气相色谱检测器 的分类和工作原理及应用范围
解析各种检测器的原理、用途和作用

气相色谱仪-检测系统1.热导检测器热导检测器( Thermal coductivity detector,简称TCD ),是应用比拟多的检测器,不管对有机物还是无机气体都有响应。
热导检测器由热导池池体和热敏元件组成。
热敏元件是两根电阻值完全一样的金属丝(钨丝或白金丝),作为两个臂接入惠斯顿电桥中,由恒定的电流加热。
如果热导池只有载气通过,载气从两个热敏元件带走的热量一样,两个热敏元件的温度变化是一样的,其电阻值变化也一样,电桥处于平衡状态。
如果样品混在载气过测量池,由于样号气和载气协热导系数不同,两边带走的热量不相等,热敏元件的温度和阻值也就不同,从而使得电桥失去平衡,记录器上就有信号产生。
这种检测器是一种通用型检测器。
被测物质与载气的热导系数相差愈大,灵敏度也就愈高。
此外,载气流量和热丝温度对灵敏度也有较大的影响。
热丝工作电流增加—倍可使灵敏度提高3—7倍,但是热丝电流过高会造成基线不稳和缩短热丝的寿命。
热导检测器构造简单、稳定性好,对有机物和无机气体都能进展分析,其缺点是灵敏度低。
2.气相色谱仪氢火焰离子化检测器氢火焰离子化检测器(Flame Ionization Detector,FID) 简称氢焰检测器。
它的主要部件是一个用不锈钢制成的离子室。
离子室由收集极、极化极(发射极)、气体入口及火焰喷嘴组成。
在离子室下部,氢气与载气混合后通过喷嘴,再与空气混合点火燃烧,形成氢火焰。
无样品时两极间离子很少,当有机物进入火焰时,发生离子化反响,生成许多离子。
在火焰上方收集极和极化极所形成的静电场作用下,离子流向收集极形成离子流。
离子流经放大、记录即得色谱峰。
有机物在氢火焰中离子化反响的过程如下:当氢和空气燃烧时,进入火焰的有机物发生高温裂解和氧化反响生成自由基,自由基又与氧作用产生离子。
在外加电压作用下,这些离子形成离子流,经放大后被记录下来。
所产生的离子数与单位时间进入火焰的碳原子质量有关,因此,氢焰检测器是一种质量型检测器。
气相色谱仪操作及原理

气相色谱仪操作及原理
气相色谱仪(Gas Chromatograph, GC)是一种常用的色谱分析仪器,广泛应用于化学、环境、食品、药品等领域。
其操作过程主要包括样品进样、气相传递、分离、检测等步骤。
首先,将待分析的样品制备成气体或者气体相溶液,并通过进样口进入气相色谱仪。
进样口处的样品会被注射器吸入到色谱柱的载气(通常为惰性气体,如氢气或氦气)流中。
载气将样品带入色谱柱,色谱柱中填充了一种或多种吸附型物质,称为固定相。
样品组分在固定相上吸附和解吸的速率不同,因而会发生分离。
固定相的种类根据不同的分析需求选择。
接下来,样品组分随着载气流经色谱柱内的固定相,不同的组分会按照其亲、疏吸附性质在固定相中迅速分离,达到各自的平衡状态。
这个过程称为分离。
分离完成后,样品组分进入检测器进行检测。
常见的检测器包括火焰离子化检测器(FID)、热电导检测器(TCD)、质谱
检测器等。
检测器会将样品组分转化为电信号,并将其传递给记录仪或计算机进行分析和处理。
气相色谱仪的原理基于物质在不同固相上的吸附性质不同,通过控制固相类型、流速和温度等参数,可以实现对样品中各种物质的分离和定量分析。
总结起来,气相色谱仪的操作包括样品进样、气相传递、分离
和检测等步骤,其原理是基于吸附分离原理,通过调控条件实现对样品中物质的分离和定量分析。
气相色谱仪工作原理

气相色谱仪工作原理
气相色谱仪是一种常用的分析仪器,它利用样品在气相状态下与移动相(气体载气)相互作用的差异来实现分离和检测。
首先,样品经过前处理步骤后进入气相色谱仪的进样口,然后通过载气进入色谱柱。
色谱柱是气相色谱仪的核心部分,通常是由悬浮在固体支持物上的液态或固态固定液相构成的。
在色谱柱中,样品成分在固定液相上会发生吸附作用。
不同成分的吸附速度不同,导致它们在色谱柱中的停留时间也不同。
这种差异使得组分逐渐分离。
随着时间的推移,组分会从色谱柱中逐个溶出,并通过探测器进行检测。
探测器通常根据样品化学性质的不同,使用不同的测量原理,如导电性、荧光或紫外吸收等。
探测器将信号转化为电信号,然后通过数据系统进行记录和分析。
最后,通过对溶出的各个组分的峰的分析,可以确定样品中各组分的相对含量和种类。
总的来说,气相色谱仪的工作原理可以简单概括为:样品在色谱柱中吸附和脱附,使不同组分逐渐分离,并通过探测器进行检测和分析。
气相色谱仪的结构组成及工作原理

气相色谱仪的结构组成及工作原理该系统由储液器、泵、取样器、色谱柱、检测器和记录器组成。
储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相)内,由于样品溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动时,经过反复多次的吸附-解吸的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器时,样品浓度被转换成电信号传送到记录仪,数据以图谱形式打印出来液相色谱仪主要有进样系统、输液系统、分离系统、检测系统和数据处理系统。
气相色谱仪的组成结构•载气系统:包括气源、气体净化、气体流速控制和测量•进样系统:包括进样器、汽化室(将液体样品瞬间汽化为蒸气)•色谱柱和柱温:包括恒温控制装置(将多组分样品分离为单个)•检测系统:包括检测器,控温装置•记录系统:包括放大器、记录仪、或数据处理装置、工作站气相色谱仪的工作原理是样品中各组分在气相和固定液相之间的分配系数不同。
当蒸发的样品被载气带入色谱柱时,组分在两相之间反复分配。
由于固定相中各组分的吸附或溶解能力不同,色谱柱中各组分的运行速度也不同。
经过一定的柱长后,它们相互分离并离开色谱柱,以便进入检测器。
产生的离子流信号被放大并记录在记录器上。
气相色谱(GC)是一种分离技术。
实际工作中要分析的样品往往是复杂基体中的多组分混合物,对含有未知组分的样品,首先必须将其分离,然后才能对有关组分进行进一步的分析。
混合物的分离是基于组分的物理化学性质的差异,GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离。
待分析样品在汽化室汽化后被惰性气体(即载气,一般是N2、He等)带入色谱柱,柱内含有液体或固体固定相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。
但由于载气是流动的,这种平衡实际上很难建立起来,也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解附,结果在载气中分配浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出。
气相色谱仪热导检测器(TCD)工作原理

热导检测器是目前气相色谱仪上应用的较为广泛的一种通用型检测器,对有机、无机样品均有响应,而且不破坏样品,可用于常量和微量分析。
气相色谱仪热导检测器是用热电阻式传感器组成的一种检测装置,是基于气体热传导原理和热电阻效应。
本检测器的热电阻是采用铼钨丝材料制成的热导元件。
并装在金属(不锈钢或黄铜)热导池池体的气室中,在电路上联接成典型惠斯顿电桥电路。
当热导池气室中流经的载气成份和流量稳定,热导池池体温度恒定,流经钨铼丝热电阻的电流恒定时,热电阻上产生的热能与通过载气热传导到池体等因素所失散的热能相平衡,由钨铼丝热电阻组成的电桥电路就处于平衡状态。
当被测气体组份被载气带入气室时,就发生了一系列的变化:气室中的气体组成变化®混合气体导热系数变化®热电阻温度变化®热电阻阻值变化®电桥平衡被破坏,就输出了相应的电讯号,这个讯号与被测气体浓度成一定的线性函数关系,并由二次讯号记录仪表记录下来,这就是气体分析用热导检测的工作原理。
影响气相色谱仪热导检测器的灵敏度因素很多,其中热导元件的阻值、池体气室的孔径、热导池测量电路等参数都是生产厂家定型设计好的,与用户操作使用直接有关的影响因素有:a.桥电流,桥电流大,灵敏度高,但受稳定性限制,具体设置还要看使用的载气种类和热导池工作温度,应参考热导池给定曲线图。
在满足分析灵敏度条件下,桥电流适当小些,可增加稳定性和延长热导池寿命。
当应用H2气作载气时,桥电流一般使用在80~160mA,当应用Ar作载气时,桥电流一般使用在70~80mA。
b.热导池作温度,温度越高,灵敏度越低,降低工作温度将受到被测样品的沸点和温度控制的限制。
c.载气纯度,载气纯度提高,可提高检测灵敏度。
d.载气流量,载气流量越小,灵敏度越高,这个影响因素在H2、He作载气时不甚明显,而在应用Arn2作载气时影响较明显。
例如Ar 载气流量为7~8ml/min时,比流量为30ml/min时的检测灵敏度有成倍的提高。
色谱检测器的分类介绍

色谱检测器的分类介绍色谱技术是一种常用于化学分析的手段,它主要基于样品分子不同的亲和性和不同的性质,通过分离来满足分析需求。
而色谱检测器的作用则是将色谱分离后的化学物质的特征信息转换为检测信号,在分析过程中起到至关重要的作用。
在实际应用中,不同种类的色谱检测器根据其原理、使用范围以及性能特点等方面进行了分类,本文就对其进行简单介绍。
1.气体色谱检测器气体色谱检测器是一种常用的检测单元,其适用于气相色谱仪中检测许多不同类型的化合物。
常见的气体色谱检测器包括热导检测器、电化学检测器、火焰离子化检测器、热解吸质谱检测器和金属离子检测器等。
①热导检测器:指使用导热率随化合物浓度变化而变化来检测气相色谱中的化合物。
这种检测器可以对大多数非极性有机物具有良好的灵敏度,非常适合于测定有机化合物的含量。
但是,它并不适用于所用化合物具有相似导热率的样品分析。
②电化学检测器:可以检测固体、液体和气体样品中各种有机和无机物质。
在检测器中,分子被氧化或还原成电子,实现了转化。
这样就产生了电流,说明化合物的浓度。
③火焰离子化检测器(FID):是一种常见的检测器,基于金属离子检测器,用于检测有机分子的氢、氧原子含量。
FID在检测硝基芳香化合物、有机酸、醇、酮、醛、烯酮、醚等方面均表现出色。
2.液相色谱检测器液相色谱检测器主要用于测定水相中的有机化学物质,包括药物、农药、天然产物和生物大分子等。
常见的液相色谱检测器包括光学检测器、荧光检测器和电化学检测器等。
①光学检测器:常用的有紫外-可见光谱(UV-Vis)检测器。
光学检测器基于化合物的吸收光谱进行检测。
化合物与特定范围内的光波长吸收。
光学检测器适用于可溶于水或有机溶液的化合物。
②荧光检测器:适用于样品中存在紫外线吸收的化合物,如花生四烯酸(PGA)、苯氧基酸(BOA)、半胱氨酸等,亦适用于对多种细胞色素中荧光团进行判定。
荧光检测器基于一种电离激发分子从基态到激发态上移动,激发态分子有自旋和次态之分,分子在自旋和次态间的跃迁导致荧光发射。
简述气相色谱仪的原理组成及应用

简述气象色谱仪的原理组成及应用气相色谱分析于1952 年出现,经过50 年的发展已成为重要的近代分析手段之一,由于它具有分离效能高,分析速度快,定量结果准,易于自动化等特点;且当其与质谱,计算机结合进行色-质联用分析时,又能对复杂的多组分混合物进行定性和定量分析。
首先我们对气象色谱仪进行探讨:1 气象色谱流程与分离原理气象色谱仪分离的原理:分离原理是气体流动相携带混合物流过色谱柱中的固定相,混合物与固定相发生作用,并在两相间分配。
由于各组分在性质和结构上的差异,发生作用的大小、强弱也有差异,因此不同组分在固定相中滞留时间有长有短,从而按先后不同的次序从固定相中流出,从而达到各组分分离的目的。
气象色谱法的一般流程主要包括三部分:载气系统、色谱柱和检测器。
可用流程方框图表示,如下图:2 气象色谱仪的基本组成和核心部分2.1气路控制系统主要作用是为了保证进样系统、色谱柱系统和检测器的正常工作提供稳定的载气和有关检测器必须的燃气、助燃气以及辅助气体,气路控制系统的好坏将直接影响仪器的分离效率、灵敏度和稳定性,从而将直接影响定性定量的准确性。
气路控制系统主要由开关阀、稳定阀、针型阀、压力表、电子流量计等部件组成。
2.3 色谱柱和柱箱色谱柱的作用就是分离混合物样品中的有关组分。
是色谱分析的关键部分,主要有填充柱和毛细柱两大类。
色谱柱选用的正确与否,将直接影响分离的效率、稳定性和检测灵敏度。
柱箱就是装接和容纳各种色谱柱的精密控温的炉箱,是色谱仪的重要组成部分之一,柱箱结构设计的合理与否,将直接影响整体性能。
2.4 检测器检测器是气象色谱仪的心脏部分,它的功能就是把随载气流出色谱柱的各种组分进行非电量转换,将组分转变为电信号,便于记录测量的处理。
检测器的性能直接影响整机仪器的性能,主要影响稳定性和灵敏度,检测器的性能也决定了该仪器的应用范围。
一般色谱仪的检测器都有热导检测器和氢焰检测器:A 热导检测器的原理:气体具有热导作用,不同物质具有不同的热导系数,热导检测器就是根据不同物质热导系数的差别而设计的,它对有机、无机样品均匀响应,而不破坏样品,可用于常量分析。
色谱仪(气相检测)

第三章色谱仪(3.2.1)3.1 各种色谱仪流程及主要部件1. 气相色谱仪流程2. 高效液相色谱仪流程及其主要部件3.离子色谱仪4. 超临界流体色谱仪(SFC)5. 毛细管电泳仪3.2 气相色谱检测器一、检测器特性1.检测器类型2.检测器性能评价指标二、检测器工作原理及其应用1. 热导池检测器(TCD)2. 氢焰离子化检测器(FID)3. 氮磷检测器NPD(热离子化检测器TID)4. 火焰光度检测器(FPD)(flame photometric detector)5. 电子俘获检测器(electron capture detector ECD)6. 多检测器组合3.3 高效液相色谱检测器第三章色谱仪3.2 气相色谱检测器工作原理及其应用一、检测器特性1.检测器类型按样品破坏与否分:破坏型检测器:组分在检测过程中其分子形式被破坏,为破坏型检测器,如FID、NPD、FPD等;非破坏型检测器:组分在检测过程中仍保持其分子形式,为非破坏型检测器,如TCD等。
按响应值与浓度还是质量有关可分为:浓度型检测器:测量的是载气中通过检测器组分浓度瞬间的变化,检测信号值与组分的浓度成正比。
如:TCD;ECD;其峰高正比于流出组分的浓度,进样量一定时,峰高基本上与流速无关,峰面积与流速成反比,即改变载气速度时只是改变了组分通过检测器的速度,改变了其半峰宽,其浓度不变,峰高不变;质量型检测器:测量的是载气中某组分进入检测器的速度变化,即检测信号值与单位时间内进入检测器组分的质量成正比。
如:FID,NPD、FPD等;峰高随载气流速的增加而增大,当组分量一定时,在一定的载气流量范围内,改变载气流速时,改变了单位时间内进入检测器的组分量,流速越快峰越窄越高,但峰面积保持常数。
按不同类型化合物响应值的大小分:通用型检测器:TCD;检测器对不同化合物的响应值基本相当;专用型检测器:ECD;2.检测器性能评价指标●噪声与漂移:要求无组分通过时稳定而无波动;●灵敏度与检测限:要求痕量组分通过就有响应;●通用性与选择性:在某些情况下希望对进入检测器的所有组分均有响应,而在另一些情况下,希望仅对某种化合物有响应;●希望保持高效毛细管柱的分离效能,就有柱后谱带不变宽的要求;●希望谱带快速通过检测器时,峰形不失真,就有检测器的响应时间的要求;●响应因子、线性和线性范围:为了定量准确可靠灵敏度与检测限响应值(或灵敏度)S:在一定范围内,信号E与进入检测器的物质质量m呈线性关系:E = S mS = E / m单位:mV/(mg / cm3);(浓度型检测器)mV /(mg / s);(质量型检测器)S表示单位质量的物质通过检测器时,产生的响应信号的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气相色谱检测器的分类和工作原理及应用范围
待测组分经色谱柱分离后,通过检测器将各组分的浓度或质量转变成相应的电信号,经放大器放大后,由记录仪或微处理机得到色谱图,根据色谱图对待测组分进行定性和定量分析。
气相色谱监测器根据其测定范围可分为:
通用型检测器:对绝大多数物质够有响应;
选择型检测器:只对某些物质有响应;对其它物质无响应或很小。
根据检测器的输出信号与组分含量间的关系不同,可分为:
浓度型检测器:测量载气中组分浓度的瞬间变化,检测器的响应值与组分在载气中的浓度成正比,与单位时间内组分进入检测器的质量无关。
质量型检测器:测量载气中某组分进入检测器的质量流速变化,即检测器的响应值与单位时间内进人检测器某组分的质量成正比
目前已有几十种检测器,其中最常用的是热导池检测器、电子捕获检测器(浓度型);火焰离子化检测器、火焰光度检测器(质量型)和氮磷检测器等。
一.检测器的性能指标——灵敏度(高)、稳定性(好)、响应(快)、线性范围(宽)
(一)灵敏度——应答值
单位物质量通过检测器时产生的信号大小称为检测器对该物质的灵敏度。
响应信号(R)—进样量(Q)作图,可得到通过原点的直线,该直线的斜率就是检测器的灵敏度,以S 表示:
(3)
由此可知:灵敏度是响应信号对进入检测器的被测物质质量的变化率。
气相色谱检测器的灵敏度的单位,随检测器的类型和试样的状态不同而异:
对于浓度型检测器:
当试样为液体时,S的单位为mV·ml/mg,即1mL载气中携带1mg的某组分通过检测器时产生的mV数;
当试样为气体时,S的单位为mV·ml/ml,即1ml载气中携带1ml的某组分通过检测器时产生的mV数;
对于质量型检测器:当试样为液体和气体时,S的单位均为:mV·s/g,即每
秒钟有1g的组分被载气携带通过检测器所产生的mV数。
灵敏度不能全面地表明一个检测器的优劣,因为它没有反映检测器的噪音水平。
由于信号可以被放大器任意放大,S增大的同时噪声也相应增大,因此,仅用S不能正确评价检测器的性能。
(二)检测限(敏感度)
噪声——当只有载气通过检测器时,记录仪上的基线波动称为噪声,以RN 表示。
噪声大,表明检测器的稳定性差。
检测限——是指检测器产生的信号恰是噪声的二倍(2RN)时,单位体积或单位时间内进入检测器的组分质量,以D 表示。
灵敏度、噪声、检测限三者之间的关系为:
(4)
检测限的单位:对于浓度型检测器为mg/ml或ml/ml;对质量型检测器为:g/s。
检测限是检测器的重要性能指标,它表示检测器所能检出的最小组分量,主要受灵敏度和噪声影响。
D 越小,表明检测器越敏感,用于痕量分析的性能越好。
在实际分析中,由于进入检测器的组分量很难确定(检测器总是处在与气化室、色谱柱、记录系统等构成的一个完整的色谱体系中)。
所以常用最低检出量表示:
图2 检测器噪声
(三)最低检出量——恰能产生2倍噪声信号时的色谱进样量,以Q0 表示。
(三)线性范围
检测器的线性范围是指其响应信号与被测组分进样质量或浓度呈线性关系的范围。
通常用最大允许进样量QM与最小检出量Q0的比值来表示。
比值越大,检测器的线性范围越宽,表明试样中的大量组分或微量组分,检测器都能准确测定。
二.(氢)火焰离子化检测器
火焰离子化检测器是根据气体的导电率是与该气体中所含带电离子的浓度呈正比这一事实而设计的。
一般情况下,组分蒸汽不导电,但在能源作用下,组分蒸汽可被电离生成带电离子而导电。
1. 火焰离子化检测器的结构:该检测器主要是由离子室、离子头和气体供应三部分组成。
结构示意图见下图。
图3 火焰离子化检测器
离子室是一金属圆筒,气体入口在离子室的底部,氢气和载气按一定的比例混合后,由喷嘴喷出,再与助燃气空气混合,点燃形成氢火焰。
靠近火焰喷嘴处有一圆环状的发射极(通常是由铂丝作成),喷嘴的上方为一加有恒定电压(+300V)的
圆筒形收集极(不锈钢制成),形成静电场,从而使火焰中生成的带电离子能被对应的电极所吸引而产生电流。
2. 火焰离子化检测器的工作原理
由色谱柱流出的载气(样品)流经温度高达2100℃的氢火焰时,待测有机物组分在火焰中发生离子化作用,使两个电极之间出现一定量的正、负离子,在电场的作用下,正、负离子各被相应电极所收集。
当载气中不含待测物时,火焰中离子很少,即基流很小,约10-14A。
当待测有机物通过检测器时,火焰中电离的离子增多,电流增大(但很微弱10-8~10-12A)。
需经高电阻(108~l011)后得到较大的电压信号,再由放大器放大,才能在记录仪上显示出足够大的色谱峰。
该电流的大小,在一定范围内与单位时间内进入检测器的待测组分的质量成正比,所以火焰离子化检测器是质量型检测器。
火焰离子化检测器对电离势低于H2的有机物产生响应,而对无机物、久性气体和水基本上无响应,所以火焰离子化检测器只能分析有机物(含碳化合物),不适于分析惰性气体、空气、水、CO、CO2、CS2、NO、SO2及H2S等。
三.电子捕获检测器
1.电子捕获检测器的结构:早期电子捕获检测器由两个平行电极制成。
现多用放射性同轴电极。
在检测器池体内,装有一个不锈钢棒作为正极,一个圆筒状-放射源(3H、63Ni)作负极,两极间施加流电或脉冲电压。
图4 电子捕获检测器
2. 电子捕获检测器的工作原理
当纯载气(通常用高纯N2)进入检测室时,受射线照射,电离产生正离子(N2+)和电子e-,生成的正离子和电子在电场作用下分别向两极运动,形成约10-8A的电流——基流。
加入样品后,若样品中含有某中电负性强的元素即易于电子结合的分子时,就会捕获这些低能电子,产生带负电荷阴离子(电子捕获)这些阴离子和载气电离生成的正离子结合生成中性化合物,被载气带出检测室外,从而使基流降低,产生负信号,形成倒峰。
倒峰大小(高低)与组分浓度呈正比,因此,电子捕获检测器是浓度型的检测器。
其最小检测浓度可达10-14g/ml,线性范围为103左右。
电子捕获检测器是一种高选择性检测器。
高选择性是指只对含有电负性强的元素的物质,如含有卤素、S、P、N等的化合物等有响应.物质电负性越强,检测灵敏度越高。
四. 火焰光度检测器
火焰光度检测器是利用在一定外界条件下(即在富氢条件下燃烧)促使一些物质产生化学发光,通过波长选择、光信号接收,经放大把物质及其含量和特征的信号联系起来的一个装置。
1.火焰光度检测器的结构
燃烧室、单色器、光电倍增管、石英片(保护滤光片)及电源和放大器等。
图5 火焰光度检测器
2. 工作原理
当含S、P化合物进入氢焰离子室时,在富氢焰中燃烧,有机含硫化合物首先氧化成SO2,被氢还原成S原子后生成激发态的S2*分子,当其回到基态时,发射出350~430nm的特征分子光谱,最大吸收波长为394nm。
通过相应的滤光片,由光电倍增管接收,经放大后由记录仪记录其色谱峰。
此检测器对含S化合物不成线性关系而呈对数关系(与含S化合物浓度的平方根成正比)。
当含磷化合物氧化成磷的氧化物,被富氢焰中的H还原成HPO裂片,此裂片被激发后发射出480~600nm的特征分子光谱,最大吸收波长为526nm。
因发射光的强度(响应信号)正比于HPO浓度。