全国各地中考试题分类汇编 有理数
中考数学试题解析分类汇编汇总 01 有理数

有理数一、选择题1.(•海南,第1题3分)5的相反数是()A.B.﹣5C.±5D.﹣考点:相反数.w ww .x k b1.c o m分析:据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.解答:解:根据概念,(5的相反数)+5=0,则5的相反数是﹣5.故选B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2. (•海南,第3题3分)据报道,我省西环高铁预计底建成通车,计划总投资27100000000元,数据27100000000用科学记数法表示为()A.271×108B.2.71×109C.2.71×1010D.2.71×1011考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将27100000000用科学记数法表示为:2.71×1010.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3. (•湖北宜昌,第1题3分)三峡大坝全长约2309米,这个数据用科学记数法表示为()米.A.2.309×103B.23.09×102C.0.2309×104D.2.309×10﹣3考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:2309=2.309×103,故选:A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. (•湖南衡阳,第1题3分)﹣2的倒数是()A.B.﹣C.2D.﹣2考点:倒数.分析:根据倒数定义可知,﹣2的倒数是﹣.解答:解:﹣2的倒数是﹣.故选:B.x k b 1 . c o m点评:主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.5. (•湖南衡阳,第3题3分)环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,2.5微米即0.0000025米.用科学记数法表示0.0000025为()A.2.5×10﹣5B.2.5×105C 2.5×10﹣6D. 2.5×106考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 0025=2.5×10﹣6;故选:C.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6. (•湖南永州,第1题3分)据统计我国前四月已开工建造286万套保障房,其中286万用科学记数法表示为()A.2.86×106B.2.86×107C.28.6×105D.0.286×107考点:科学记数法—表示较大的数..分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:286万=2.86×106.故选:A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(•广西来宾,第2题3分)去年我市参加中考人数约17700人,这个数用科学记数法表示是()A.1.77×102B.1.77×104C.17.7×103D.1.77×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将17700用科学记数法表示为:1.77×104.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(•黔南州,第1题4分)在﹣2,﹣3,0.1四个数中,最小的实数是()A.﹣3B.﹣2C.0D.1考点:实数大小比较分析:根据正数>0>负数,几个负数比较大小时,绝对值越大的负数越小解答即可.解答:解:∵﹣3<﹣2<0<1,∴最小的数是﹣3,故答案选:A.点评:本题主要考查了正、负数、0和负数间的大小比较.几个负数比较大小时,绝对值越大的负数越小.9.(广西南宁,第1题3分)如果水位升高3m时水位变化记作+3m,那么水位下降3m时水位变化记作()A.﹣3m B.3m C.6m D.﹣6m分析:首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.解答:解:因为上升记为+,所以下降记为﹣,所以水位下降3m时水位变化记作﹣3m.故选:A.点评:考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.10.(广西钦州,第1题3分)如果收入80元记作+80元,那么支出20元记作()A.+20元B.﹣20元C.+100元D.﹣100元分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:“正”和“负”相对,所以如果+80元表示收入80元,那么支出20元表示为﹣20元.故选B.点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.11.(贵州安顺,第1题3分)一个数的相反数是3,则这个数是()A.﹣B.C.﹣3D.3分析:两数互为相反数,它们的和为0.解答:解:设3的相反数为x.则x+3=0,x=﹣3.故选C.点评:本题考查的是相反数的概念,两数互为相反数,它们的和为0.12.(贵州安顺,第2题3分)地球上的陆地而积约为149000000km2.将149000000用科学记数法表示为()A.1.49×106B.1.49×107C.1.49×108D.1.49×109考点:科学记数法—表示较大的数..分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:149 000 000=1.49×108,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(•莱芜,第3题3分)4月25日青岛世界园艺博览会成功开幕,预计将接待1500万人前来观赏,将1500万用科学记数法表示为()A.15×105B.1.5×106新*课标*第*一*网C.1.5×107D.0.15×108考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将1500万用科学记数法表示为:1.5×107.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14. (•青岛,第3题3分)据统计,我国全年完成造林面积约6090000公顷.6090000用科学记数法可表示为()60.9×105A.6.09×106B.6.09×104C.609×104D.www .xk b1.co m考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将6090000用科学记数法表示为:6.09×106.故选:A.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15. (•山西,第1题3分)计算﹣2+3的结果是()A.1B.﹣1C.﹣5D.﹣6考点:有理数的加法.分析:根据异号两数相加的法则进行计算即可.解答:解:因为﹣2,3异号,且|﹣2|<|3|,所以﹣2+3=1.故选A.点评:本题主要考查了异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.16. (•山西,第9题3分)PM2.5是指大气中直径小于或等于2.5μm(1μm=0.000001m)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm用科学记数法可表示为()A.2.5×10﹣5m B.0.25×10﹣7m C.2.5×10﹣6m D.25×10﹣5m考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:2.5μm×0.000001m=2.5×10﹣6m;故选:C.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17. (•攀枝花,第2题3分)为促进义务教育办学条件均衡,某市投入480万元资金为部分学校添置实验仪器及音、体、美器材,480万元用科学记数法表示为()A.480×104元B.48×105元C.4.8×106元D.0.48×107元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将480万用科学记数法表示为:4.8×106.故选:C.点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.18. (2014•丽水,第1题3分)在数,1,﹣3,0中,最大的数是( )A .B . 1C . ﹣3D . 0 考点:有理数大小比较. 分析:根据正数>0>负数,几个正数比较大小时,绝对值越大的正数越大解答即可. 解答: 解:根据正数>0>负数,几个正数比较大小时,绝对值越大的正数越大解答即可. 可得1>>0>﹣3,所以在,1,﹣3,0中,最大的数是1.故选:B .点评: 此题主要考查了正、负数、0及正数之间的大小比较.正数>0>负数,几个正数比较大小时,绝对值越大的正数越大.19.(2014•河北,第1题2分)﹣2是2的( )A . 倒数B . 相反数C . 绝对值D . 平方根考点: 相反数.分析: 根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答: 解:﹣2是2的相反数,故选:B .点评: 本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.20、(2014•江西,第1题3分)下列四个数中,最小的数是( ).A .-12B .0C .-2D .2 【答案】 C .【考点】 有理数大小比较.【分析】 根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数进行比较即可.【解答】 解:在-12 ,0,-2,2这四个数中,大小顺序为:﹣2<-12<0<2,所以最小的数是-12.故选C . 【点评】 本题主要考查了有理数的大小的比较,解题的关键是熟练掌握有理数大小比较的法则,属于基础题.21、(2014•随州,第1题3分)2的相反数是( )A .B . ﹣2C . 2D .考点:相反数 分析:根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可. 解答: 解:2的相反数是﹣2. 故选B .点评: 本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.22、(2014•随州,第3题3分)2013年,我市以保障和改善民生为重点的“十件实事”全面完成,财政保障民生支出达74亿元,占公共财政预算支出的75%,数据74亿元用科学记数法表示为( )A . 74×108元B . 7.4×108元C . 7.4×109元D . 0.74×1010元考点:科学记数法—表示较大的数 分析: 科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.解答: 解:74亿=74 0000 0000=7.4×109,故选:C .点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.23、(2014衡阳,第3题3分)环境空气质量问题已经成为人们日常生活所关心的重要问题。
中考数学真题分类汇编(第三期)专题1 有理数试题(含解析)-人教版初中九年级全册数学试题

有理数一.选择题1. (2018·某某某某·3分)﹣8的相反数是()A.﹣8 B.8 C.D.【分析】直接根据相反数的定义进行解答即可.【解答】解:由相反数的定义可知,﹣8的相反数是﹣(﹣8)=8.故选:B.【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.2. (2018·某某某某·3分)研究发现,银原子的半径约是0.00015微米,把0.00015这个数字用科学计数法表示应是()A.1.5×10﹣4B.1.5×10﹣5C.15×10﹣5D.15×10﹣6【分析】绝对值小于1的正数也可以利用科学计数法表示,一般形式为a×10﹣n,与较大数的科学计数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00015=1.5×10﹣4,故选:A.【点评】本题考查用科学计数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3. (2018·某某江汉·3分)8的倒数是()A.﹣8 B.8 C.﹣ D.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:8的倒数是,故选:D.4. (2018·某某江汉·3分)2018年5月26日至29日,中国国际大数据产业博览会在某某召开,“数化万物,智在融合”为年度主题.此次大会成功签约项目350余亿元.数350亿用科学记数法表示为()A.3.5×102B.3.5×1010 C.3.5×1011 D.35×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数350亿用科学记数法表示为3.5×1010.故选:B.5. (2018·某某荆州·3分)如图,两个实数互为相反数,在数轴上的对应点分别是点A.点B,则下列说法正确的是()A.原点在点A的左边 B.原点在线段AB的中点处C.原点在点B的右边 D.原点可以在点A或点B上【解答】解:∵点A.点B表示的两个实数互为相反数,∴原点在到在线段AB上,且到点A.点B的距离相等,∴原点在线段AB的中点处,故选:B.6. (2018·某某某某·3分)在0,﹣1,0.5,(﹣1)2四个数中,最小的数是()A.0 B.﹣1 C.0.5 D.(﹣1)2【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣1<0<0.5<(﹣1)2,∴在0,﹣1,0.5,(﹣1)2四个数中,最小的数是﹣1.故选:B.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.7.(2018·某某省某某·3分)如图,实数﹣3.x、3.y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是()A.点M B.点N C.点P D.点Q解:∵实数﹣3,x,3,y在数轴上的对应点分别为M、N、P、Q,∴原点在点M与N之间,∴这四个数中绝对值最小的数对应的点是点N.故选B.8.(2018·某某省某某·4分)﹣2的绝对值是()A.2 B.﹣2 C.D.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.9.(2018·某某省某某·4分)截止2018年5月末,中国人民银行公布的数据显示,我国外汇的储备规模约为3.11×104亿元美元,则3.11×104亿表示的原数为()A.2311000亿B.31100亿C.3110亿D.311亿【解答】解:3.11×104亿=31100亿故选:B.10.(2018·某某省某某市)(2.00分)某某男蓝夺冠后,从4月21日至24日各类媒体体关于“辽篮CBA夺冠”的相关文章达到81000篇,将数据81000用科学记数法表示为()×104×106×104×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】×104.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(2018·某某市B卷)(4.00分)下列四个数中,是正整数的是()A.﹣1 B.0 C.D.1【分析】正整数是指既是正数还是整数,由此即可判定求解.【解答】解:A.﹣1是负整数,故选项错误;B.0是非正整数,故选项错误;C.是分数,不是整数,错误;D.1是正整数,故选项正确.故选:D.【点评】此题主要考查正整数概念,解题主要把握既是正数还是整数两个特点,比较简单.12.(2018·某某省某某市)﹣的绝对值是()A.2 B.C.﹣D.﹣2【解答】解:||=.故选B.13.(2018·某某省某某市)某微生物的直径为0.000 005 035m,用科学记数法表示该数为()A.5.035×10﹣6B.50.35×10﹣5C.5.035×106D.5.035×10﹣5【解答】解:0.000 005 035m,用科学记数法表示该数为5.035×10﹣6.故选A.14.(2018·某某省某某市) 据旅游业数据显示,2018年上半年我国出境旅游超过129 000 000人次,将数据129 000 000用科学记数法表示为 1.29×108.【解答】解:129000000=1.29×108.故答案为:1.29×108.15.(2018·某某省某某市) 如果温度上升10℃记作+10℃,那么温度下降5℃记作()A.+10℃B.﹣10℃C.+5℃D.﹣5℃【解答】解:如果温度上升10℃记作+10℃,那么下降5℃记作﹣5℃;故选D.16.(2018·某某省某某市)(3.00分)﹣的绝对值是()A.﹣ B.C.﹣ D.【分析】直接利用绝对值的性质得出答案.【解答】解:﹣的绝对值是:.故选:D.【点评】此题主要考查了绝对值,正确把握绝对值的性质是解题关键.17.(2018·某某省某某市)﹣2018的相反数是()A.﹣2018 B.2018 C.±2018D.﹣【解答】解:﹣2018的相反数是2018.故选B.18. (2018•呼和浩特•3分)﹣3﹣(﹣2)的值是()A.﹣1 B.1 C.5 D.﹣5解:﹣3﹣(﹣2)=﹣3+2=﹣1.故选:A.19. (2018•呼和浩特•3分)下列运算及判断正确的是()#ERR1A.﹣5×÷(﹣)×5=1B.方程(x2+x﹣1)x+3=1有四个整数解C.若a×5673=103,a÷103=b,则a×b=D.有序数对(m2+1,m)在平面直角坐标系中对应的点一定在第一象限解:A.﹣5×÷(﹣)×5=﹣1×(﹣5)×5=25,故错误;B.方程(x2+x﹣1)x+3=1有四个整数解:x=1,x=﹣2,x=﹣3,x=﹣1,故正确;C.若a×5673=103,a÷103=b,则a×b=×=,故错误;D.有序数对(m2+1,m)在平面直角坐标系中对应的点一定在第一象限或第四象限或x轴正半轴上,故错误;故选:B.20. (2018•某某•3分)﹣2的相反数是()A.﹣2 B.2 C.D.﹣解:﹣2的相反数是2.故选B.21. (2018•某某•3分)﹣3的倒数是()A.3 B.C.﹣ D.﹣3【分析】利用倒数的定义,直接得出结果.【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.【点评】主要考查倒数的定义,要求熟练掌握.需要注意的是负数的倒数还是负数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.22. (2018•某某•3分)近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是()×108×107×108D.65×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】×107.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.23. (2018•莱芜•3分)﹣2的绝对值是()A.﹣2 B.﹣ C.D.2【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵﹣2<0,∴|﹣2|=﹣(﹣2)=2.故选:D.【点评】本题考查了绝对值的意义,任何一个数的绝对值一定是非负数,所以﹣2的绝对值是2.部分学生易混淆相反数、绝对值、倒数的意义,而错误的认为﹣2的绝对值是,而选择B.24. (2018•莱芜•3分)经中国旅游研究院综合测算,今年“五一”假日期间全国接待国内游客1.47亿人次,1.47亿用科学记数法表示为()×107×107×108×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.×108,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.25. (2018•某某•3分)-的倒数是A. B. - C. D. -【答案】D【解析】【分析】根据乘积为1的两个数互为倒数进行求解即可得.【详解】∵=1,∴-的倒数是-,故选D.【点睛】本题考查了倒数的定义,熟知乘积为1的两个数互为倒数是解题的关键.26.(2018·某某某某·3分)某某冬季里某一天的气温为﹣3℃~2℃,则这一天的温差是()A. 1℃B. ﹣1℃C. 5℃D. ﹣5℃【答案】C【解析】【分析】根据题意列出算式,再利用减法法则计算即可得.【详解】由题意知这一天的最高气温是2℃,最低气温是﹣3℃,3所以这一天的温差是2﹣(﹣3)=2+3=5(℃),故选C.【点睛】本题考查了有理数减法的应用,根据题意列出算式,熟练应用减法法则是解题的关键.27.(2018·某某某某·3分)﹣的绝对值是()A.﹣ B.C.﹣5 D.5【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:||=,故选:B.【点评】本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.28.(2018·某某某某·3分)某某市奥林匹克公园即将于2018年年底建成,它的总投资额约为2500000000元,2500000000这个数用科学记数法表示为()A.0.25×1010B.2.5×1010 C.2.5×109D.25×108【分析】利用科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2500000000用科学记数法表示为2.5×109.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.29.(2018·某某某某·2分)﹣3的倒数是()A.﹣3 B.3 C.﹣ D.【分析】根据倒数的定义可得﹣3的倒数是﹣.【解答】解:﹣3的倒数是﹣.故选:C.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.30.(2018·某某某某·3分)﹣3的绝对值是()A.3 B.﹣3 C.D.解:|﹣3|=﹣(﹣3)=3.故选A.31.(2018·某某某某·3分)0.000182用科学记数法表示应为()A.0182×10﹣3B.1.82×10﹣4C.1.82×10﹣5D.18.2×10﹣4【解答】解:0.000182=2×10﹣4.故选:B.32.(2018·某某某某·3分)A. 123.5×109B. 12.35×1010C. 1.235×108D. 1.235×1011【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】的小数点向左移动11位得到1.235,所以用科学记数法表示为1.235×1011,故选D.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二.填空题1. (2018·某某贺州·3分)医学家发现了一种病毒,其长度约为0.00000029mm,用科学记数法表示为mm.【解答】解:0.00000029=2.9×10﹣7,故答案为:2.9×10﹣7.2. (2018·某某某某·3分)时间6月5日21时07分,中国成功将风云二号H气象卫星送入预定的高度36000km的地球同步轨道,将36000km用科学记数法表示为3.6×104km .【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:36000km=3.6×104km.故答案为:3.6×104km.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.(2018·某某省某某·3分)在实数﹣3,0,1中,最大的数是 1 .【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数进行分析即可.【解答】解:在实数﹣3,0,1中,最大的数是1,故答案为:1.【点评】此题主要考查了实数的大小,关键是掌握实数比较大小的方法.4.(2018·某某省某某·3分)共享单车进入某某市已两年,为市民的低碳出行带来了方便,据报道,某某市共享单车投放量已达到240000辆,数字240000用科学记数法表示为2.4×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将240000用科学记数法表示为:2.4×105.故答案为2.4×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(2018·某某省某某·3分)如果水位升高2m时,水位的变化记为+2m,那么水位下降3m 时,水位的变化情况是﹣3m .【解答】解:∵水位升高2m时水位变化记作+2m,∴水位下降3m时水位变化记作﹣3m.故答案是:﹣3m.6.(2018·某某省·3分)﹣1的绝对值是 1 .【分析】第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵|﹣1|=1,∴﹣1的绝对值是1.【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.7.(2018·某某省·3分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451人,将3451用科学记数法表示为 3.451×103.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:3451=3.451×103,故答案为:3.451×103.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(2018·某某省某某·4分)比﹣1小2的数是()A.3 B.1 C.﹣2 D.﹣3【分析】根据题意可得算式,再计算即可.【解答】解:﹣1﹣2=﹣3,故选:D.【点评】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数.9.(2018·某某省某某市)(3.00分)第十三届全国人民代表大会政府工作报告中说到,五年来我国国内生产总值已增加到8270000000万元,将数据8270000000用科学计数法表示为8.27×109.【分析】科学计数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:8270000000=8.27×109,故答案为:8.27×109.【点评】此题考查科学计数法的表示方法.科学计数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10. (2018•某某•3分)计算:|﹣3|=.解:|﹣3|=3.故答案为:3.11. (2018•某某•3分)如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为.解:设点C所表示的数为x.∵数轴上A.B两点表示的数分别为﹣1和4,点B关于点A的对称点是点C,∴AB=4﹣(﹣1),AC=﹣1﹣x,根据题意AB=AC,∴4﹣(﹣1)=﹣1﹣x,解得x=﹣6.故答案为:﹣6.12.(2018·某某某某·2分)﹣8的绝对值是8 .【解答】解:﹣8的绝对值是8.13.(2018·某某某某·2分)计算:|﹣3|﹣1= 2 .【分析】原式利用绝对值的代数意义,以及减法法则计算即可求出值.【解答】解:原式=3﹣1=2.故答案为:2【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.14.(2018·某某某某·2分)地球与月球的平均距离大约384000km,用科学计数法表示这个距离为×105km.【分析】科学记数法的一般形式为:a×10n,在本题中a应为3.84,10的指数为6﹣1=5.【解答】×105×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.三.解答题1.2.3.4.5.6.7.8.9.10.。
2013中考全国100份试卷分类汇编 有理数的概念

2013中考全国100份试卷分类汇编 有理数的概念1、(德阳市2013年)一5的绝对值是A. 5B. 15C. -15D. -5 答案:A解析:-5的绝对值是它的相反数,所以,选A 。
2、(2013达州)-2013的绝对值是( )A .2013B .-2013C .±2013D .12013-答案:A解析:负数的绝对值是它的相反数,故选A 。
3、(绵阳市2013年)2的相反数是( C )A .2B .22 C .2- D .22- [解析]考查相反数,前面加个负号即可,故选 C 。
4、(2013陕西)下列四个数中最小的数是( )A .2-B .0C .31- D .5 考点:此题一般考查的内容简单,有相反数、倒数、绝对值、具有相反意义的量的表示及正负数的概念等简单的知识点,本题考查简单的数的比较大小。
解析:引入正负数时了解正数大于0,负数小于0,正数大于一切负数,两个负数比较大小:绝对值大的反而小,此题故选A .5、(2013•云南)﹣6的绝对值是( )A . ﹣6B . 6C . ±6D .考点: 绝对值.专题: 计算题.分析: 根据绝对值的性质,当a 是负有理数时,a 的绝对值是它的相反数﹣a ,解答即可; 解答: 解:根据绝对值的性质,|﹣6|=6.故选B .点评: 本题考查了绝对值的性质,熟记:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.6、(2013•天津)计算(﹣3)+(﹣9)的结果等于( )A . 12B . ﹣12C . 6D . ﹣6考点:有理数的加法.分析:根据有理数的加法法则,先确定出结果的符号,再把绝对值相加即可.解答:解:(﹣3)+(﹣9)=﹣12;故选B.点评:本题考查了有理数的加法,用到的知识点是有理数的加法法则,比较简单,属于基础题.7、(2013山西,1,2分)计算2×(-3)的结果是()A.6 B.-6 C.-1 D.5【答案】B【解析】异号相乘,得负,所以选B。
2023年湖南省中考数学真题分类汇编:有理数(含答案)

;2023年湖南省中考数学真题分类汇编:有理数一、选择题1.(2023·常德)3的相反数是( )A.3B.―3C.13D.―132.(2023·邵阳)2023的倒数是( )A.―2023B.2023C.12023D.―120233.(2023·株洲)计算:(―4)×32=( )A.―6B.6C.―8D.8 4.(2023·岳阳)2023的相反数是( )A.12023B.―2023C.2023D.―120235.(2023·衡阳)据共青团中央2023年5月3日发布的中国共青团团内统计公报,截至2022年12月底,全国共有共青团员7358万.数据7358万用科学记数法表示为( )A.7.358×107B.7.358×103C.7358×104D.7.358×106 6.(2023·衡阳)中国是最早采用正负数表示相反意义的量、并进行负数运算的国家.若收入500元记作+500元,则支出237元记作( )A.+237元B.―237元C.0元D.―474元7.(2023·怀化)2023年4月12日21时,正在运行的中国大科学装置“人造太阳”——世界首个全超导托卡马克东方超环(EAST)装置取得重大成果,在第122254次实验中成功实现了403秒稳态长脉冲高约束模式等离子体运行,创造了托卡马克装置高约束模式运行新的世界纪录.数据122254用科学记数法表示为( )A.12.2254×104B.1.22254×104C.1.22254×105D.0.122254×1068.(2023·长沙)2022年,长沙市全年地区生产总值约为1400000000000元,比上年增长4.5%.其中数据1400000000000用科学记数法表示为( )A.1.4×1012B.0.14×1013C.1.4×1013D.14×10119.(2023·张家界)12023的相反数是( )A.12023B.―12023C.2023D.―202310.(2023·郴州)―2的倒数是( )A.2B.―12C.―2D.1211.(2023·邵阳)党的二十大报告提出,要坚持以文塑旅、以旅彰文,推进文化和旅游深度融合发展.湖南是文化旅游资源大省,深挖红色文化、非遗文化和乡村文化,推进文旅产业赋能乡村振兴.湖南红色旅游区(点)2022年接待游客约165000000人次,则165000000用科学记数法可表示为( )A.0.165×109B.1.65×108C.1.65×107D.16.5×107二、填空题12.(2023·岳阳)近年来,岳阳扛牢“守护好一江碧水”责任,水在变清,岸在变绿,洞庭湖真正成为鸟类的天堂.2022年冬季,洞庭湖区越冬水鸟数量达37.83万只,数据378300用科学记数法表示为 .13.(2023·张家界)“仙境张家界,峰迷全世界”,据统计,2023年“五一”节假日期间,张家界市各大景区共接待游客约864000人次.将数据864000用科学记数法表示为 .14.(2023·常德)联合国2022年11月15日宣布,全世界人口已达80亿.将8000000000用科学记数法表示为 .三、计算题15.(2023·郴州)计算:(12)―1―3tan30°+(π―2023)0+|―2|.16.(2023·邵阳)计算:tan45°+(12)―1+|―2|.四、综合题17.(2023·长沙)我们约定:若关于x的二次函数y1=a1x2+b1x+c1与y2=a2x2+b2x+c2同时满足a2―c1+(b2+b1)2+|c2﹣a1|=0,b1―b22023≠0,则称函数y1与函数y2互为“美美与共”函数.根据该约定,解答下列问题:(1)若关于x的二次函数y1=2x2+kx+3与y2=m x2+x+n互为“美美与共”函数,求k,m,n的值;(2)对于任意非零实数r,s,点P(r,t)与点Q(s,t)(r≠s)始终在关于x的函数y1=x2+2rx+s的图像上运动,函数y1与y2互为“美美与共”函数.①求函数y2的图像的对称轴;②函数y2的图像是否经过某两个定点?若经过某两个定点,求出这两个定点的坐标;否则,请说明理由;(3)在同一平面直角坐标系中,若关于x的二次函数y1=a x2+bx+c与它的“美美与共”函数y2的图像顶点分别为点A,点B,函数y1的图像与x轴交于不同两点C,D,函数y2的图像与x轴交于不同两点E,F.当CD=EF时,以A,B,C,D为顶点的四边形能否为正方形?若能,求出该正方形面积的取值范围;若不请说明理由.答案解析部分1.【答案】B2.【答案】C3.【答案】A4.【答案】B5.【答案】A6.【答案】B7.【答案】C8.【答案】A9.【答案】B10.【答案】B11.【答案】B12.【答案】3.783×10513.【答案】8.64×10514.【答案】8×10915.【答案】解:原式=2―3×33+1+2=2―1+1+2=4.16.【答案】解:tan45°+(12)―1+|―2|=1+2+2=5.17.【答案】(1)解:由题意可知:a2=c2,a1=c2,b1=―b2≠0,∴m=3,n=2,k=―1.答:k的值为―1,m的值为3,n的值为2.(2)解:①∵点P(r,t)与点Q(s,t)(r≠s)始终在关于x的函数y1=x2+2rx+s的图像上运动,∴对称轴为x=r+s2=―2r2,∴s=―3r,∴y2=s x2―2xx+1,∴对称轴为x=――2r2s =rs=―13.答:函数y 2的图像的对称轴为x =―13.②y 2=―3r x 2―2rx +1=―(3x 2+2x)r +1,令3x 2+2x =0,解得x 1=0,x 2=―23,∴过定点(0,1),(―23,1).答:函数y 2的图像过定点(0,1),(―23,1).(3)解:由题意可知y 1=a x 2+bx +c ,y 2=c x 2―bx +a ,∴A(―b 2a ,4ac ―b 24a),B(b 2c ,4ac ―b 24c ),∴CD =b 2―4ac |a|, EF =b 2―4ac 1―1,∵CD =EF 且b 2―4ac >0,∴|a|=|c|;①若a =―c ,则y 1=a x 2+bx ―a ,y 2=―a x 2―bx +a ,要使以A ,B ,C ,D 为顶点的四边形能构成正方形,则△CAD ,△CBD 为等腰直角三角形,∴CD =2|y A |,∴b 2+4a 2|a |=2⋅|―4a 2―b 24a |,∴2b 2+4a 2=b 2+4a 2,∴b 2+4a 2=4,∴S 正=12C D 2=12⋅b 2―4ac a 2=12⋅b 2+4a 2a2=2a 2,∵b 2=4―4a 2>0,∴0<a 2<1,∴S 正>2;②若a =c ,则A 、B 关于y 轴对称,以A ,B ,C ,D 为顶点的四边形不能构成正方形,综上,以A,B,C,D为顶点的四边形能构成正方形,此时S>2.。
专题1.1 有理数(01)-中考数学试题分项汇编(解析版)

一、单选题1.【安徽省2018年中考数学试题】的绝对值是()A. B. 8 C. D.【答案】B【分析】根据绝对值的定义“一个数的绝对值是数轴上表示这个数的点到原点的距离”进行解答即可.【详解】数轴上表示数-8的点到原点的距离是8,所以-8的绝对值是8,故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.2.【2018年重庆市中考数学试卷(A卷)】的相反数是()A. B. C. D.【答案】A【分析】根据只有符号不同的两个数互为相反数进行求解即可得.【详解】2与-2只有符号不同,所以2的相反数是-2,故选A.【点评】本题考查了相反数的定义,属于中考中的简单题3.【浙江省衢州市2018年中考数学试卷】﹣3的相反数是()A. 3B. ﹣3C.D. ﹣点睛:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易把相反数的意义与倒数的意义混淆.4.【2018年浙江省绍兴市中考数学试卷】如果向东走记为,则向西走可记为()A. B. C. D.【答案】C分析首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.详解:如果向东走2m时,记作+2m,那么向西走3m应记作−3m.故选C.点睛:考查了相反意义的量,相反意义的量用正数和负数来表示.5.【天津市2018年中考数学试题】计算的结果等于()A. 5B.C. 9D.【答案】C分析:根据有理数的乘方运算进行计算.详解:(-3)2=9,故选C.点睛:本题考查了有理数的乘方,比较简单,注意负号.6.【山东省滨州市2018年中考数学试题】若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A. 2+(﹣2)B. 2﹣(﹣2)C. (﹣2)+2D. (﹣2)﹣2点睛:本题考查的是数轴上两点间的距离、数轴等知识,熟知数轴上两点间的距离公式是解答此题的关键.7.【江苏省连云港市2018年中考数学试题】﹣8的相反数是()A. ﹣8B.C. 8D. ﹣【答案】C分析:根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.详解:-8的相反数是8,故选:C.点睛:此题主要考查了相反数,关键是掌握相反数的定义.8.【江苏省盐城市2018年中考数学试题】-2018的相反数是()A. 2018B. -2018C.D.【答案】A分析:只有符号不同的两个数叫做互为相反数.详解:-2018的相反数是2018.故选:A.点睛:本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.9.【湖北省黄冈市2018年中考数学试题】-的相反数是()A. -B. -C.D.【答案】C分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.详解:-的相反数是.故选C.点睛:本题考查了相反数,关键是在一个数的前面加上负号就是这个数的相反数.10.【四川省宜宾市2018年中考数学试题】3的相反数是()A. B. 3 C. ﹣3 D. ±【答案】C分析:根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.详解:3的相反数是﹣3,故选C.点睛:此题主要考查了相反数,关键是掌握相反数的定义.11.【湖南省娄底市2018年中考数学试题】2018的相反数是()A. B. 2018 C. -2018 D.【答案】C【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键. 12.【山东省德州市2018年中考数学试题】3的相反数是()A. 3B.C. -3D.【答案】C分析:根据相反数的定义,即可解答.详解:3的相反数是﹣3.故选C.点睛:本题考查了相反数,解决本题的关键是熟记相反数的定义.13.【山东省淄博市2018年中考数学试题】计算的结果是()A. 0B. 1C. ﹣1D.【答案】A【解析】分析:先计算绝对值,再计算减法即可得.详解:=﹣=0,故选:A.点睛:本题主要考查绝对值和有理数的减法,解题的关键是掌握绝对值的性质和有理数的减法法则.14.【山东省潍坊市2018年中考数学试题】( )A. B. C. D.【答案】B分析:根据绝对值的性质解答即可.详解:|1-|=.故选B.点睛:此题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.15.【江西省2018年中等学校招生考试数学试题】﹣2的绝对值是A. B. C. D.【答案】B【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.16.【浙江省金华市2018年中考数学试题】在0,1,﹣,﹣1四个数中,最小的数是()A. 0B. 1C.D. ﹣1【答案】D分析:根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.详解:∵-1<-<0<1,∴最小的数是-1,故选D.点睛:本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.17.【浙江省金华市2018年中考数学试题】在0,1,﹣,﹣1四个数中,最小的数是()A. 0B. 1C.D. ﹣1点睛:本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.18.【江苏省连云港市2018年中考数学试题】地球上陆地的面积约为150 000 000km2.把“150 000 000”用科学记数法表示为()A. 1.5×108B. 1.5×107C. 1.5×109D. 1.5×106【答案】A分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.详解:150 000 000=1.5×108,故选:A.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.19.【江苏省盐城市2018年中考数学试题】盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为()A. B. C. D.【答案】A分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将146000用科学记数法表示为:1.46×105.故选:A.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.20.【湖北省孝感市2018年中考数学试题】的倒数是()A. 4B. -4C.D. 16分析:根据乘积是1的两个数互为倒数解答.详解:∵-×(-4)=1,∴的倒数是-4.故选:B.点睛:此题考查的知识点是倒数,关键掌握求一个数的倒数的方法.注意:负数的倒数还是负数.21.【广东省深圳市2018年中考数学试题】260000000用科学计数法表示为( )A. B. C. D.【答案】B【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.22.【四川省成都市2018年中考数学试题】2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A. B. C. D.【答案】B分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.1万=10000=104.详解:40万=4×105,故选B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.23.【天津市2018年中考数学试题】今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B详解:将77800用科学记数法表示为:.故选B.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题24.【山东省德州市2018年中考数学试题】计算:=__________.【答案】1分析:根据有理数的加法解答即可.详解:|﹣2+3|=1.故答案为:1.点睛:本题考查了有理数的加法,关键是根据法则计算.25.【湖北省黄冈市2018年中考数学试题】实数16 800 000用科学计数法表示为______________________.【答案】1.68×107分析:用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.详解:16800000=1.68×107.故答案为:1.68×107.点睛:此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.26.【江苏省南京市2018年中考数学试卷】写出一个数,使这个数的绝对值等于它的相反数:__________.【答案】(答案不唯一)分析:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.又根据绝对值的定义,可以得到答案.详解:设|a|=-a,|a|≥0,所以-a≥0,所以a≤0,即a为非正数.故答案为:-1(答案不唯一).点睛:本题综合考查绝对值和相反数的应用和定义.27.【江苏省南京市2018年中考数学试卷】写出一个数,使这个数的绝对值等于它的相反数:__________.【答案】(答案不唯一)点睛:本题综合考查绝对值和相反数的应用和定义.三、解答题28.【江苏省南京市2018年中考数学试卷】如图,在数轴上,点、分别表示数、.(1)求的取值范围.(2)数轴上表示数的点应落在()A.点的左边B.线段上C.点的右边【答案】(1).(2)B.【解析】分析:(1)根据点B在点A 的右侧列出不等式即可求出;(2)利用(1)的结果可判断-x+2的位置.详解:(1)根据题意,得.解得.(2)B.点睛:本题考查了数轴的运用.关键是利用数轴,数形结合求出答案.。
2020年全国中考数学试卷分类汇编第一期专题1 有理数

有理数一.选择题1.(2020•黑龙江省哈尔滨市•3分)﹣8的倒数是()A.﹣B.﹣8C.8D.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣8的倒数是﹣,故选:A.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(2020•黑龙江省齐齐哈尔市•3分)2020的倒数是()A.2020B.﹣2020C.D.【分析】根据倒数之积等于1可得答案.【解答】解:2020的倒数是,故选:C.【点评】此题主要考查了倒数,关键是掌握倒数定义.3.(2020•湖北省黄冈市•3分)的相反数是()A.B.﹣6C.6D.﹣【分析】只有符号不同的两个数是互为相反数,在数轴上表示,分别位于原点的两侧,且到原点距离相等的两点所表示的数是互为相反数.【解答】解:的相反数是﹣,故选:D.【点评】本题考查相反数的意义和求法,理解相反数的意义是正确解答的前提.4.(2020年辽宁省辽阳市)1.(3分)﹣2的倒数是()A.﹣B.﹣2C.D.2【分析】根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:有理数﹣2的倒数是﹣.故选:A.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.5.(2020年滨州市)3.(3分)冠状病毒的直径约为80~120纳米,1纳米=1.0×10﹣9米,若用科学记数法表示110纳米,则正确的结果是()A.1.1×10﹣9米B.1.1×10﹣8米C.1.1×10﹣7米D.1.1×10﹣6米【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:110纳米=110×10﹣9米=1.1×10﹣7米.故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.6(2020年滨州市)1.(3分)下列各式正确的是()A.﹣|﹣5|=5B.﹣(﹣5)=﹣5C.|﹣5|=﹣5D.﹣(﹣5)=5【分析】根据绝对值的性质和相反数的定义对各选项分析判断即可.【解答】解:A.∵﹣|﹣5|=﹣5,∴选项A不符合题意;B.∵﹣(﹣5)=5,∴选项B不符合题意;C.∵|﹣5|=5,∴选项C不符合题意;D.∵﹣(﹣5)=5,∴选项D符合题意.故选:D.【点评】此题主要考查相反数的定义以及绝对值的含义和求法,解答此题的关键是要明确一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.7.(2020年德州市)1.(4分)|﹣2020|的结果是()A .B .2020C .﹣D .﹣2020【分析】根据绝对值的性质直接解答即可.【解答】解:|﹣2020|=2020;故选:B .【点评】此题考查了绝对值,掌握绝对值的性质是解题的关键,是一道基础题.8.(2020年内蒙古通辽市3分)1.2020年我市初三毕业生超过30000人,将30000用科学记数法表示正确的是()A.50.310⨯ B.4310⨯ C.33010⨯ D.3万【答案】B 【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将30000用科学记数法表示为3×104.故选:B .【点睛】此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.9.(2020•湖北武汉•3分)实数﹣2的相反数是()A .2B .﹣2C .D .﹣【分析】由相反数的定义可知:﹣2的相反数是2.【解答】解:实数﹣2的相反数是2,故选:A .【点评】本题考查相反数的定义;熟练掌握相反数的定义是解题的关键.10.(2020•湖北襄阳•3分)﹣2的绝对值是()A .﹣2B .2C .﹣D .【分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2.故选:B .【点评】本题考查了绝对值的定义,关键是利用了绝对值的性质.11.(2020•广东省深圳市•3分)2020的相反数是()A.2020 C.-2020D.【考点】相反数【答案】C【解析】由相反数的定义可得选C 。
2013中考数学试题分类汇编 第一章 有理数

2013年全国各地中考数学解析汇编第一章有理数1.1 正数和负数1.(2013浙江丽水3分,1题)如果零上2℃记作+2℃,那么零下3℃记作( )A.-3℃B.-2℃C.+3℃D.+2℃【解析】根据相反意义的量可知,零上2℃记作―+2℃‖,则零下3℃记作―-3℃‖,故选A.【答案】A【点评】本题考查相反意义的量.2.(2013山东德州中考,9,4,)-1, 0, 0.2,71 , 3 中正数一共有 个. 【解析】由题意知2, 17,3是正数,共有三个. 【答案】3.【点评】有理数的分类方法有2种:①正有理数、0、负有理数;②整数和分数.3.(2013安徽,1,4分)下面的数中,与-3的和为0的是 ( )A.3B.-3C.31D.31- 【解析】根据有理数的运算法则,可以把选项中的数字和-3相加,进行筛选只有选项A 符合,也可以利用相反数的性质,根据互为相反数的两数和为0,必选-3的相反数3.【答案】A .【点评】本题考查了有理数的运算、及其概念,理解有关概念,掌握运算法则,是解答此类题目的基础.4.(2013山东泰安,1,3分)下列各数比-3小的数是( )A. 0B. 1C.-4D.-1【解析】根据正数大于0,0大于负数,两个负数绝对值大的反而小可得,比-3小的数是-4.【答案】C【点评】本题考查了实数大小的比较.要掌握实数大小的比较:正数大于0,负数小于0,正数大于负数;数轴上表示的两个数,右边的比左边的大.5.(2013浙江省衢州,1,3分)下列四个数中,最小的数是( )A.2B.-2C.0D. 21- 【解析】根据有理数比较大小的法则进行判断,有-2<12-<0<2. 【答案】B【点评】本题考查了有理数大小的比较,①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.6.(2013重庆,1,4分)在一3,一1,0,2这四个数中,最小的数是( )A .一3B .一1 C.0 D.2【解析】正数大于0,负数小于0,两个负数绝对值大的反而小。
2022年中考数学试题分类汇编——有理数2

〔2022,重庆〕-5的相反数是〔〕AA .5B .5-C .51D .51- 〔2022,丽水〕在以下四个数中,比0小的数是〔 〕BA . 0.5B. -2 C. 1 D. 3〔2022,丽水〕2008年9月27日,神舟七号航天员翟志刚完成中国历史上第一次太空行走,他相对地球行走了5 100 000米路程,用科学记数法表示为 〔 〕CA .51×105米B .5.1×105米C .5.1×106米D .0.51×107米〔2022,温州〕在0,l ,一2,一3.5这四个数中,是负整数的是( ) BA .0B .1C .一2 D.一3.5〔2022,杭州〕如果0=+b a ,那么a ,b 两个实数一定是 〔 〕 CA.都等于0B.一正一负C.互为相反数D.互为倒数〔2022,湖州〕4的算术平方根是〔 〕 CA .2B .2-C .2±D .16〔2022,湖州〕一粒大米的质量约为0.000021千克,这个数用科学记数法表示为〔 〕CA .40.2110-⨯B .42.110-⨯C .52.110-⨯D .62110-⨯〔2022,湖州〕计算:|3|2--=.1〔2022,嘉兴〕实数x ,y 在数轴上的位置如下列图,那么〔 〕BA .0>>y xB .0>>x yC .0<<y xD .0<<x y 〔2022,嘉兴〕假设3)2(⨯-=x ,那么x 的倒数是〔 〕AA .61-B .61 C .6- D .6 〔2022,嘉兴〕用四舍五入法,精确到0.1,对5.649取近似值的结果是.5.6(2022,宁波)据 宁波市休闲基地和商务会议基地建设五年行动方案 ,预计到2022年,宁波市接待游客容量将到达4640万人,其中4640万用科学记数法可表示为 〔 〕C A .90.46410⨯ B .84.6410⨯ C .74.6410⨯ D .746.410⨯〔2022,衢州〕计算:-2+3 =〔 〕CA .5B .-5C .1D .-1 〔2022,衢州〕据统计,2022年在国际金融危机的强烈冲击下,我国国内生产总值约30067000 000 000元,仍比上年增长9.0%.30067000 000 000元用科学记数法表示为( ) CA .30 067×109元B .300.67×1011元C .3.006 7×1013元D .0.300 67×1014元(第3题) 0xy〔第1题〕〔2022,衢州〕计算:01)=.1〔2022,义乌〕尽管受到国际金融危机的影响,但义乌市经济依然保持了平稳增长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年各地中考数学试题汇编——有理数 一、选择题 1. (2011宁波市,1,3分)下列各数是正整数的是 A.-1 B.2 C.0.5 D.2 【答案】B 2. (2011宁波市,4,3分)据宁波市统计局公布的第六次人口普查数据,本市常住人口760.57万人,其中760.57万人用科学记数法表示为 A. 7.6057×105人 B. 7.6057×106人 C. 7.6057×107人 D. 0.76057×107人 【答案】B 3. (2011广东汕头,1,3分)-2的倒数是( ) A.2 B.-2 C.12 D.12 【答案】D 4. (2011浙江衢州,1,3分)衢州市“十二五”规划纲要指出,力争到2015年,全市农民人均年纯收入超过13000元,数13000用科学记数法可以表示为( ) A.31310 B. 41.310 C. 50.1310 D.213010 【答案】B 5. (2011广东汕头,2,3分)据中新社北京2010年l2月8日电2011年中国粮食总产量达到546 400 000吨,用科学记数法表示为( ) A.75.46410吨 B.85.46410吨 C.95.46410吨 D.105.46410吨 【答案】B 6. (2011浙江绍兴,2,3分)明天数学课要学“勾股定理”,小敏在“百度”搜索引擎中输入“勾股定理”,能搜索到与之相关的结果个数约为12 500 000,这个数用科学记数法表示为( ) A. 51.2510 B.61.2510 C. 71.2510 D. 81.2510 【答案】C 7. (2011浙江省,1,3分)如图,在数轴上点A表示的数可能是( ) A. 1.5 B.-1.5 C.-2.6 D. 2.6 【答案】C 8. (2011浙江省,3,3分)中国是严重缺水的国家之一,人均淡水资源为世界人均量的四分之一,所以我们为中国节水,为世界节水.若每人每天浪费水0.32L,那么100万人每天浪费的水,用科学记数法表示为( ) A.3.2×107L B. 3.2×106L C. 3.2×105L D. 3.2×104L 【答案】C
9. (2011浙江台州,1,4分)在21,0,1,-2这四个数中,最小的数是( ) A. 21 B. 0 C. 1 D. -2 【答案】D 10. (2011浙江义乌,1,3分)-3的绝对值是( )
A.3 B.-3 C.- 13 D.13 【答案】A 11. (2011浙江义乌,5,3分)我市市场交易持续繁荣,市场成交额连续20年居全国各大专业市场榜首. 2011年中国小商品城成交额首次突破450亿元关口.请将数据450亿元用科学记数法表示为(单位:元) ( )
A.4.50×102 B.0.45×103 C.4.50×1010 D.0.45×1011 【答案】C 12. (2011四川重庆,1,4分)在-6,0,3,8 这四个数中,最小的数是( ) A.-6 B.0 C.3 D.8 【答案】A 13. (2011浙江省嘉兴,9,4分)一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是( ) (A)2011 (B)2011 (C)2012 (D)2013
【答案】D 14. (2011浙江丽水,1,3分)下列各组数中,互为相反数的是( )
A.2和-2 B.-2和12 C.-2和-12 D.12和2
(第9题) … … 红 黄 绿 蓝 紫 红 黄 绿 黄 绿 蓝 紫 【答案】A 15. (2011台湾台北,10)在1~45的45个正整数中,先将45的因子全部删除,再将剩下的整数由小到大排 列,求第10个数为何? A.13 B.14 C. 16 D. 17 【答案】B 16. (2011台湾台北,12)已知世运会、亚运会、奥运会分别于公元2009年、2011年、2012年举办。若这三项运动会均每四年举办一次,则这三项运动会均不在下列哪一年举办? A.公元2070年 B.公元2071年 C.公元2072年 D.公元2073年 【答案】B 17. (2011台湾全区,11)图(二)数在线有O、A、B、C、D五点,
根据图中各点所表示的数,判断18在数在线的位置会落在下列哪一线段上?
A.OA B.AB C.BC D.CD 【答案】C 18. (2011江西,1,3分)下列各数中,最小的数是( ).
A.0 B.1 C.-1 D.-2 【答案】D 19. (2011江西,2,3分)根据2011年第六次全国人中普查主要数据公报,江西省常住人口约为4456万人;这个数据可以用科学计数法表示为( ). A.4.456×107人 B.4.456×106人 C.4456×104人
D.4.456×103人 【答案】A 21. (2011福建泉州,3,3分)“天上星星有几颗,7后跟上22个0”,这是国际天文学联合大会上宣布的消息,用科学记数法表示宇宙空间星星颗数为( ). A.2070010 B.23710 C.230.710 D.22710 【答案】D 22. (2011浙江省嘉兴,1,4分) -6的绝对值是( )
(A)-6 (B)6 (C)61 (D)61 【答案】B 23. (2011台湾台北,1) 图(一)数在线的O是原点, A、B、C三点所表示的数分别为a、b、c。根据图中各点的位置, 下列各数的絶对值的比较何者正确? A .|b|<|c| B .|b|>|c| C.|a|<|b| D.|a|>|c| 【答案】A 24. (2011湖南常德,11,3分)我国以2011年11月1日零时为标准记时点,进行了第六次全国人口普查,查得全国总人口约为1 370 000 000人,请将总人口用科学计数法表示为( ) A.81.3710 B. 91.3710 C.101.3710 D. 813.710 【答案】B 25. (2011湖南邵阳,1,3分)-(-2)=( ) A.-2 B. 2 C.±2 D.4 【答案】B 26. (2011广东东莞,1,3分)-2的倒数是( ) A.2 B.-2 C.12 D.12 【答案】D 27. (2011广东东莞,2,3分)据中新社北京2011年l2月8日电2011年中国粮食总产量达到546 400 000吨,用科学记数法表示为( ) A.75.46410吨 B.85.46410吨 C.95.46410吨 D.105.46410吨 【答案】B 28. (2011浙江省舟山,1,3分) -6的绝对值是( ) (A)-6 (B)6 (C)61 (D)61 【答案】B 29. (2011浙江省舟山,9,3分)一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是( ) (A)2011 (B)2011 (C)2012 (D)2013 【答案】D 30. (2011安徽,1,4分)-2,0,2,-3这四个数中最大的是( )
(第9题)
… … 红 黄 绿 蓝 紫 红 黄 绿 黄 绿 蓝 紫 A.2 B.0 C.-2 D.-2 【答案】A 31. (2011安徽,2,4分)安徽省2011年末森林面积为3804.2千公顷,用科学记数法表示3804.2千.正确的是( ) A.3804.2×103 B.380.42×104 C.3.8042×106 D.3.8042×107 【答案】C 32. (2011安徽芜湖,1,4分)8的相反数是( ). A. 8 B. 18 C. 18 D. 8 【答案】D 33. (2011安徽芜湖,2,4分)我们身处在自然环境中,一年接受的宇宙射线及其它天然辐射照射量约为3100微西弗(1西弗等于1000毫西弗,1毫西弗等于1000微西弗),用科学记数法可表示为( ). A.63.110西弗 B.33.110西弗 C.33.110西弗 D.63.110西弗 【答案】C 34. (2011福建福州,1,4分)6的相反数是( ) A.6 B.16 C.6 D. 6 【答案】A 35.(2011福建福州,2,4分)福州地铁将于2014年12月试通车,规划总长约180000米,用科学记数法表示这个总长为( ) A.60.1810米 B.61.810米 C.51.810米 D.41810米 【答案】C 37. (2011广东广州市,6,3分)若a < c < 0 < b ,则abc与0的大小关系是( ). A.abc < 0 B.abc = 0 C.abc > 0 D.无法确定 【答案】C 38. (2011江苏扬州,1,3分)21的相反数是( ) A. 2 B. 21 C. -2 D. 21 【答案】B 40. (2011山东德州3,3分)温家宝总理强调,“十二五”期间,将新建保障性住房36 000 000套,用于解决中低收入和新参加工作的大学生住房的需求.把36 000 000用科学记数法表示应是 A)3.6×107 B)3.6×106 C)36×106 D) 0.36×108 【答案】A
41. (2011山东菏泽,1,3分)-32的倒数是
A.32 B.23 C.32 D.23 【答案】D 42. (2011山东菏泽,2,3分)为了加快3G网络建设,我市电信运营企业将根据各自发展规划,今年预计完成3G投资2800万元左右,将2800万元用科学记数法表示为多少元时,下列记法正确的是 A.2.8×103 B.2.8×106 C.2.8×107 D.2.8×108 【答案】C 43. (2011山东济宁,2,3分)据统计部门报告,我市去年国民生产总值为238 770 000 000元, 那么这个数据用科学记数法表示为( ) A. 2. 3877×10 12元 B. 2. 3877×10 11元 C. 2 3877×10 7元 D. 2387. 7×10 8元 【答案】B 44. (2011山东日照,12,4分)观察图中正方形四个顶点所标的数字规律,可知数2011应标在( )
(A)第502个正方形的左下角 (B)第502个正方形的右下角 (C)第503个正方形的左上角 (D)第503个正方形的右下角 【答案】C
45.(2011山东泰安,1 ,3分)- 45的倒数是( )
A.45 B.54 C.- 45 D.- 54 【答案】D 46. (2011山东泰安,4 ,3分)第六次人口普查公布的数据表明,登记的全国人口数量约为1340 000 000人,这个数据用科学记数法表示为( ) A.134×107人 B.13.4×108 人