数乘法法则的数学活动中,体会有理数的实际意义,发展应用数学知识的意识与能力.情感态度与价值观通过合作学习调动学生学习的积极性,激发学生学习数学的兴趣,提高学生认识世界的水平。
二、重点、难点重点:依据有理数的乘法法则,熟练进行有理数的乘法运算;难点:有理数乘法中的符号法则三、学情分析本节课是在学习了有理数的概念及数轴的基础上学习的,主要内容是有理数的乘法运算。
在原有正数及0的乘法运算经验中,通过一系列活动进行学习,激起学生的学习兴趣.教学环节的设计与展开,以问题解决为中心,在探索后经小组合作,尝试练习,总结自己的观点;同时,让尽可能多的学生自觉参与到学习活动中来。
五、设计思路本节课在引入部分利用回顾旧知为巩固加法法则也为总结乘法法则设台阶,在探索新知时利用数轴上蜗牛运动的例子激发学生的兴趣,使学生能在兴趣的指引下逐步开展探究,在例子中,把表示具有相反意义的量的正负数在实际问题中求积的问题与小学算术乘法相结合,通过小组讨论合作学习的方式得出结论。
在归纳法则的过程中,既培养学生的概括能力,观察能力及口头表达能力,也让学生通过归纳体验从特殊到一般,从具体到抽象的过程,使他们既学会发现,又学会总结。
通过气温变化问题,引导学生关注身边的数学,体现数学来源于实践又服务于实践的思想。
在练习设计与作业布置中体现分层次教学的要求,让不同层次的学生都能主动参与并能得到成功的体验。
附:学案1.4.1有理数的乘法(第一课时)一、自主探究问题:一只蜗牛沿直线L爬行,它现在的位置恰好在点O上. 我们规定:向左为负,向右为正,现在前为负,现在后为正.看看它以相同速度沿不同方向运动后的情况吧.−0−→(1)如果它以每分2cm的速度向右爬行,3分钟后它在什么位置?算式:(2)如果它以每分2cm的速度向左爬行,3分钟后它在什么位置?算式:(3)如果它以每分2cm的速度向右爬行,3分钟前它在什么位置?算式:(4)如果它以每分2cm的速度向左爬行,3分钟前它在什么位置?算式:观察上面的算式,你能发现什么规律?2、总结有理数的乘法法则:二、尝试应用1、计算(1)(-5)×(-3)(2)(-7)×4(3)(-3)×9(4)(-21)×(-2)2、用正负数表示气温的变化量,上升为正,下降为负。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.4.1有理数的乘法教案
教学目标:
1、让学生了解有理数乘法的意义,掌握有理数乘法法则,并能熟练、准确地有理数乘法法则进行有理数乘法运算。
2、通过探究式的教学,渗透化归、分类等数学思想方法,培养学生的观察、比较、归纳的能力。
3、让学生经历知识的产生与形成的过程,培养学生勇于探究的精神。
教学重点:有理数乘法的运算及倒数的概念
教学难点:探索有理数的乘法法则及符号的确定。
教学过程设计:
一、情境引入一只蜗牛沿直线L爬行,它现在的位置恰好中L的点0上.
我们规定:向左为负,向右为正,现在前为负,现在后为正
(1) 如果它以每分2cm的速度向右爬行,3分钟后它在什么位置?
可以表示为(2) ( 3^ 6
(2) 如果它以每分2cm的速度向左爬行,3分钟后它在什么位置?
可以表示为(—2) (3^-6
(3) 如果它以每分2cm的速度向右爬行,3分钟前它在什么位置?
可以表示为「2) (-3) = -6
(4) 如果它以每分2cm的速度向左爬行,3分钟前它在什么位置?
可以表示为(-2) (-3) = 6
二、思考并解决以下问题设计:(组内讨论)
问题1、观察由P28-29问题得出的式子:
(1)(+ 2)X(+3)=+ 6;
(2)(-2)X(+3 )=-6;
(3)(+ 2)X(-3)=-6;
(4)(-2)X(-3)=+ 6;
思考:积的符号与两因数的符号有什么关系?积的绝对值与两因数的绝对值有什么关系? 任意数与0相乘,得数是多少?
因此,我们就有有理数的乘法法则
两数相乘,同号得正,异号得负,并把绝对值相乘•
任何数与0相乘,都得0.
问题2、①自学P30例1
②数a的倒数是_________ (0),为什么要a丰0?
③完成P30练习1、3、
问题3、自学P30例2
完成P30练习2、
问题4、推广:几个不是 0的数相乘,积的符号与负因数的个数之间有什么关系 几个数相乘,如果其中有因数为 0,积等于 问题5、自学P31例3 完成P32练习
三、学生展示(要提醒展示同学语言表达要干净、 并认真倾听)
1组展示问题1及P42练习1 2 4组展示问题4
5 四、问题延伸 1、若 ab v 0, a > 0 则 b 0 准确、 流畅。
其余同学要注意做好笔记, 若 a v b v 0,贝U ab 0 2、下列说法错误的是( ) A. —个数同1相乘,仍得这个数 C.一个数同0相乘,仍得0 3、如果ab=0,那么一定有( A.a=b=0 B.a=0 4、如果mn v 0,那么必有(
A. m v 0 , n > 0
B. m
组展示问题 组展示问题 组展示问题3 组展示问题6 (a+b ) ( a-b ) 0 B. 一个数同-1相乘,积是原数的相反数 D.互为相反数的两个数之积为 1 C.b=0 D.a 、b 中至少有一个为 0 C. m , n 异号 D.m , n 同号 5、若a+b > 0,且ab v 0,那么必有(
A. a > 0 , b v 0
B. a v 0 b > 0
C.a , b 异号,且正数的绝对值大
D.a , b 异号,且负数的绝对值大 ■号, 五、信息反馈
课本 P38 2、7、(1) ( 2) (3) P39 10、、1、 12
、
六、课后反思:。