专升本线性代数试题及答案
专升本《线性代数》_试卷_答案

专升本《线性代数》一、(共12题,共150分)
1. 计算下列行列式(10分)
标准答案:
2. 已知,计算(12分)
标准答案:
3. 设均为n阶矩阵,且可逆,证明相似. (14分)
标准答案:,故相似
4. 求一正交变换,将二次型化成标准型. (14分)
标准答案:
5. 已知,求(12分)
标准答案:6. 设矩阵A和B满足,其中,求B (12分)
标准答案:
7. 解线性方程组(14分)
标准答案:
8. 判断下列向量组是线性相关还是线性无关?
(12分)
标准答案:线性相关.可用三种方法:用三阶行列式;用定义及线性方程组;用矩阵的初等行变换.
9. 已知求(12分)
标准答案:
10. 已知,其中求A (12分)
标准答案:
11. 解下列线性方程组(14分)
标准答案:
12. 判断下列向量组是线性相关还是线性无关?
(12分)
标准答案:线性相关.可用三种方法:用三阶行列式;用定义及线性方程组;用矩阵的初等行变换.。
(完整word版)线性代数试题及答案

线性代数习题和答案第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分。
1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。
线性代数考试题及答案

线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,线性无关的向量集合的最小维度是:A. 1B. 2C. 3D. 向量的数量答案:D2. 矩阵A的行列式为0,这意味着:A. A是可逆矩阵B. A不是可逆矩阵C. A的所有行向量线性相关D. A的所有列向量线性无关答案:B3. 线性变换T: R^3 → R^3,由矩阵[1 2 3; 4 5 6; 7 8 9]表示,其特征值是:A. 1, 2, 3B. 0, 1, 2C. -1, 1, 2D. 0, 3, 6答案:D4. 矩阵A与矩阵B相乘,结果矩阵的秩最多是:A. A的秩B. B的秩C. A和B的秩之和D. A的秩和B的列数中较小的一个答案:D5. 给定两个向量v1和v2,它们的点积v1·v2 > 0,这意味着:A. v1和v2垂直B. v1和v2平行或共线C. v1和v2的夹角小于90度D. v1和v2的夹角大于90度答案:C6. 对于任意矩阵A,下列哪个矩阵总是存在的:A. 伴随矩阵B. 逆矩阵C. 转置矩阵D. 特征矩阵答案:C7. 线性方程组AX=B有唯一解的充分必要条件是:A. A是方阵B. A的行列式不为0C. B是零向量D. A是可逆矩阵答案:D8. 矩阵的特征值和特征向量之间的关系是:A. 特征向量对应于特征值B. 特征值对应于特征向量C. 特征向量是矩阵的行向量D. 特征值是矩阵的对角元素答案:A9. 一个矩阵的迹(trace)是:A. 所有元素的和B. 主对角线上元素的和C. 所有行的和D. 所有列的和答案:B10. 矩阵的范数有很多种,其中最常见的是:A. L1范数B. L2范数C. 无穷范数D. 所有上述范数答案:D二、简答题(每题10分,共20分)1. 请解释什么是基(Basis)以及它在向量空间中的作用是什么?答:基是向量空间中的一组线性无关的向量,它们通过线性组合可以表示空间中的任何向量。
(完整版)线性代数试题和答案精选版

线性代数习题和答案第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出の四个选项中只有一个是符合题目要求の,请将其代码填在题后の括号内.错选或未选均无分。
1。
设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于( )A. m+n B。
—(m+n) C。
n—m D. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A。
130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C。
13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是Aの伴随矩阵,则A *中位于(1,2)の元素是( )A。
–6 B。
6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有( )A. A =0B。
B≠C时A=0C. A≠0时B=C D。
|A|≠0时B=C5.已知3×4矩阵Aの行向量组线性无关,则秩(A T)等于( )A. 1B. 2C. 3D. 46。
设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A。
有不全为0の数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0の数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C。
有不全为0の数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0の数λ1,λ2,…,λs和不全为0の数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵Aの秩为r,则A中()A。
所有r-1阶子式都不为0 B。
线性代数(专升本) 期末考试试题及参考答案

线性代数练习与答案一、填空题:1、 排列13582467的逆序数为 7 。
2、 若排列21i36j87为偶排列,则i=(4),j=(5)3、 行列式33215321--中,元素a 12的代数余子式为15. 4、 设行列式33333322222211111123332221111a c c b b a a c c b b a a c c b b a D ,c b a c b a c b a D +++++++++==,则D 1与D 2的关系为D 2=2D 1。
5、 设方阵A 的行列式2113354411423123355554321|A |=,则A 31+2A 32+3A 33+4A 34+5A 35=(0)。
5、设⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--=200123411C ,112301B ,1210121A则(A+B)C=⎪⎪⎭⎫ ⎝⎛--30221046 6、设A=21(B+E),则当且仅当B 2=(E )时,A 2=A 。
解:A 2=A ⇔41(B 2+2B+E)=21(B+E)⇔B 2+2B+E=2B+2E ⇔B 2=E7、矩阵⎪⎪⎪⎭⎫ ⎝⎛--651112105321的秩为 2 。
8、若A 为n 阶可逆矩阵,则R(A)= n 。
9、向量组α1=(1,1,1,1),α2=(1,0,2,2),α3=(2,3,1,1)的线性相关性为线性相关.10、向量组α1=(1,2,0,0),α2=(1,2,3,4),α3=(3,6,0,0)的极大线性无关组为α1,α2或α2,α3 11、n 元齐次线性方程组Ax=0,当|A|≠0时,方程组的解的情况为只有零解. 12、设A 为n 阶方阵,若R(A)=n-2,则AX=0的基础解析所含解向量的个数为(2) 解:n-(n-2)=213、非齐次线性方程组AX=b(A 为m ×n 矩阵)有唯一解的充要条件是R(A)=R(B)=n ;有无穷多个解的充要条件是R(A)=R(B)<n 。
线性代数考试题及答案

线性代数考试题及答案一、单项选择题(每题2分,共10分)1. 矩阵A的行列式为0,则矩阵A是:A. 可逆的B. 不可逆的C. 正定的D. 负定的答案:B2. 若向量组\( \alpha_1, \alpha_2, \ldots, \alpha_n \)线性相关,则:A. 存在不全为0的实数k1, k2, ..., kn,使得k1\( \alpha_1 +k2\alpha_2 + \ldots + k_n\alpha_n = 0 \)B. 所有向量都为零向量C. 存在不全为0的实数k1, k2, ..., kn,使得k1\( \alpha_1 +k2\alpha_2 + \ldots + k_n\alpha_n \)是零向量D. 所有向量都为非零向量答案:A3. 矩阵A和B的乘积AB等于零矩阵,则:A. A和B都是零矩阵B. A和B中至少有一个是零矩阵C. A和B的秩之和小于A的列数D. A和B的秩之和小于B的行数答案:C4. 向量组\( \beta_1, \beta_2, \ldots, \beta_m \)可以由向量组\( \alpha_1, \alpha_2, \ldots, \alpha_n \)线性表示,则:A. m > nB. m ≤ nC. m ≥ nD. m < n答案:B5. 若矩阵A和B合同,则:A. A和B具有相同的行列式B. A和B具有相同的秩C. A和B具有相同的特征值D. A和B具有相同的迹答案:B二、填空题(每题3分,共15分)1. 若矩阵A的特征值为λ,则矩阵A^T的特征值为______。
答案:λ2. 若矩阵A可逆,则矩阵A的行列式|A|与矩阵A^-1的行列式|A^-1|满足关系|A^-1|=______。
答案:1/|A|3. 若向量组\( \alpha_1, \alpha_2 \)线性无关,则由这两个向量构成的矩阵的秩为______。
答案:24. 矩阵A的秩为r,则矩阵A的零空间的维数为______。
线性代数(专升本)综合测试1

单选题1. 若行列式,则_____.(5分)(A) :(B) :(C) :(D) :参考答案:B2. 对任意同阶方阵,下列说法正确的是_____.(5分)(A) :(B) :(C) :(D) :参考答案:C3. 设可逆,则的解是_____.(5分)(A) :(B) :(C) :(D) : 不存在参考答案:B4. 若向量组线性相关,则它的部分向量组是_____.(5分)(A) : 线性相关(B) : 线性无关(C) : 或者线性相关,或者线性无关(D) : 既不线性相关,也不线性无关参考答案:C5. 若阶方阵不可逆,则必有_____.(5分)(A) :(B) : 0为的一个特征值(C) : 秩(D) :参考答案:B填空题6. ,,且,则___(1)___ .(5分)(1). 参考答案: -47. 阶方阵的个特征值互不相同是与对角矩阵相似的___(2)___ 条件(5分) (1). 参考答案: 充分问答题8. 计算行列式:. (10分)参考答案:先提出各列的公因子,再利用展开法则得到原式.解题思路:9. 解矩阵方程,求,其中.(10分)参考答案:解答,解题思路:10. 设阶方阵满足关系式,证明可逆,并写出的表达式.(10分)参考答案:因为,通过移项与提取公因子得从而由可逆定义知可逆,并且.解题思路:11. 论线性方程组的解的结构与计算无论是在科学研究领域,还是在工程技术应用中,大量的问题可以归结为线性方程组的求解,因此研究线性方程组的求解问题是线性代数的一个重要内容.(1)请描述齐次线性方程组AX=0的解的结构定理(即什么条件下只有唯一的零解?什么条件下有无穷多组非零解,此时的非零解由什么组成?)(2)请描述非齐次线性方程组AX=b的解的结构定理( 即利用系数矩阵与增广矩阵的秩的关系,给出在:什么条件下无解?什么条件下有唯一解?什么条件下有无穷多组解,此时的解由哪两部分组成?)(3)请利用齐次线性方程组与非齐次线性方程组的解的结构定理讨论:若齐次线性方程组AX=0有无穷多组解,则非齐次线性方程组AX=b是否也必有无穷多组解?(15分)参考答案:(1)设有n元齐次线性方程组AX=0 ,则它的解的结构定理是:当秩R(A)=n时,方程组只有唯一的零解;当秩R(A)=r<n时,方程组有无穷多组非零解.此时所有的解构成解空间,解空间中存在着n-r个线性无关的解向量,构成基础解系,方程组中的每一个解均可表为基础解系的一个线性组合.(2)对于n元非齐次线性方程组AX=b而言:当系数矩阵的秩R(A)=增广矩阵的秩R (Ab)时,方程组有解;当R(A)≠R(Ab)时,方程组无解.且R(A)=R(Ab)=n时有惟一解,R(A)=R(Ab)<n时有无穷多解;此时AX=b的通解由齐次通解与非齐次特解相加构成.(3)答案是不一定必有无穷多组解.由解的结构定理可知,AX=0有无穷多解,则其秩必有R(A)=r<n,但仅此并不能保证AX=b有无穷多组解,因为不能保证R(A)=R(A b),所以非齐次线性方程AX=b也可能无解.解题思路:由线性方程组的解的结构定理,描述及应用12. 论特征值与特征向量(1) 设A为n阶方阵,是A的特征值,x是A的关于的特征向量,则A、、x必须满足什么条件?应如何求得?(2) n阶方阵A必有n个特征值:,则这n个特征值必须满足哪两条性质?(3) 两个n阶方阵A与B相似的定义是什么?它们的特征值之间有什么关系?方阵A与一个对角矩阵相似通常需要满足哪些条件(条件不止1个,任意写出1条即可)?(20分)参考答案:解答要点(1)特征值与特征值向量必须满足关系式;并且是通过解特征多项式求出所有的特征值,通过解线性方程组求出所有的特征向量;(2) 阶方阵必有个特征值,这个特征值必须满足两条性质:①,②。
(完整版)线性代数试题和答案(精选版)

线性代数习题和答案第一部分选择题 (共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出の四个选项中只有一个是符合题目要求の,请将其代码填在题后の括号内。
错选或未选均无分。
1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于( )A。
m+n B. —(m+n) C. n-m D. m—n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A。
130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C。
13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D。
120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3。
设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是Aの伴随矩阵,则A *中位于(1,2)の元素是()A. –6 B。
6C。
2 D. –24。
设A是方阵,如有矩阵关系式AB=AC,则必有( )A。
A =0 B. B≠C时A=0C. A≠0时B=C D。
|A|≠0时B=C5。
已知3×4矩阵Aの行向量组线性无关,则秩(A T)等于( )A. 1 B。
2C。
3 D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则( )A。
有不全为0の数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0の数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0の数λ1,λ2,…,λs使λ1(α1—β1)+λ2(α2—β2)+…+λs(αs-βs)=0D。
有不全为0の数λ1,λ2,…,λs和不全为0の数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07。
设矩阵Aの秩为r,则A中( )A.所有r-1阶子式都不为0B.所有r—1阶子式全为0C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分选择题(共28分)
一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有
一个是符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分。
1.设行列式a a
a a
1112
2122
=m,
a a
a a
1311
2321
=n,则行列式
a a a
a a a
111213
212223
+
+
等于()
A. m+n
B. -(m+n)
C. n-m
D. m-n
2.设矩阵A=
100
020
003
⎛
⎝
⎫
⎭
⎪
⎪
⎪
,则A-1等于()
A.
1
3
00
1
2
001
⎛
⎝
⎫
⎭
⎪
⎪
⎪
⎪
⎪
⎪
B.
100
1
2
00
1
3
⎛
⎝
⎫
⎭
⎪
⎪
⎪
⎪
⎪⎪
C.
1
3
00
010
00
1
2
⎛
⎝
⎫
⎭
⎪
⎪
⎪
⎪⎪
D.
1
2
00
1
3
001
⎛
⎝
⎫
⎭
⎪
⎪
⎪
⎪
⎪
⎪
3.设矩阵A=
312
101
214
-
-
-
⎛
⎝
⎫
⎭
⎪
⎪
⎪
,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()
A. –6
B. 6
C. 2
D. –2
4.设A是方阵,如有矩阵关系式AB=AC,则必有()
A. A =0
B. B≠C时A=0
C. A≠0时B=C
D. |A|≠0时B=C
5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于( C )
A. 1
B. 2
C. 3
D. 4
6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()
A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0
B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0
C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0
D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+
λsαs=0和μ1β1+μ2β2+…+μsβs=0
7.设矩阵A的秩为r,则A中()
A.所有r-1阶子式都不为0
B.所有r-1阶子式全为0
C.至少有一个r阶子式不等于0
D.所有r阶子式都不为0
8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()
A.η1+η2是Ax=0的一个解
B.1
2
η1+
1
2
η2是Ax=b的一个解
C.η1-η2是Ax=0的一个解
D.2η1-η2是Ax=b的一个解
9.设n阶方阵A不可逆,则必有()
A.秩(A)<n
B.秩(A)=n-1
C.A=0
D.方程组Ax=0只有零解
10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()
A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量
B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值
C.A的2个不同的特征值可以有同一个特征向量
D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,
λ3的特征向量,则α1,α2,α3有可能线性相关
11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必
有(A )
A. k≤3
B. k<3
C. k=3
D. k>3
12.设A是正交矩阵,则下列结论错误的是()还可以是-1
A.|A|2必为1
B.|A|必为1
C.A-1=A T
D.A的行(列)向量组是正交单位向量组
13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()
A.A与B相似
B. A与B不等价
C. A与B有相同的特征值
D. A与B合同
14.下列矩阵中是正定矩阵的为()
A.
23
34
⎛
⎝
⎫
⎭
⎪ B.
34
26
⎛
⎝
⎫
⎭
⎪
C.
100
023
035
-
-
⎛
⎝
⎫
⎭
⎪
⎪
⎪
D.
111
120
102
⎛
⎝
⎫
⎭
⎪
⎪
⎪
第二部分非选择题(共72分)
二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每
小题的空格内。
错填或不填均无分。
15.111
356
92536
= 6 .
16.设A=
1
1
1
1
1
1
-
-
⎛
⎝
⎫
⎭
⎪,B=
1
1
2
2
3
4
--
⎛
⎝
⎫
⎭
⎪.则A+2B= .
17.设A=(a ij)3×3,|A|=2,A ij表示|A|中元素a ij的代数余子式(i,j=1,2,3),则
(a11A21+a12A22+a13A23)2+(a21A21+a22A22+a23A23)2+(a31A21+a32A22+a33A23)2= 4 .
18.设向量(2,-3,5)与向量(-4,6,a)线性相关,则a= -10 .
19.设A是3×4矩阵,其秩为3,若η1,η2为非齐次线性方程组Ax=b的2个不同的解,则它
的通解为.
20.设A是m×n矩阵,A的秩为r(<n),则齐次线性方程组Ax=0的一个基础解系中含有解的个
数为n-r .
21.设向量α、β的长度依次为2和3,则向量α+β与α-β的内积(α+β,α-β)= .
22.设3阶矩阵A的行列式|A|=8,已知A有2个特征值-1和4,则另一特征值为-2 .。