(完整版)平面向量直角坐标运算习题.doc
平面向量练习题(附答案)

平面向量练习题(一)一.填空题。
1.BA CD DB AC +++等于________.2.若向量a =(3,2),b =(0,-1),则向量2b -a 的坐标是________.3.平面上有三个点A (1,3),B (2,2),C (7,x ),若∠ABC=90°,则x 的值为________.4.向量a 、b 满足|a |=1,|b |=2,(a +b )⊥(2a -b ),则向量a 与b 的夹角为________.5.已知向量a =(1,2),b =(3,1),那么向量2a -21b 的坐标是_________.6.已知A (-1,2),B (2,4),C (4,-3),D (x ,1),若AB 与CD 共线,则|BD |的值等于________.7.将点A (2,4)按向量a =(-5,-2)平移后,所得到的对应点A ′的坐标是______.8.已知a=(1,-2),b=(1,x),若a ⊥b,则x 等于______9. 已知向量a,b 的夹角为 120,且|a|=2,|b|=5,则(2a-b )·a=______10. 设a=(2,-3),b=(x,2x),且3a·b=4,则x 等于_____11. 已知BC CD y x BC AB 且),3,2(),,(),1,6(--===∥DA ,则x+2y 的值为_____ 12.已知向量a+3b,a-4b 分别与7a-5b,7a-2b 垂直,且|a|≠0,|b|≠0,则a 与b 的夹角为____13. 在△ABC 中,O 为中线AM 上的一个动点,若AM=2,则()OA OB OC +的最小值是.14.将圆222=+y x 按向量v =(2,1)平移后,与直线0=++λy x 相切,则λ的值为. 二.解答题。
1.设平面三点A (1,0),B (0,1),C (2,5).(1)试求向量2AB +AC 的模; (2)试求向量AB 与AC 的夹角;(3)试求与BC 垂直的单位向量的坐标.2.已知向量a =(θθcos ,sin )(R ∈θ),b =(3,3)(1)当θ为何值时,向量a 、b 不能作为平面向量的一组基底(2)求|a -b |的取值范围3.已知向量a 、b 是两个非零向量,当a +t b (t ∈R)的模取最小值时,(1)求t 的值(2)已知a 、b 共线同向时,求证b 与a +t b 垂直4.设向量)2,1(),1,3(-==OB OA ,向量OC 垂直于向量OB ,向量BC 平行于OA ,试求OD OC OA OD ,时=+的坐标.5.将函数y=-x 2进行平移,使得到的图形与函数y=x 2-x -2的图象的两个交点关于原点对称.(如图)求平移向量a 及平移后的函数解析式.6.已知平面向量).23,21(),1,3(=-=b a 若存在不同时为零的实数k 和t,使.,,)3(2y x b t a k y b t a x ⊥+-=-+=且(1)试求函数关系式k =f (t )(2)求使f (t )>0的t 的取值范围.参考答案 1.02.(-3,-4)3.74.90° (21,321). 6.73.7.(-3,2).8.-29.12 10.31-11.012.90°13.2-14.51--或(1)∵AB =(0-1,1-0)=(-1,1),AC =(2-1,5-0)=(1,5).∴ 2AB +AC =2(-1,1)+(1,5)=(-1,7).∴ |2AB +AC |=227)1(+-=50.(2)∵ |AB |=221)1(+-=2.|AC |=2251+=26,AB ·AC =(-1)×1+1×5=4. ∴ cos θ=||||AC AB ACAB ⋅=2624⋅=13132. (3)设所求向量为m =(x ,y ),则x 2+y 2=1.① 又BC =(2-0,5-1)=(2,4),由BC ⊥m ,得2 x +4 y =0.② 由①、②,得⎪⎪⎩⎪⎪⎨⎧-==.55552y x 或⎪⎪⎩⎪⎪⎨⎧==.-55552y x ∴(552,-55)或(-552,55)即为所求.13.【解】(1)要使向量a 、b 不能作为平面向量的一组基底,则向量a 、b 共线 ∴33tan 0cos 3sin 3=⇒=-θθθ 故)(6Z k k ∈+=ππθ,即当)(6Z k k ∈+=ππθ时,向量a 、b 不能作为平面向量的一组基底(2))cos 3sin 3(213)3(cos )3(sin ||22θθθθ+-=-+-=-b a 而32cos 3sin 332≤+≤-θθ ∴132||132+≤-≤-b a14.【解】(1)由2222||2||)(a bt a t b tb a +⋅+=+ 当的夹角)与是b a b a b b a t αα(cos ||||||222-=⋅-=时a+tb(t ∈R)的模取最小值(2)当a 、b 共线同向时,则0=α,此时||||b a t -=∴0||||||||||||)(2=-=-⋅=+⋅=+⋅b a a b b a a b tb a b tb a b ∴b ⊥(a +t b )18.解:设020),,(=-=⋅∴⊥=x y OB OC OBOC y x OC ① 又0)1()2(3)2,1(,//=+---+=x y y x BC OA BC 即:73=-x y ②联立①、②得⎩⎨⎧==7,14y x ………10分)6,11(),7,14(=-==∴OA OC OD OC 于是.19.解法一:设平移公式为⎩⎨⎧-'=-'=k y y h x x 代入2x y -=,得到k h hx x y h x k y +-+-=-'-=-'2222.)(即,把它与22--=x x y 联立, 得⎪⎩⎪⎨⎧--=+-+-=22222x x y k h hx x y设图形的交点为(x 1,y 1),(x 2,y 2),由已知它们关于原点对称,即有:⎩⎨⎧-=-=2121y y x x 由方程组消去y 得:02)21(222=++-+-k h x h x . 由.2102212121-==++=+h x x h x x 得且又将(11,y x ),),(22y x 分别代入①②两式并相加,得:.22221222121-+--++-=+k h x hx x x y y 241)())((0211212-+-+-+-=∴k x x x x x x . 解得)49,21(.49-==a k . 平移公式为:⎪⎪⎩⎪⎪⎨⎧-'=+'=4921y y x x 代入2x y -=得:22+--=x x y .解法二:由题意和平移后的图形与22--=x x y 交点关于原点对称,可知该图形上所有点都可以找到关于原点的对称点在另一图形上,因此只要找到特征点即可.22--=x x y 的顶点为)49,21(-,它关于原点的对称点为(49,21-),即是新图形的顶点.由于新图形由2x y -=平移得到,所以平移向量为49049,21021=-=-=--=k h 以下同解法一.20.解:(1).0)(])3[(.0,2=+-⋅-+=⋅∴⊥b t a k b t a y x y x 即 ).3(41,0)3(4,1,4,02222-==-+-∴===⋅t t k t t k b a b a 即 (2)由f (t )>0,得.303,0)3()3(,0)3(412><<-->+>-t t t t t t t 或则即。
高中数学6.3《平面向量基本定理及坐标表示》基础过关练习题

第六章 6.3 6.3.2 6.3.3 6.3.4A 级——基础过关练1.给出下面几种说法: ①相等向量的坐标相同;②平面上一个向量对应于平面上唯一的坐标; ③一个坐标对应于唯一的一个向量;④平面上一个点与以原点为始点、该点为终点的向量一一对应. 其中正确说法的个数是( ) A .1 B .2 C .3D .4【答案】C 【解析】由向量坐标的定义不难看出一个坐标可对应无数个相等的向量,故③错误.2.设i ,j 是平面直角坐标系内分别与x 轴、y 轴正方向相同的两个单位向量,O 为坐标原点,若OA →=4i +2j ,OB →=3i +4j ,则2OA →+OB →的坐标是( )A .(1,-2)B .(7,6)C .(5,0)D .(11,8)【答案】D 【解析】因为OA →=(4,2),OB →=(3,4),所以2OA →+OB →=(8,4)+(3,4)=(11,8). 3.(2020年重庆月考)若向量a =(1,-2),b =(3,-1),则与a +b 共线的向量是( ) A .(-1,1) B .(-3,-4) C .(-4,3)D .(2,-3)【答案】C 【解析】向量a =(1,-2),b =(3,-1),则a +b =(4,-3),所以与a +b 共线的向量是λ(4,-3),其中λ∈R .当λ=-1时,共线向量是(-4,3).故选C .4.(2020年宁波月考)已知A (-1,2),B (2,-1),若点C 满足AC →+AB →=0,则点C 坐标为( )A .⎝⎛⎭⎫12,12B .(-3,3)C .(3,-3)D .(-4,5)D 【解析】设C (x ,y ),由A (-1,2),B (2,-1),得AC →=(x +1,y -2),AB →=(3,-3).又AC →+AB →=0,∴AC →=-AB →,即⎩⎪⎨⎪⎧x +1=-3,y -2=3,解得⎩⎪⎨⎪⎧x =-4,y =5.∴点C 坐标为(-4,5).故选D .5.已知A (-3,0),B (0,2),O 为坐标原点,点C 在∠AOB 内,且∠AOC =45°,设OC →=λOA →+(1-λ)OB →(λ∈R ),则λ的值为( )A .15B .13C .25D .23【答案】C 【解析】如图所示,因为∠AOC =45°,所以设C (x ,-x ),则OC →=(x ,-x ).又因为A (-3,0),B (0,2),所以λOA →+(1-λ)OB →=(-3λ,2-2λ).所以⎩⎪⎨⎪⎧x =-3λ,-x =2-2λ⇒λ=25.6.(2020年道里区校级期中)我国古代人民早在几千年以前就已经发现并应用勾股定理了,勾股定理最早的证明是东汉数学家赵爽在为《周髀算经》作注时给出的,被后人称作“赵爽弦图”.“赵爽弦图”是数形结合思想的体现,是中国古代数学的图腾,还被用作第24届国际数学家大会的会徽.如图,大正方形ABCD 是由4个全等的直角三角形和中间的小正方形组成的,若AB →=a ,AD →=b ,E 为BF 的中点,则AE →=( )A .45a +25bB .25a +45bC .43a +23bD .23a +43b【答案】A 【解析】如图所示,建立直角坐标系.设AB =1,BE =x ,则AE =2x .∴x 2+4x 2=1,解得x =55.设∠BAE =θ,则sin θ=55,cos θ=255.∴x E =255cos θ=45,y E =255sin θ=25.设AE →=mAB →+nAD →,则⎝⎛⎭⎫45,25=m (1,0)+n (0,1).∴m =45,n =25.∴AE →=45a +25b .故选A .7.(2020年苏州期末)已知A (2,-3),B (8,3),若AC →=2CB →,则点C 的坐标为________. 【答案】(6,1) 【解析】设C (x ,y ),∵A (2,-3),B (8,3),AC →=2CB →,∴(x -2,y +3)=2(8-x,3-y )=(16-2x,6-2y ).∴⎩⎪⎨⎪⎧x -2=16-2x ,y +3=6-2y ,解得x =6,y =1.∴点C 的坐标为(6,1).8.(2020年广州模拟)已知向量a =(3,-2),b =(m,1).若向量(a -2b )∥b ,则m =________. 【答案】-32 【解析】∵向量a =(3,-2),b =(m,1),∴a -2b =(3-2m ,-4).∵(a -2b )∥b ,∴-4m =3-2m .∴m =-32.9.已知O 是坐标原点,点A 在第一象限,|OA →|=43,∠xOA =60°. (1)求向量OA →的坐标;(2)若B (3,-1),求BA →的坐标.解:(1)设点A (x ,y ),则x =43cos 60°=23,y =43sin 60°=6,即A (23,6),OA →=(23,6).(2)BA →=(23,6)-(3,-1)=(3,7).10.如图,已知点A (4,0),B (4,4),C (2,6),求AC 与OB 的交点P 的坐标.解:由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ), 则AP →=OP →-OA →=(4λ-4,4λ).连接OC ,则AC →=OC →-OA →=(-2,6).由AP →与AC →共线,得(4λ-4)×6-4λ×(-2)=0, 解得λ=34.所以OP →=34OB →=(3,3).所以点P 的坐标为(3,3).B 级——能力提升练11.已知向量a =(1+λ,2),b =(3,4),若a ∥b ,则实数λ=( ) A .-113B .-52C .12D .53【答案】C 【解析】a ∥b ,∴4(1+λ)=6,即λ=12.12.已知a =(3,1),若将向量-2a 绕坐标原点逆时针旋转120°得到向量b ,则b 的坐标为( )A .(0,4)B .(23,-2)C .(-23,2)D .(2,-23)【答案】B 【解析】∵a =(3,1),∴-2a =(-23,-2).易知向量-2a 与x 轴正半轴的夹角α=150°(如图).向量-2a 绕坐标原点逆时针旋转120°得到向量b ,在第四象限,与x 轴正半轴的夹角β=30°,∴b =(23,-2).故选B .13.设向量a =(1,-3),b =(-2,4),c =(-1,-2),若表示向量4a,4b -2c,2(a -c ),d 的有向线段首尾相连能构成四边形,则向量d 为( )A .(2,6)B .(-2,6)C .(2,-6)D .(-2,-6)【答案】D 【解析】由题意,得4a +4b -2c +2(a -c )+d =0,则d =-4a -4b +2c -2(a -c )=-6a -4b +4c =(-2,-6).14.向量a =(sin θ,cos θ),b =(1,2),则|a|=________;若向量a ,b 不能作为一组基底,则tan θ=________.【答案】1 12【解析】∵a =(sin θ,cos θ),∴|a |=sin 2θ+cos 2θ=1.∵向量a ,b 不能作为一组基底,∴a ∥b ,则2sin θ-cos θ=0,得tan θ=12.15.设向量OA →绕点O 逆时针旋转π2得向量OB →,且2OA →+OB →=(7,9),则向量OB →=________.【答案】⎝⎛⎭⎫-115,235 【解析】设OA →=(m ,n ),则OB →=(-n ,m ),所以2OA →+OB →=(2m -n,2n +m )=(7,9),即⎩⎪⎨⎪⎧2m -n =7,m +2n =9,解得⎩⎨⎧m =235,n =115.因此,OB →=⎝⎛⎭⎫-115,235. 16.已知点A (2,3),B (5,4),C (7,10)及AP →=AB →+λAC →(λ∈R ). (1)λ为何值时,点P 在第一、三象限的角平分线上?(2)四边形ABCP 能成为平行四边形吗?若能,求出相应的λ的值;若不能,请说明理由.解:设点P 的坐标为(x ,y ),则AP →=(x -2,y -3),AB →=(3,1),AC →=(5,7).∵AP →=AB →+λAC →,∴(x -2,y -3)=(3,1)+λ(5,7),即⎩⎪⎨⎪⎧x =5λ+5,y =7λ+4,∴P (5λ+5,7λ+4).(1)当点P 在第一、三象限的角平分线上时,由5λ+5=7λ+4得λ=12.(2)AB →=(3,1),PC →=(2-5λ,6-7λ).若四边形ABCP 为平行四边形,需AB →=PC →,于是⎩⎪⎨⎪⎧2-5λ=3,6-7λ=1.方程组无解,故四边形ABCP 不能成为平行四边形. 17.已知O 是△ABC 内一点,∠AOB =150°,∠BOC =90°,设OA →=a ,OB →=b ,OC →=c ,且|a|=2,|b|=1,|c|=3,试用a ,b 表示c.解:如图,以O 为原点,向量OA →所在的直线为x 轴建立平面直角坐标系.因为|a |=2,所以a =(2,0).设b =(x 1,y 1),所以x 1=|b |·cos 150°=1×⎝⎛⎭⎫-32=-32,y 1=|b |sin 150°=1×12=12 .所以b =⎝⎛⎭⎫-32,12 .同理可得c =⎝⎛⎭⎫-32,-332 .设c =λ1a +λ2b (λ1,λ2∈R ),所以⎝⎛⎭⎫-32,-332=λ1(2,0)+λ2⎝⎛⎭⎫-32,12=⎝⎛⎭⎫2λ1-32λ2,12λ2.所以⎩⎨⎧2λ1-32λ2=-32,12λ2=-332,解得⎩⎪⎨⎪⎧λ1=-3,λ2=-3 3.所以c =-3a -33b.C 级——探索创新练18.设OA →=(-2,4),OB →=(-a,2),OC →=(b,0),a >0,b >0,O 为坐标原点.若A ,B ,C 三点共线,则1a +1b的最小值为________.【答案】32+2 【解析】AB →=OB →-OA →=(2-a ,-2),AC →=OC →-OA →=(b +2,-4).由A ,B ,C 三点共线,得2(2-a )=b +2,即2a +b =2,所以a +b 2=1.所以1a +1b =a +b 2a +a +b 2b =32+b 2a +a b ≥32+212=32+2,当且仅当b 2a =a b ,即a =12,b =22时等号成立,所以最小值为32+ 2. 19.已知向量u =(x ,y )与向量v =(y,2y -x )的对应关系用v =f (u )表示. (1)求证:对任意向量a ,b 及常数m ,n ,恒有f (m a +n b )=mf (a )+nf (b )成立; (2)设a =(1,1),b =(1,0),求向量f (a )及f (b )的坐标; (3)求使f (c )=(p ,q )(p ,q 是常数)的向量c 的坐标. (1)证明:设a =(a 1,a 2),b =(b 1,b 2), 则m a +n b =(ma 1+nb 1,ma 2+nb 2),∴f (m a +n b )=(ma 2+nb 2,2ma 2+2nb 2-ma 1-nb 1),mf (a )+nf (b )=m (a 2,2a 2-a 1)+n (b 2,2b 2-b 1)=(ma 2+nb 2,2ma 2+2nb 2-ma 1-nb 1), ∴f (m a +n b )=mf (a )+nf (b )成立. (2)解:f (a )=(1,2×1-1)=(1,1), f (b )=(0,2×0-1)=(0,-1).(3)解:设c=(x,y),则f(c)=(y,2y-x)=(p,q),∴y=p,2y-x=q,∴x=2p-q,即向量c=(2p-q,p).。
高考数学专题《平面向量的基本定理及坐标表示》习题含答案解析

专题6.2 平面向量的基本定理及坐标表示1.(2021·全国高一课时练习)已知向量()1,2a =- ,()3,1b =- ,(),2c m = ,(2)c a b ⊥- ,则m 的值为( )ABC .2D .10【答案】C 【解析】先求出2a b -的坐标,再借助向量垂直的坐标表示即可得解.【详解】因()1,2a =- ,()3,1b =- ,则()25,5a b -=- ,而(),2c m = ,(2)c a b ⊥-,于是得(2)0c a b ⋅-=,即5520m -+⋅=,解得2m =,所以m 的值为2.故选:C2.(2021·全国高三其他模拟(文))已知()24,4,3a b a b ==-=- ,,记a 与b 夹角为θ,则cos θ的值为( )A .1320B .516-C .34D .57-【答案】B 【解析】利用平面向量数量积的定义以及模长公式求解即可.【详解】因为()4,3a b -=- ,所以5a b -=,因为a b -== 所以25416=+-16cos θ,所以5cos 16θ=-.故选:B .练基础3.(2021·天津和平区·高一期末)已知正方形ABCD 的边长为2,E 是BC 的中点,F 是线段AE 上的点,则AF CF ⋅的最小值为( )A .95B .95-C .1D .1-【答案】B 【解析】根据题意,建立适当的平面直角坐标系,转化为坐标运算即可.【详解】如图所示,建立平面直角坐标系,由题意知,()0,0A ,()2,1E ,()2,2C ,由F 是线段AE 上的点,设,2x F x ⎛⎫⎪⎝⎭,且02x ≤≤,因此,2x AF x ⎛⎫= ⎪⎝⎭ ,2,22x CF x ⎛⎫=-- ⎪⎝⎭,故()25223224x x xAF x x x CF ⋅⎛⎫=-+-=- ⎪⎝⎭,因02x ≤≤,所以当65x =时,AF CF ⋅ 取最小值95-.故选:B.4.(2021·全国高三其他模拟(文))如图,平行四边形ABCD 中,E 是AD 的中点,F 在线段BE 上,且3BF FE =,记a BA = ,b BC = ,则CF =()A .2133a b+ B .2133a b-C .1348a b-+D .3548a b-【答案】D 【解析】取a BA = ,b BC = 作为基底,把BE 、BF用基底表示出来,利用向量的减法即可表示出CF .【详解】取a BA = ,b BC =作为基底,则12BE a b =+ .因为3BF FE =,所以3313344248BF BE a b a b ⎛⎫==+=+ ⎪⎝⎭ ,所以33354848CF BF BC a b b a b =-=+-=-.故选:D.5.(2021·全国高一专题练习)已知A B P ,,三点共线,O 为直线外任意一点,若OP xOA y OB →→→=+,则x y += ________.【答案】1【解析】由共线可设AB BP λ→→=,进而得OB OA OP OB λ→→→→⎛⎫= ⎪⎝-⎭-,化简对应的,x y 即可得解.【详解】∵,,A B P 三点共线,∴存在非零实数λ,使得AB BP λ→→=,∴OB OA OP OB λ→→→→⎛⎫= ⎪⎝-⎭-∴11OP OB OAλλλ→→→+=-∵OP xOA y OB →→→=+,∴111x y λλλ+⎛⎫+=-= ⎪⎭+⎝.故答案为:16.(辽宁高考真题)在平面直角坐标系中,四边形的边,,已知点,,则D 点的坐标为___________.【答案】【解析】平行四边形中,,∴,即点坐标为,故答案为.7.(2021·中牟县教育体育局教学研究室高一期中)设已知向量()1,1a =,向量()3,2b =- .(1)求向量2a b -的坐标;(2)当k 为何值时,向量ka b +与向量2a b -垂直.【答案】(1)()7,3-;(2)274k =.【解析】(1)进行向量坐标的减法和数乘运算即可得出2(7,3)a b -=-;(2)可求出(3,2)ka b k k +=-+ ,然后根据ka b + 与2a b - 垂直即可得出7(3)3(2)0k k --+=,解出k 即可.【详解】(1)∵()1,1a =,()3,2b =- ,∴()27,3a b -=-r r.(2)∵()3,2ka b k k +=-+r r ,且ka b + 与2a b - 垂直,∴()()73320k k --+=,解得274k =.8.(2021·江西新余市·高一期末(文))已知||4a =,(b =-xoy ABCD //AB DC //AD BC ()20A -,()68B ,()8,6C ()0,2-ABCD OB OD OA OC +=+()()()()2,08,66,80,2OD OA OC OB =+=+----=D ()0,2-()0,2-(1)若//a b ,求a的坐标;(2)若a 与b的夹角为120°,求a b -r r .【答案】(1)(2,-或(2,-;(2).【解析】(1)先求与向量b 共线的单位向量,结合//a b ,即可得出a的坐标;(2)先根据夹角求出a b ⋅,根据模的运算律22a a = ,即可得到a b -r r .【详解】解:(1)(b =- Q ,||2b ∴=∴与b共线的单位向量为12b c b ⎛=±=±- ⎝.||4a = Q ,//a b,(||2,a a c ∴==-或(2,-.(2)||4a = Q ,||2b =,,120a b <>=︒ ,||||cos ,4a b a b a b ∴⋅==-,222()228a b a a b b ∴-=-⋅+=,||a b ∴-=9.(2021·全国高一专题练习)如图,在△ABC 中,D ,E 分别为AC ,AB 边上的点,12CD AE DA EB ==,记BC a →= ,CA b →= .试用向量a →,b →表示DE .【答案】1()3DE b a →→=- 【解析】根据向量的减法及向量的数乘,化简即可求解.【详解】因为111()()333AE AB CB CA a b →→==-=-- ,2233AD AC b →==- ,所以121()()()333DE AE AD a b b b a →→→→→=-=----=- .即1()3DE b a →→=- 10.(2021·江西省万载中学高一期末(理))已知向量(1,3),(1,)a b t →→=-=,若(2)a b a →→→+⊥,(1)求向量a →与b →的夹角;(2)求3a b →→-的值.【答案】(1)34π;(2).【解析】(1)根据(2)a b a →→→+⊥得到2t =,再求出=5a b →→⋅-,a →=,b →=,即得解;(2)直接利用向量的模的坐标公式求解.【详解】(1)Q (1,-3),(1,)a b t →→==,()23,32a b t →→∴+=-+,Q (2)a b a →→→+⊥,()(2)=3132-30a b a t →→→+⋅⨯+-+⨯=∴(),解得2t =,11-325a b →→∴⋅=⨯+⨯=-(),a →=,b →=,cos ,a ba b a b→→→→→→⋅∴<>===⋅,所以向量a →与b →的夹角为34π.(2)Q 2223969106-55125a b a a b b →→→→→→-=-⋅+=⨯-⨯+=(),3a b →→∴-=.练提升1.【多选题】(2021·浙江高一期末)任意两个非零向量和m ,n ,定义:m n m n n n⋅⊗=⋅,若平面向量,a b满足||2||0a b ≥> ,a 与b 的夹角πθ0,3æöç÷Îç÷èø,且a b ⊗ 和b a ⊗ 都在集合4n n Z ⎧⎫∈⎨⎬⎩⎭中,则a b ⊗ 的值可能为( )A .5B .4C .3D .2【答案】CD 【解析】由已知得集合{|}4nn Z ∈的元素特征,再分析a b ⊗ 和b a ⊗ 的范围,再由定义计算后,可得答案.【详解】首先观察集合311113{|},1,,,,0,,,,1,4424424n n Z ⎧⎫∈=⋅⋅⋅----⋅⋅⋅⎨⎬⎩⎭,从而分析a b ⊗ 和b a ⊗ 的范围如下:因为(0,3πθ∈,∴1cos 12θ<<,而cos b b a b a a a a θ⋅⊗==⋅,且||2||0a b ≥> ,可得10cos 2b a θ<< ,又∵b a ⊗∈ {|}4n n Z ∈中,∴1cos 4b a θ= ,从而14cos b a θ= ,∴2cos 4cos a a b a b b b b θθ===⋅⋅⊗ ,又21cos 14θ<<,所以214cos 4a b θ⊗<=< .且a b ⊗ 也在集合{|}4n n Z ∈中,故有2a b ⊗= 或3.故选:CD.2.(2021·江西新余市·高一期末(文))如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC mOA nOB =+,则m n +的取值范围是___________.【答案】(1,0)-【解析】如图所示,由A ,B ,D 三点共线,利用向量共线定理可得:存在实数λ满足(1)OD OA OB λλ=+-,OD tOC = ,1t<-,(1)tOC OA OB λλ=+- ,即1OC OA OB t tλλ-=+,与OC mOA nOB =+两比较,即可得出.【详解】解:如图所示,A Q ,B ,D 三点共线,∴存在实数λ满足(1)OD OA OB λλ=+-,又OD tOC =,1t <-,(1)tOC OA OB λλ∴=+-,即1OC OA OB t tλλ-=+,与OC mOA nOB =+两比较,可得m tλ=,1n tλ-=,则1(1,0)m n t+=∈-.m n ∴+的取值范围是(1,0)-.故答案为:(1,0)-.3.(2021·宁夏银川市·高三其他模拟(理))已知A (1,1),B (0,1),C (1,0),M 为线段BC 上一点,且CM CB λ= ,若MA BC MB MC ⋅>⋅,则实数λ的取值范围是___________.【答案】1⎡⎤⎢⎥⎣⎦【解析】根据CM CB λ=可得1x y λλ=-⎧⎨=⎩,再表示出MA MB MC BC ,,,坐标,由条件可得2220x y y +-≤,再将1x y λλ=-⎧⎨=⎩代入可得关于λ的不等式,从而可得答案.【详解】解析:设点(),M x y ,由CM CB λ=,得()()1,1,1x y λ-=-,所以1x y λλ=-⎧⎨=⎩.因为MA BC MB MC ⋅>⋅,所以()()()()1,11,1,11,x y x y x y --⋅-≥----,即2211x y x x y y --+≥-+-+,化简得2220x y y +-≤将1x y λλ=-⎧⎨=⎩代入2220x y y +-≤,得()22120λλλ-+-≤,即22410λλ-+≤,解得11λ≤≤+因为M 为线段BC 上一点,且CM CB λ=,所以01λ≤≤.综上,可知11λ≤≤.故实数λ的取值范围是1⎡⎤⎢⎥⎣⎦.4.(江苏高考真题)在同一个平面内,向量OA ,OB ,OC 的模分别为与OC 的夹角为α,且tan α=7,OB 与OC 的夹角为45∘,若OC =mOA +nOB (m,n ∈R ),则m +n =_________.【答案】3【解析】以OA 为x 轴,建立直角坐标系,则A (1,0),由OC 的模为2与OA 与OC 的夹角为α,且tan α=7知,cos α=210,sinα=210 ,可得B (cos(α+45∘),sin (α+45∘)),∴B ―35,,由OC =mOA +nOB可得=m ―35n,45n=m ―35n75=45nm =54,n =74,∴m +n =3,故答案为3.5.(2021·福建漳州市·高一期末)在平面直角坐标系xOy中,已知向量m =,()sin ,cos n x x = ,()0,x π∈.若//m n u r r,则x =______;若存在两个不同的x 值,使得n m t n += 恒成立,则实数t 的取值范围为______.【答案】34π)2.【解析】根据向量平行的坐标表示可求34x π=;用坐标表示出n m t n += ,结合三角函数的图象可得实数t 的取值范围.【详解】x x =,则tan 1x =-,又()0,x π∈,则34x π=;计算得sin ,cos m n x x +=+ ,则m n +== ,又存在两个不同的x 值,使得n m t n +=恒成立,则t =()0,π上有两个不同的解,令()22sin ,0,4y x x ππ⎛⎫=+-∈ ⎪⎝⎭,由()0,x π∈,得3,444x πππ⎛⎫-∈- ⎪⎝⎭,2t <<.故答案为:34π;)2.6.(2021·天津滨海新区·高一期末)已知四边形ABCD ,0AB BC ⋅= ,AD BC λ=u u u r u u u r,1AB AD ==,且||||CB CD CB CD ⋅= ,(i )λ=___________;(ii )若2DE EC = ,动点F 在线段BE 上,则DF FC ⋅ 的最大值为___________.【答案】12 613 【解析】利用向量的数量积可得4BCD π∠=,过点D 作BC 的垂线,垂足为O ,可得1DO OC ==,进而可得2BC AD =,求出λ;以B 为坐标原点,,BC BD 为,x y 建立平面直角坐标系,首先求出点E 坐标,设(),F x y ,利用向量共线求出5x y =,再由向量数量积的坐标运算即可求解.【详解】由||||CB CD CB CD ⋅= 1212cos e e e e BCD ⋅=∠= 因为[]0,BCD π∠∈,所以4BCD π∠=,过点D 作BC 的垂线,垂足为O ,可得1DO OC ==,因为1AB AD ==,所以2BC AD =,由AD BC λ=u u u r u u u r ,所以12λ=.以B 为坐标原点,,BC BD 为,x y 建立平面直角坐标系,如图:则()1,1D ,()2,0C ,设(),E m n由2DE EC =,即()()1,122,0m n m n --=--,解得51,33m n ==,即51,33E ⎛⎫ ⎪⎝⎭,设(),F x y ,503x ≤≤,103y ≤≤, 则51,33BE ⎛⎫= ⎪⎝⎭,(),BF x y = ,因为,,B F E 三点共线,所以5133y x =,即5x y =,()1,1DF x y =-- ,()2,FC x y =-- ,所以()()()()()21215125DF FC x x y y y y y y⋅=--+-=--+- 224626162261313y y y ⎛⎫=-+-=--+ ⎪⎝⎭,当413y =时,DF FC ⋅ 取得最大值为613.故答案为:12;6137.(2021·全国高一专题练习)已知A (-2,4),B (3,-1),C (-3,-4).设,,AB a BC b CA c === ,且3,2CM c CN b ==- .(1)求33a b c +-;(2)求满足a mb nc =+ 的实数m ,n ;(3)求M ,N 的坐标及向量MN 的坐标.【答案】(1)(6,-42);(2)11m n =-⎧⎨=-⎩;(3)M (0,20),N (9,2),(9,18)MN =- .【解析】(1)利用向量加、减、数乘的坐标运算即可求解.(2)利用向量加法的坐标运算以及向量相等即可求解.(3)利用向量减法的坐标运算即可求解.【详解】由已知得a =(5,-5),b =(-6,-3),c=(1,8).(1)33a b c +-=3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)∵mb nc + =(-6m +n ,-3m +8n ),∴65385m n m n -+=⎧⎨-+=-⎩,解得11m n =-⎧⎨=-⎩.(3)设O 为坐标原点,∵3CM OM OC c =-=,∴3OM c OC =+ =(3,24)+(-3,-4)=(0,20).∴M (0,20).又∵2CN ON OC b =-=- ,∴2ON b OC =-+=(12,6)+(-3,-4)=(9,2),∴N (9,2),∴MN =(9,-18).8.(2021·全国高一课时练习)已知△ABC 的面积为S 23S ≤≤,且AB ·BC =3,AB 与BC 的夹角为θ.求AB 与BC 夹角的取值范围.【答案】,64ππ⎡⎤⎢⎥⎣⎦.【解析】可设AB 与BC 夹角为θ,则据题意得出θ为锐角,且3||||cos AB BC θ= ,从而根据ABC V 的面积32S ∈tan 1θ…,这样根据正切函数在(0,2π的单调性即可求出θ的范围.【详解】解:Q 3AB BC ⋅= ,∴,AB BC 的夹角为锐角,设,AB BC 的夹角为θ,则:||||cos 3AB BC θ= ,∴3||||cos AB BC θ=,又3]2S ∈;∴()13||||sin 22AB BC πθ- …,∴13||||sin 22AB BC θ …,∴33tan 22θ…,∴tan 1θ…,∴64ππθ……,∴AB 与BC 夹角的取值范围为[,]64ππ.9.(2021·全国高一专题练习)已知O ,A ,B 是不共线的三点,且(,)OP mOA nOB m n R =+∈ (1)若m +n =1,求证:A ,P ,B 三点共线;(2)若A ,P ,B 三点共线,求证:m +n =1.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)由1m n +=原式可代换为()1OP mOA m OB =+- ,再由()1OP m m OP =+-⎡⎤⎣⎦ ,两式联立变形即可求证;(2)由A ,P ,B 三点共线,可得AP PB λ= ,变形得()OP OA OB OP λ-=- ,整理成OP 关于,OA OB 的表达式,再结合OP mOA nOB =+ ,由对应关系即可求证【详解】(1)证明:若m +n =1,则()1OP mOA m OB =+- ,()1OP m m OP =+-⎡⎤⎣⎦ ,故()()11mOP m OP mOA m OB +-=+- ,即()()()1m OP OA m OB OP -=-- ,()1mAP m PB =- ,即,AP BP 共线,又,AP BP 有公共点,则A ,P ,B 三点共线;(2)证明:若A ,P ,B 三点共线,则存在实数λ,使得AP PB λ= ,变形得()OP OA OB OP λ-=- ,即()1OP OB OA λλ+=+ ,111OB OA OB OA OP λλλλλ+==++++ ,又OP mOA nOB =+ ,1111λλλ+=++,故1m n +=10.(2021·北京首都师大二附高一期末)在△ABC 中.∠BAC =120°,AB =AC =1(1)求AB BC ⋅ 的值;(2)如图所示,在直角坐标系中,点A 与原点重合,边AB 在x 轴上,设动点P 在以A 为圆心,AB 为半径的劣弧BC 上运动.求⋅ BP CP 的最小值.【答案】(1)32-;(2)12-.【解析】(1)由()10B ,,12C ⎛- ⎝,利用坐标公式求得数量积即可.(2)设点P 坐标为()2cos ,sin 03πθθθ⎛⎫≤≤⎪⎝⎭,求得⋅ BP CP 1sin 26πθ⎛⎫=-+ ⎪⎝⎭,利用三角函数的最值求得数量积的最值.【详解】解:(1)()10B ,,12C ⎛- ⎝,AB BC ⋅ ()331,022⎛=⋅-=- ⎝.(2)点P 在以A 为圆心,AB 为半径的劣弧BC 上运动,设点P 坐标为()2cos ,sin 03πθθθ⎛⎫≤≤ ⎪⎝⎭,又()10B ,,12C ⎛- ⎝,⋅ BP CP ()1cos 1,sin cos ,sin 2θθθθ⎛=-⋅+ ⎝2211cos cos cos sin 22θθθθθ=-+-+1sin 26πθ⎛⎫=-+ ⎪⎝⎭,又203πθ≤≤,则5666πππθ≤+≤1sin 126πθ⎛⎫≤+≤ ⎪⎝⎭,故当sin 16πθ⎛⎫+= ⎪⎝⎭时,⋅ BP CP 有最小值12-.1.(2019·全国高考真题(理))已知=(2,3),=(3,t ),=1,则=( )A .-3B .-2C .2D .3【答案】C【解析】由,,得,则,.故选C .2.(2021·全国高考真题(理))已知向量()()3,1,1,0,a b c a kb ===+ .若a c ⊥ ,则k =________.【答案】103-.【解析】利用向量的坐标运算法则求得向量c的坐标,利用向量的数量积为零求得k 的值【详解】()()()3,1,1,0,3,1a b c a kb k ==∴=+=+ Q ,(),33110a c a c k ⊥∴=++⨯=Q n ,解得103k =-,故答案为:103-.3.(2021·全国高考真题(理))已知向量()()1,3,3,4a b == ,若()a b b λ-⊥ ,则λ=__________.【答案】35AB AC ||BC AB BC ⋅(1,3)BC AC AB t =-=- 1BC == 3t =(1,0)BC = (2,3)(1,0)21302AB BC ⋅=⋅=⨯+⨯=u u u r u u u r 练真题【解析】根据平面向量数量积的坐标表示以及向量的线性运算列出方程,即可解出.【详解】因为()()()1,33,413,34a b λλλλ-=-=-- ,所以由()a b b λ-⊥ 可得,()()3134340λλ-+-=,解得35λ=.故答案为:35.4.(2021·全国高考真题(文))已知向量()()2,5,,4a b λ== ,若//a b r r ,则λ=_________.【答案】85【解析】利用向量平行的充分必要条件得到关于λ的方程,解方程即可求得实数λ的值.【详解】由题意结合向量平行的充分必要条件可得:2450λ⨯-⨯=,解方程可得:85λ=.故答案为:85.5.(2018·北京高考真题(文))(2018年文北京卷)设向量a=(1,0),b=(−1,m ),若a ⊥(ma ―b ),则m =_________.【答案】-1.【解析】∵a =(1,0),b =(―1,m ),∴ma ―b =(m ,0)―(―1,m )=(m +1,―m ),由a ⊥(ma ―b )得:a ⋅(ma ―b )=0,∴a ⋅(ma ―b )=m +1=0,即m =―1.6.(2020·北京高考真题)已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+ ,则||PD = _________;PB PD ⋅= _________.1-【解析】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+= ,则点()2,1P ,()2,1PD ∴=- ,()0,1PB =- ,因此,PD == ,()021(1)1PB PD ⋅=⨯-+⨯-=- .1-.。
高三数学平面向量基本定理及坐标表示试题答案及解析

高三数学平面向量基本定理及坐标表示试题答案及解析1.已知椭圆的中心在坐标原点,焦点在轴上,离心率为,椭圆上的点到焦点距离的最大值为.(1)求椭圆的标准方程;(2)若过点的直线与椭圆交于不同的两点,且,求实数的取值范围.【答案】(1)(2)【解析】(1)设所求的椭圆方程为:由题意:所求椭圆方程为:.(2)若过点的斜率不存在,则.若过点的直线斜率为,即:时,直线的方程为由因为和椭圆交于不同两点所以,所以①设由已知,则②③将③代入②得:整理得:所以代入①式得,解得.所以或.综上可得,实数的取值范围为:.2.(2013•湖北)已知点A(﹣1,1),B(1,2),C(﹣2,﹣1),D(3,4),则向量在方向上的投影为()A.B.C.D.【答案】A【解析】,,则向量方向上的投影为:•cos<>=•===,故选A.3.如图,在正方形ABCD中,E为AB的中点,P为以A为圆心,AB为半径的圆弧上的任意一点,设向量.【答案】【解析】以为原点,以所在直线为轴,建立平面直角坐标系.设正方形的边长为,则设 .又向量所以,∴,∴,∴.由题意得∴当时,同时,时,取最小值为.【考点】平面向量的坐标运算,三角函数的性质.4.如图,在直角梯形ABCD中,AB//CD,AB=2,AD=DC=1,P是线段BC上一动点,Q是线段DC上一动点,,则的取值范围是.【答案】【解析】解:建立平面直角坐标系如图所示,则因为,所以所以,, 所以, 故答案应填.【考点】1、平面向量基本定理;2、向量的坐标表示;3、向量的数量积;4、一元二次函数的最值.5. 如图,△ABC 中,D 为BC 的中点,G 为AD 的中点,过点G 任作一直线MN 分别交AB 、AC 于M 、N 两点.若=x ,=y ,求的值.【答案】4 【解析】设=a ,=b ,则=x a ,=y b ,== (+)= (a +b ).∴=-= (a +b )-x a =a +b ,=-=y b -x a =-x a +y b . ∵与共线,∴存在实数λ,使=λ.∴a +b =λ(-x a +y b )=-λx a +λy b .∵a 与b 不共线,∴消去λ,得=4.6. 已知点O (0,0),A 0(0,1),A n (6,7),点A 1,A 2,…,A n -1(n ∈N ,n ≥2)是线段A 0A n 的n 等分点,则| ++…+OA n -1+|等于( ) A .5n B .10n C .5(n +1) D .10(n +1)【答案】C【解析】取n =2,,则++=(0,1)+(3,4)+(6,7)=(9,12),所以| ++|==15,把n =2代入选项中,只有5(n +1)=15,故排除A 、B 、D ,选C.7. 已知向量a=(cosθ,sinθ),b=(,-1),则|2a-b|的最大值为( ) A .4 B .4 C .16D .8【答案】B【解析】∵2a-b=(2cosθ-,2sinθ+1), ∴|2a-b|===故最大值为4.8. 已知向量a=(1,-2),b=(m,4),且a ∥b,那么2a-b=( )A.(4,0)B.(0,4)C.(4,-8)D.(-4,8)【答案】C【解析】由a∥b,得4=-2m,∴m=-2,∴b=(-2,4),∴2a-b=2(1,-2)-(-2,4)=(4,-8).9.已知向量a=(cosα,-2),b=(sinα,1)且a∥b,则tan(α-)等于()A.3B.-3C.D.-【答案】B【解析】选B.∵a=(cosα,-2), b=(sinα,1)且a∥b,∴=(经分析知cosα≠0),∴tanα=-.∴tan(α-)===-3,故选B.【方法技巧】解决向量与三角函数的综合题的方法向量与三角函数的结合是近几年高考中出现较多的题目,解答此类题目的关键是根据条件将所给的向量问题转化为三角问题,然后借助三角恒等变换再根据三角求值、三角函数的性质、解三角形的问题来解决.10.已知向量a=(3,1),b=,若a+λb与a垂直,则λ等于________.【答案】4【解析】根据向量线性运算、数量积运算建立方程求解.由条件可得a+λb=,所以(a+λb)⊥a⇒3(3-λ)+1+λ=0⇒λ=4.11.设向量,,若满足,则( )A.B.C.D.【答案】D【解析】因为,所以, ,解得:,故选D.【考点】向量共线的条件.12.在所在的平面内,点满足,,且对于任意实数,恒有,则()A.B.C.D.【答案】C【解析】过点作,交于,是边上任意一点,设在的左侧,如图,则是在上的投影,即,即在上的投影,,令,,,,故需要,,即,为的中点,又是边上的高,是等腰三角形,故有,选C.【考点】共线向量,向量的数量积.13.已知向量,若,则的最小值为.【答案】4【解析】,所以.【考点】1、向量的平行关系;2、向量的模;3、重要不等式14.已知向量,向量,且,则的值是()A.B.C.D.【答案】C.【解析】,,即得.【考点】向量的坐标运算.15.已知点,,则与共线的单位向量为()A.或B.C.或D.【答案】C【解析】因为点,,所以,,与共线的单位向量为.【考点】向量共线.16.已知向量,,若,则实数等于.【答案】.【解析】,两边平方得,则有,化简得,即,解得.【考点】平面向量的模、平面向量的坐标运算17.在中,已知,且,则( )A.B.C.D.【答案】A【解析】因为,,所以,,,故选A。
专题02 平面向量基本定理及坐标表示(专题测试)--解析版

专题02 平面向量基本定理及坐标表示(专题测试)【基础题】1. (2020·广东东莞市·高一期末)已知向量()2,3a =,(),6b m =,且a b ⊥,则m =( ) A .4- B .4C .9-D .9【答案】C【分析】根据向量的数量积的运算公式和向量的垂直条件,列出方程,即可求解. 【详解】由题意,向量(2,3)a =,(),6b m =,因为a b ⊥,可得2362180a b m m ⋅=⨯+⨯=+=,解得9m =-. 故选:C.【点睛】本题主要考查了平面向量的数量积的坐标运算,以及向量的垂直条件的应用,其中解答中熟记向量的数量积的计算公式是解答的关键,着重考查计算能力.2. (2020·广东揭阳市·高一期中)已知(1,1)AB =-,(0,1)C ,若2CD AB =,则点D 的坐标为 A .(2,3)- B .(2,3)-C .(2,1)-D .(2,1)-【答案】D【分析】设出D 的坐标,代入2CD AB =,计算出D 点的坐标.【详解】设(),D x y ,则(),1CD x y =-,()22,2AB =-,根据2CD AB =得()(),12,2x y -=-,即212x y =⎧⎨-=-⎩,解得()2,1D -,故选D. 【点睛】本小题主要考查向量的减法和数乘计算,考查两个向量相等的坐标表示,属于基础题.3.(2020·广东汕头市·高二期末)如图所示,已知在ABC 中,D 是边AB 上的中点,则CD =( )A .12BC BA -B .12BC BA -+ C .12BC BA --D .12BC BA + 【答案】B【分析】利用向量减法和数乘运算求得正确结论. 【详解】1122CD BD BC BA BC BC BA =-=-=-+.故选:B 4. (2019·广东深圳市·福田外国语高中高三一模(文))向量(1,2)a =,(2,)b k =-,若a 与b 共线,则|3|a b +=( )A B .C .D .5【答案】A【分析】通过向量共线求出k ,然后求解|3|a b +即可. 【详解】向量(1,2)a =,(2,)b k =-,a 与b 共线, ∴4k =-,即3(1,2)a b +=,∴2312a b +=+=故选:A .【点睛】本题考查向量的共线,向量的模的求法,属于基础题.5.(2020·东莞市光明中学高二月考)已知向量()3,2a =,(),4b x =且//a b ,则x 的值是( ) A .6- B .83C .6D .83-【答案】C【分析】根据平面向量共线的坐标表示可得出关于实数x 的等式,由此可解得实数x 的值. 【详解】向量()3,2a =,(),4b x =且//a b ,212x ∴=,解得6x =.故选:C.【点睛】本题考查平面向量共线的坐标表示,属基础题.6.(2020·汕头市澄海中学高二期中)已知向量()2,1a =-,()5,4b =-,(),c x y =,若()a b c +⊥,则x 、y 可以是( )A .1x =,1y =B .0x =,1y =C .1x =,0y =D .1x =,1y =- 【答案】A【分析】根据()0a b c +⋅=可得x y =.【详解】因为()a b c +⊥,所以()()()3,3,330a b c x y x y +⋅=-⋅=-+=,即x y =,故选:A. 【点睛】本题考查了平面向量垂直的坐标表示,考查了平面向量线性运算的坐标表示,属于基础题. 7.(2020·广东深圳市·高一期末)设向量(,1)a x x =+,(1,2)b =,且a b ⊥,则x =( ). A .23-B .23C .1-3D .13【答案】A【分析】由a b ⊥得0a b ⋅=,建立方程求解即可. 【详解】a b ⊥,()210a b x x ∴⋅=++=,解得23x =-.故选:A. 【点睛】本题考查向量垂直的坐标表示,属于基础题.8.(2012·广东湛江市·)已知向量()3,4a =,()sin ,cos b αα=,且//a b ,则tan α=( ) A .34B .34-C .43D .43-【答案】A【分析】根据向量共线的坐标表示以及同角公式可得结果. 【详解】因为//a b ,所以3cos 4sin 0αα-=,所以3tan 4α=.故选:A. 【点睛】本题考查了向量共线的坐标表示,考查了同角公式,属于基础题.9.(2020·广州市·广东实验中学高三月考(文))已知向量()(),,1,2a x y b ==-,且()1,3a b +=,则2a b -等于( ) A .1 B .3C .4D .5【答案】D【分析】先根据已知求出x,y 的值,再求出2a b -的坐标和2a b -的值.【详解】由向量()(),,1,2a x y b ==-,且()1,3a b +=,则()(1,2)1,3a b x y +=-+=,解得2,1x y ==,所以()()2,1,1,2a b ==-,所以2(2,1)2(1,2)(4,3)a b -=--=-,所以224(5a b -=+=,故答案为D【点睛】本题主要考查向量的坐标运算和向量的模的计算,意在考查学生对这些知识的掌握水平和分析推理能力.10.(多选题)(2020·廉江市第三中学高二月考)如果平面向量(2,0)a=,(1,1)b =,那么下列结论中正确的是( ) A .2a b = B .22a b ⋅=C .()-⊥a b bD .//a b【答案】AC【分析】根据题中条件,由向量模的坐标表示,数量积的坐标表示,以及向量共线的坐标表示,逐项判定,即可得出结果. 【详解】由平面向量(2,0)a=,(1,1)b =知:在A 中,2=a ,2b =,∴=2a b ,故A 正确;在B 中,2a b,故B 错误;在C 中,(1,1)a b -=-,∴()110a b b -⋅=-=,∴()-⊥a b b ,故C 正确; 在D 中,∵2011≠,∴a 与b 不平行,故D 错误. 故选:A C .【点睛】本题主要考查向量数量积的坐标运算,考查向量共线的坐标表示等,属于基础题型.【提升题】11.(2021·广东高三其他模拟)在90A ∠=︒的等腰直角ABC 中,E 为AB 的中点,F 为BC 的中点,BC AF CE λμ=+,则λ=( )A .23-B .32-C .43-D .1-【答案】A【分析】以A 为原点建立直角坐标系,设直角边长为2,写出各点坐标,计算可得λ的值. 【详解】以A 为原点建立直角坐标系,设()2,0B ,()0,2C ,则()1,1F ,()1,0E ,则()2,2BC =-,()()()1,11,2,2AF CE λμλμλμλμ+=+-=+-,所以222λμλμ+=-⎧⎨-=⎩,所以23λ=-.故选:A12.(2020·广东高三月考)已知菱形ABCD 的边长为2,60A ∠=︒,点P 满足1()2AP AB AC =+,则PA PD ⋅=( )A .0B .3C .3D .92【答案】C【分析】如图,以菱形ABCD 的对角线AC 方向为x 轴方向,DB 方向为y 轴方向建立平面直角坐标系,由1()2AP AB AC =+,可知P 点为线段BC 的中点,由60A ∠=︒,菱形ABCD 的边长为2,可求出,,P A D 的坐标,从而可求出PA PD ⋅的值【详解】以菱形ABCD 的对角线AC 方向为x 轴方向,DB 方向为y 轴方向建立平面直角坐标系, 根据1()2AP AB AC =+,可知P 点为线段BC 的中点,又因为60A ∠=︒,所以2AB BC CD DA BD =====,易求得31,22P ⎛⎫ ⎪⎝⎭,(3,0)A -,(0,1)D -,331,22PA ⎛⎫=-- ⎪ ⎪⎝⎭,33,22PD ⎛⎫=-- ⎪ ⎪⎝⎭,所以,3PA PD ⋅=, 故选:C .13. (2020·广东汕尾市·高一月考)已知向量()1,2a =,()2,b t =.若a b ⊥,则t =______,此时a 与a b +的夹角为______. 【答案】1-π4【分析】利用向量垂直的坐标表示列方程,解方程求得t 的值.利用夹角公式,求得a 与a b +的夹角的余弦值,进而求得a 与a b +的夹角.【详解】由于a b ⊥,所以()()1,22,220t t ⋅=+=,解得1t =-, 所以()()2,1,3,1b a b =-+=. 设a 与a b +的夹角为θ,则()()()22221,23,152cos 25101231a a ba a bθ⋅+⋅====⋅⋅++⋅+. 由于[]0,θπ∈,所以4πθ=.故答案为:1-;π4【点睛】本小题主要考查向量数量积的坐标运算,考查向量垂直的坐标表示,考查向量夹角的计算,属于中档题.14(2021·全国高三其他模拟)地砖是一种地面装饰材料,也叫地板砖,用黏土烧制而成质坚、耐压、耐磨、防潮.地板砖品种非常多,图案也多种多样.如图是某公司大厅的地板砖铺设方式,地板砖有正方形与正三角形两种形状,且它们的边长都相同,若OA a =,OB b =,则AF =( )A .5122a b -- B .33232a b ⎛⎫-+- ⎪ ⎪⎝⎭C .3323a b ⎛--+ ⎝⎭ D .3323a b ⎛-+- ⎝⎭ 【答案】D【分析】以AB 的中点M 为坐标原点建立平面直角坐标系,根据平面向量的坐标运算公式,结合平面向量基本定理进行求解即可.【详解】以AB 的中点M 为坐标原点建立平面直角坐标系,设2AB =,则(3O ,()1,0A -,()10B ,,(1,223F +,所以(1,3OA =--,(1,3OB =-,(2,2AF =+.设AF OA OB λμ=+,则22λμ-+=⎧⎪-=+233λμ⎧=--⎪⎪⎨⎪=-⎪⎩,所以33233AF OA OB ⎛⎫=-+- ⎪ ⎪⎝⎭,即3323AF a b b ⎛⎫=-+- ⎪ ⎪⎝⎭,故选:D 【点睛】用一组基底表示平面向量往往利用平面向量的坐标表示公式以及平面向量运算的坐标表示公式进行求解.15.(2020·广东高一期末)已知向量(1,2cos ),3sin ,0,23π⎛⎫⎛⎫⎛⎫==∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎭a x b x x . (1)若//a b ,求tan2x 的值;(2)若f (x )=a •b,则函数f (x )的值域. 【答案】(1(2) 【分析】(1)利用向量共线的坐标表示可得cos 02x x -=,根据二倍角的正弦公式可得1sin 22x =,根据x 的范围可得26x π=,进一步可得tan 23x =;(2)利用平面向量的数量积的坐标表示与两角和的正弦公式可得())4fx x π=+,再根据x 的范围,结合正弦函数的图象可得结果.【详解】(1)因为//a b ,所以cos 02x x -=,所以1sin 22x =,因为03x π<<,所以2023x π<<,所以26x π=,所以tan 2tan6x π==. (2)()f x a b =⋅=2cos x x x x+=+)4x π=+, 因为03x π<<,所以74412x πππ<+<,所以2sin()(,1]42x π+∈,所以()(3,6]f x ∈. 【点睛】本题考查了平面向量共线的坐标表示,考查了二倍角的正弦公式,考查了平面向量数量积的坐标表示,考查了两角和的正弦公式,考查了利用正弦函数的图象求值域,属于中档题.【拓展题】(选用)16.(2020·山西太原市·高三期末(理))赵爽是我国古代数学家大约在公元222年,他为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形由4个全等的直角三角形再加上中间的一个小正方形组成)类比“赵爽弦图”,可构造如图所示的图形,它是由3个全等的三角形与中间一个小等边三角形拼成的一个较大的等边三角形,设AD AB AC λμ=+,若2DF AF =,则可以推出λμ+=_________.【答案】1213【分析】利用建系的方法,假设1AF =,根据120ADB ∠=,利用余弦定理可得AB 长度,然后计算cos ,sin DAB DAB ∠∠,可得点D 坐标,最后根据点,B C 坐标,可得结果.【详解】设1AF =,则3,1AD BD AF ===如图由题可知:120ADB ∠=,由2222cos AB AD BD AD BD ADB =+-⋅⋅∠所以AB =AC AB ==所以),22BC ⎛⎫⎪ ⎪⎝⎭,()0,0A又sin sin sin 26BD AB BAD BAD ADB =⇒∠=∠∠所以cos BAD ∠==所以()cos ,sin D AD AD BAD BAD ∠∠即D ⎝⎭所以()2113339,13,026,26ADAB ⎛⎫==⎪ ⎪⎝⎭13,22AC ⎛=⎝⎭又ADAB AC λμ=+所以913313μλμμ⎧==⎪⎪⇒⎨⎪==⎪⎩ 所以1213λμ+=故答案为:1213【点睛】本题考查考查向量的坐标线性表示,关键在于建系,充分使用条件,考验分析能力,属难题.。
高三数学平面向量坐标运算试题答案及解析

高三数学平面向量坐标运算试题答案及解析1.平面向量,,(),且与的夹角等于与的夹角,则 .【答案】2.【解析】由题意得:,选D.法二、由于OA,OB关于直线对称,故点C必在直线上,由此可得【考点】向量的夹角及向量的坐标运算.2.平面向量,,(),且与的夹角等于与的夹角,则()A.B.C.D.【答案】 D.【解析】由题意得:,选D.法二、由于OA,OB关于直线对称,故点C必在直线上,由此可得【考点】向量的夹角及向量的坐标运算.3.已知曲线C:,直线l:x=6.若对于点A(m,0),存在C上的点P和l上的点Q使得,则m的取值范围为 .【答案】【解析】由知是的中点,设,则,由题意,,解得.【考点】向量的坐标运算.4.已知向量a=(cos ,sin ),b=(-sin ,-cos ),其中x∈[,π].(1)若|a+b|=,求x的值;(2)函数f(x)=a·b+|a+b|2,若c>f(x)恒成立,求实数c的取值范围.【答案】(1)x=或x=(2)(5,+∞)【解析】(1)∵a+b=(cos -sin ,sin -cos ),∴|a+b|==,由|a+b|=,得=,即sin 2x=-.∵x∈[,π],∴π≤2x≤2π.因此2x=π+或2x=2π-,即x=或x=.(2)∵a·b=-cos sin -sin cos =-sin 2x,∴f(x)=a·b+|c+b|2=2-3sin 2x,∵π≤2x≤2π,∴-1≤sin 2x≤0,∴2≤f(x)=2-3sin 2x≤5,∴[f(x)]max=5.又c>f(x)恒成立,因此c>[f(x)]max ,则c>5.∴实数c的取值范围为(5,+∞).5.向量a=(-1,1)在向量b=(3,4)方向上的投影为________.【答案】【解析】设向量a=(-1,1)与b=(3,4)的夹角为θ,则向量a在向量b方向上的投影为|a|·cos θ===.6.若向量a=(x-1,2),b=(4,y)相互垂直,则9x+3y的最小值为________.【答案】6【解析】由a⊥b得,4(x-1)+2y=0,即2x+y=2,∴9x+3y=32x+3y≥2=2=6.当且仅当“32x=3y”时,即y=2x时,上式取“=”.此时x=,y=1.7.若向量,满足条件,则x=()A.6B.5C.4D.3【答案】A【解析】∵,,∴8=(8,8)﹣(2,5)=(6,3)∵∴12+3x=30∴x=6故选A8.四边形是平行四边形,,,则= ()A.B.C.D.【答案】(A)【解析】因为.故选(A).【考点】1.向量的加减.2.向量的相等.9.在平面直角坐标系中,为坐标原点,直线与圆相交于两点,.若点在圆上,则实数()A.B.C.D.【答案】C【解析】设,将直线方程代人,整理得,,所以,,.由于点在圆上,所以,,解得,,故选.【考点】直线与圆的位置关系,平面向量的坐标运算.10.已知向量=(,),=(,),若,则=.【答案】【解析】由已知.,解得,.【考点】平面向量的坐标运算.11.已知向量若,则m=______.【答案】-3【解析】根据向量加法的坐标运算得,,因为,故,故填-3【考点】向量加法向量共线12.设向量,满足,,且与的方向相反,则的坐标为【答案】【解析】设,∵与的方向相反,故又∵,则,解得,,故答案为.【考点】共线向量,平面向量的坐标运算.13.已知向量a=(1,m),b=(m,2),若a∥b,则实数m等于()A.-B.C.-或D.0【答案】C【解析】由a∥b,得m2-2=0,解得m=±.故选C.14.若向量a=(2,3),b=(x,-9),且a∥b,则实数x=________.【答案】-6【解析】a∥b,所以2×(-9)-3x=0,解得x=-6.15.若向量=(2,3),=(4,7),则=________.【答案】(-2,-4)【解析】=+=-=(-2,-4).16.在平行四边形ABCD中,AC为一条对角线,若=(2,4),=(1,3),则=________.【答案】(-3,-5)【解析】由题意,得=-=-=(-)-=-2=(1,3)-2(2,4)=(-3,-5).17.在△ABC中,已知a、b、c分别为内角A、B、C所对的边,S为△ABC的面积.若向量p =(4,a2+b2-c2),q=(1,S)满足p∥q,则C=________.【答案】【解析】由p=(4,a2+b2-c2),q=(1,S)且p∥q,得4S=a2+b2-c2,即2abcosC=4S=2absinC,所以tanC=1.又0<C<π,所以C=.18.已知a=(sin α,sin β),b=(cos(α-β),-1),c=(cos(α+β),2),α,β≠kπ+(k∈Z).(1)若b∥c,求tan α·tan β的值;(2)求a2+b·c的值.【答案】(1)-3(2)-1【解析】(1)若b∥c,则2cos(α-β)+cos(α+β)=0,∴3cos αcos β+sin αsin β=0,∵α,β≠kπ+ (k∈Z),∴tan αtan β=-3.(2)a2+b·c=sin2α+sin2β+cos(α-β)cos(α+β)-2=sin2α+sin2β+cos2αcos2β-sin2αsin2β-2=sin2α+cos2αsin2β+cos2αcos2β-2=sin2α+cos2α-2=1-2=-1.19.已知点A(-1,5)和向量a=(2,3),若=3a,则点B的坐标为().A.(7,4)B.(7,14)C.(5,4)D.(5,14)【答案】D【解析】设B(x,y),由=3a,得解得20.已知点点是线段的等分点,则等于.【答案】【解析】由题设,,,,……,,…… , .所以,,,,……,,…… , ,= = ,=所以答案是:【考点】1、等差数列的前项和;2、向量的坐标运算;3、向量的模.21.如图,已知圆,四边形ABCD为圆的内接正方形,E,F分别为边AB,AD的中点,当正方形ABCD绕圆心转动时,的取值范围是()A.B.C.D.【答案】B【解析】因为圆的半径为2,所以正方形的边长为.因为.所以==.所以.故选B.【考点】1.向量的和差.2.向量的数量积.3.由未知线段转化为已知线段.4.化归思想.22. .若向量,则A.B.C.D.【答案】B【解析】【考点】向量的坐标运算.23.若向量,且与的夹角为则 .【答案】(-3,-6)【解析】由与的夹角为知,【考点】向量数量积的性质和向量的坐标运算.24.向量,,则()A.B.C.D.【答案】A【解析】,故选A.【考点】平面向量的减法运算25.在平面直角坐标系中,已知向量若,则x=( ) A.-2B.-4C.-3D.-1【答案】D【解析】∵,∴,则,所以,又,∴,.【考点】1、向量的坐标运算;2、向量共线的坐标表示.26.设、是平面内两个不平行的向量,若与平行,则实数 .【答案】【解析】不妨假设,则,因为,所以.【考点】平面向量的坐标运算.27.已知外接圆的半径为1,圆心为O.若,且,则等于()A.B.C.D.3【答案】D.【解析】因为,所以,所以,为的中点,故是直角三角形,角为直角.又,故有为正三角形,,,与的夹角为,由数量积公式可得选D.【考点】平面向量的线性运算,平面向量的数量积、模及夹角.28.已知正方体的棱长为,,点N为的中点,则()A.B.C.D.【答案】A【解析】以为原点,分别以所在直线为x轴,y轴,z轴建立空间直角坐标系,则A(0,0,a),N(a,0,),(a,a,0),设M(x,y,z),因为,所以(x-0,y-0,z-a)=(a-x,a-y,0-z)即,解得,即M(,,),所以=,故选A.【考点】空间向量的坐标运算和向量的模.29.已知向量,,且,则等于()A.B.C.D.【答案】A【解析】,,且与共线,所以,故选A.【考点】1.共线向量;2.平面向量的坐标运算30.已知向量a=(1,1),b=(2,x).若a+b与4b-2a平行,则实数x的值是( )A.-2B.0C.1D.2【答案】D【解析】由已知得,,因为与平行,则有,解得.【考点】向量共线的坐标表示31.已知.(1)若,求的值;(2)若,且,求的值.【答案】(1);(2)7.【解析】(1)利用向量数量积的坐标表示,可转化为三角函数,然后利用利用三角函数的相关公式对其变形,则可求解;(2)利用向量数量积的坐标表示,可转化为角的三角函数,然后利用角之间的关系,使用两角和与差的三角函数相关公式可求解.试题解析:(1)解:(1)∵∴(2)∵∴,,==7【考点】平面向量的数量积、两角和与差的三角函数、同角三角函数关系式.32.设平面向量,,则 ( )A.B.C.D.【答案】D【解析】因为,所以.【考点】1.平面向量的坐标运算;2.平面向量的模33.已知向量=(cosθ,sinθ),向量=(,-1),则|2-|的最大值与最小值的和是()A.4B.6C.4D.16【答案】C【解析】因为|2-|,故其最大值为,最小值为,它们的和为,选C.【考点】平面向量坐标运算、平面向量的模、两角差的正弦定理.34.已知平面向量,,且,则向量()A.B.C.D.【答案】A【解析】,,且,,解得,,故,故选A.【考点】1.平面向量垂直;2.平面向量的坐标运算35.已知是正三角形,若与向量的夹角大于,则实数的取值范围是__________.【答案】【解析】建立如图所示坐标系,不妨设,则,所以,,由与向量的夹角大于,得,即,故答案为.【考点】平面向量的坐标运算,平面向量的数量积、夹角、模.36.已知,,,为坐标原点.(Ⅰ),求的值;;(Ⅱ)若,且,求与的夹角.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)求、的坐标,,利用三角函数公式化简求得;(Ⅱ)利用已知条件求,确定的值,在由求解.试题解析:(Ⅰ),,,∴,.(Ⅱ)∵,,,,即,,又,,又,,,∴.【考点】平面向量的坐标运算,向量的夹角与模.37.已知向量,向量,则的最大值和最小值分别为()A.B.C.D.【答案】B【解析】,所以;.【考点】本小题主要考查平面向量坐标运算,求向量的模.38.已知向量,,,若∥,则=___ ..【答案】5【解析】因为,向量,,,所以,,又∥,所以,,故答案为5.【考点】平面向量的坐标运算39.已知平面向量,,如果向量与平行,那么与的数量积等于( )A.B.C.D.【答案】D【解析】,,∴,.∵与平行,∴,解得.∴.∴.故选D.【考点】向量的概念及其与运算,考查向量平行,考查两个向量的数量积.40.已知向量,,若,则=()A.-4B.-3C.-2D.-1【答案】B【解析】由.故选B.【考点】向量的坐标运算41.已知的三个内角所对的边分别为a,b,c,向量,,且.(Ⅰ)求角的大小;(Ⅱ)若向量,,试求的取值范围【答案】(Ⅰ) . (Ⅱ).【解析】(Ⅰ)由题意得,即. 3分由余弦定理得,. 6(Ⅱ)∵, 7∴.∵,∴,∴.∴,故. 12分【考点】平面向量的坐标运算,和差倍半的三角函数公式,正弦型函数图象和性质,余弦定理的应用。
2020年高考数学一轮复习专题5.2平面向量的基本定理练习(含解析)

5.2 平面向量的坐标运算一、平面向量的坐标运算 1.向量坐标的求法(1)若向量的起点是坐标原点,则终点坐标即为向量的坐标. (2)设A (x 1,y 1),B (x 2,y 2),则AB =(x 2-x 1,y 2-y 1). 2.向量加法、减法、数乘向量及向量的模设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 2+x 1,y 2+y 1),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1), |a |a +b 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0. 4.向量的夹角已知两个非零向量a 和b ,作OA =a ,OB =b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角.如果向量a 与b 的夹角是90°,我们说a 与b 垂直,记作a ⊥b .考向一 坐标运算【例1】(1)已知点M (5,-6)和向量a =(1,-2),若MN →=-3a ,则点N 的坐标为.(2)已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,a =m b +n c (m ,n ∈R ),则m +n = 【答案】(1)(2,0) (2)-2【解析】(1) 设N (x ,y ),则(x -5,y +6)=(-3,6),∴x =2,y =0. (2)由已知得a =(5,-5),b =(-6,-3),c =(1,8).∵m b +n c =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.∴m +n =-2.【举一反三】1.设OA →=(1,-2),OB →=(a ,-1),OC →=(-b,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a+2b的最小值是( )A .2B .4C .6D .8【答案】 D【解析】 由题意可得,OA →=(1,-2),OB →=(a ,-1),OC →=(-b,0),所以AB →=OB →-OA →=(a -1,1),AC →=OC →-OA →=(-b -1,2).又∵A ,B ,C 三点共线,∴AB →∥AC →,即(a -1)×2-1×(-b -1)=0,∴2a +b =1,又∵a >0,b >0,∴1a +2b =⎝ ⎛⎭⎪⎫1a +2b (2a +b )=4+⎝ ⎛⎭⎪⎫b a +4a b ≥4+4=8,当且仅当b a =4a b时,取“=”.故选D.2.已知点P (-1,2),线段PQ 的中点M 的坐标为(1,-1).若向量PQ →与向量a =(λ,1)共线,则λ=________. 【答案】 -23【解析】 点P (-1,2),线段PQ 的中点M 的坐标为(1,-1), ∴向量PQ →=2PM →=2(1+1,-1-2)=(4,-6).又PQ →与向量a =(λ,1)共线,∴4×1+6λ=0,即λ=-23.3.已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c 等于( )A.⎝ ⎛⎭⎪⎫1,83 B.⎝ ⎛⎭⎪⎫-133,83 C.⎝⎛⎭⎪⎫133,43D.⎝ ⎛⎭⎪⎫-133,-43【解析】 由已知3c =-a +2b =(-5,2)+(-8,-6)=(-13,-4).所以c =⎝ ⎛⎭⎪⎫-133,-43.考向二 平面向量在几何中 的运用【例2】已知△ABC 的三个顶点的坐标为A (0,1),B (1,0),C (0,-2),O 为坐标原点,动点M 满足|CM →|=1,则|OA →+OB →+OM →|的最大值是( )A.2+1B.7+1C.2-1D.7-1 【答案】 A【解析】 设点M 的坐标是(x ,y ),∵C (0,-2),且|CM →|=1,∴x 2+(y +2)2=1,则x 2+(y +2)2=1, 即动点M 的轨迹是以C 为圆心、1为半径的圆, ∵A (0,1),B (1,0),∴OA →+OB →+OM →=(x +1,y +1),则|OA →+OB →+OM →|=(x +1)2+(y +1)2,几何意义表示:点M (x ,y )与点N (-1,-1)之间的距离,即圆C 上的点与点N (-1,-1)的距离,∵点N (-1,-1)在圆C 外部,∴|OA →+OB →+OM →|的最大值是|NC |+1=(0+1)2+(-2+1)2+1=2+1.故选A. 【举一反三】1.在平面直角坐标系中,为坐标原点,直线与圆相交于两点,.若点在圆上,则实数( )A .B .C .D .O :10l x ky -+=22:4C x y +=, A B OM OA OB =+M C k =2-1-01考向三 向量中的坐标【例3】给定两个长度为1的平面向量,OA OB ,它们的夹角为120.如图1所示,点C 在以O 为圆心的圆弧AB 上变动.若,OC xOA yOB =+其中,x y R ∈,则x y +的最大值是______. 【答案】2【解析】解法1( 考虑特值法) 当C 与A 重合时,10,OC OA OB =⨯+⨯1x y +=,当C 与B 重合时,01,OC OA OB =⨯+⨯1x y +=, 当C 从AB 的端点向圆弧内部运动时,1x y +>, 于是猜想当C 是AB 的中点时,x y +取到最大值.当C 是AB 的中点时,由平面几何知识OACB 是菱形, ∴,OC OA OB =+∴11 2.x y +=+= 猜想x y +的最大值是2.解法二(考虑坐标法)建立如图3,所示的平面直角坐标系,设AOC α∠=,则1(1,0),((cos ,sin )2A B C αα-.于是OC xOA yOB =+可化为:1(cos ,sin )(1,0)(,22x y αα=+-,∴1cos ,2sin .x y y αα⎧=-⎪⎪⎨⎪=⎪⎩(1)解法2 函数法求最值由方程组(1)得:cos ,.x y ααα⎧=+⎪⎪⎨⎪=⎪⎩∴cos 2sin(30)x y ααα+=+=+,又0120α≤≤, ∴当30α=时,max () 2.x y += 解法3 不等式法求最值由方程组(1)得:222221sin cos ()3x y xy x y xy αα=+=+-=+-,∴211()33xy x y =+-, 由0,0x y >>,及x y +≥2()4x y xy +≥, ∴2()4x y +≤,∴2x y +≤,当且仅当1x y ==时取等号. ∴max () 2.x y +=思考方向三 考虑向量的数量积的运算 解法4 两边点乘同一个向量∵,OC xOA yOB =+∴,.OC OA xOA OA yOB OA OC OB xOA OB yOB OB ⎧⋅=⋅+⋅⎪⎨⋅=⋅+⋅⎪⎩ 设AOC α∠=,则 120BOC α∠=-,又||||||1OC OA OB ===,∴1cos ,21cos(120).2x y x y αα⎧=-⎪⎪⎨⎪-=-+⎪⎩∴2[cos cos(120)]2sin(30)x y ααα+=+-=+, ∴当30α=时,max () 2.x y += 解法5 两边平方法∵,OC xOA yOB =+∴22(),OC xOA yOB =+∴2221()3x y xy x y xy =+-=+-222()()()344x y x y x y ++≥+-⋅=, ∴2x y +≤,当且仅当1x y ==时取等号, ∴max () 2.x y +=思考方向四 考虑平行四边形法则过C 作CM ∥OB 交OA 于M ,作CN ∥OA 交OB 于N ,则OM CN 是平行四边形,由向量加法的平行四边形法则得:OC OM ON =+,在OMC ∆中,设AOC α∠=,则 120BOC α∠=-, 且||,||.OM x MC y == 解法6 利用正弦定理sin sin sin OM MC OCOCM COM OMC==∠∠∠, 1sin(60)sin sin 60x y αα==+,由等比性值得:1sin(60)sin sin 60x y αα+=++,∴2sin(30)x y α+=+,∴当30α=时,max () 2.x y += 解法7 利用余弦定理222||||||2||||cos60,OC OM MC OM MC =+-⋅∴2221()3x y xy x y xy =+-=+-222()()()344x y x y x y ++≥+-⋅=,∴2x y +≤,当且仅当1x y ==时取等号, ∴max () 2.x y += 【举一反三】1.如图,已知平面内有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=2 3.若OC →=λOA →+μOB →(λ,μ∈R ),求λ+μ的值.【答案】6【解析】 方法一 如图,作平行四边形OB 1CA 1,则OC →=OB 1→+OA 1→,因为OA →与OB →的夹角为120°,OA →与OC →的夹角为30°, 所以∠B 1OC =90°.在Rt △OB 1C 中,∠OCB 1=30°,|OC →|=23, 所以|OB 1→|=2,|B 1C →|=4,所以|OA 1→|=|B 1C →|=4, 所以OC →=4OA →+2OB →,所以λ=4,μ=2,所以λ+μ=6.方法二 以O 为原点,建立如图所示的平面直角坐标系,则A (1,0),B ⎝ ⎛⎭⎪⎫-12,32,C (3,3).由OC →=λOA →+μOB →,得⎩⎪⎨⎪⎧3=λ-12μ,3=32μ,解得⎩⎪⎨⎪⎧λ=4,μ=2.所以λ+μ=6.2.如图,四边形ABCD 是正方形,延长CD 至E ,使得DE =CD ,若点P 为CD 的中点,且AP →=λAB →+μAE →,则λ+μ=.【答案】 52【解析】 由题意,设正方形的边长为1,建立平面直角坐标系如图,则B (1,0),E (-1,1), ∴AB →=(1,0),AE →=(-1,1), ∵AP →=λAB →+μAE →=(λ-μ,μ), 又∵P 为CD 的中点,∴AP →=⎝ ⎛⎭⎪⎫12,1,∴⎩⎪⎨⎪⎧λ-μ=12,μ=1,∴λ=32,μ=1,∴λ+μ=52.1.在▱ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则向量BD →的坐标为__________. 【答案】 (-3,-5)【解析】 ∵AB →+BC →=AC →,∴BC →=AC →-AB →=(-1,-1),∴BD →=AD →-AB →=BC →-AB →=(-3,-5).2.已知向量a =(3,1),b =(0,-1),c =(k ,3),若a -2b 与c 共线,则k =________. 【答案】 1【解析】 ∵a -2b =(3,3),且a -2b ∥c ,∴3×3-3k =0,解得k =1.3.线段AB 的端点为A (x,5),B (-2,y ),直线AB 上的点C (1,1),使|AC →|=2|BC →|,则x +y =. 【答案】 -2或6【解析】 由已知得AC →=(1-x ,-4),2BC →=2(3,1-y ).由|AC →|=2|BC →|,可得AC →=±2BC →,则当AC →=2BC →时,有⎩⎪⎨⎪⎧1-x =6,-4=2-2y ,解得⎩⎪⎨⎪⎧x =-5,y =3,此时x +y =-2;当AC →=-2BC →时,有⎩⎪⎨⎪⎧1-x =-6,-4=-2+2y ,解得⎩⎪⎨⎪⎧x =7,y =-1,此时x +y =6.综上可知,x +y =-2或6.4. 已知O 为坐标原点,点A (4,0),B (4,4),C (2,6),则AC 与OB 的交点P 的坐标为. 【答案】 (3,3)【解析】 方法一 由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ).又AC →=OC →-OA →=(-2,6),由AP →与AC →共线,得(4λ-4)×6-4λ×(-2)=0, 解得λ=34,所以OP →=34OB →=(3,3),所以点P 的坐标为(3,3).方法二 设点P (x ,y ),则OP →=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y 4,即x =y .又AP →=(x -4,y ),AC →=(-2,6),且AP →与AC →共线,所以(x -4)×6-y ×(-2)=0,解得x =y =3,所以点P 的坐标为(3,3).5.已知向量a =⎝ ⎛⎭⎪⎫8,x 2,b =(x,1),其中x >0,若(a -2b )∥(2a +b ),则x =.【答案】 4【解析】 ∵向量a =⎝ ⎛⎭⎪⎫8,x 2,b =(x,1),∴a -2b =⎝ ⎛⎭⎪⎫8-2x ,x2-2,2a +b =(16+x ,x +1),∵(a -2b )∥(2a +b ),∴(8-2x )(x +1)-(16+x )⎝ ⎛⎭⎪⎫x2-2=0,即-52x 2+40=0,又∵x >0,∴x =4.6.在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为. 【答案】 3【解析】 建立如图所示的平面直角坐标系,则C 点坐标为(2,1).设BD 与圆C 切于点E ,连结CE ,则CE ⊥BD . ∵CD =1,BC =2, ∴BD =12+22=5,EC =BC ·CD BD =25=255,即圆C 的半径为255,∴P 点的轨迹方程为(x -2)2+(y -1)2=45.设P (x 0,y 0),则⎩⎪⎨⎪⎧x 0=2+255cos θ,y 0=1+255sin θ(θ为参数),而AP →=(x 0,y 0),AB →=(0,1),AD →=(2,0).∵AP →=λAB →+μAD →=λ(0,1)+μ(2,0)=(2μ,λ), ∴μ=12x 0=1+55cos θ,λ=y 0=1+255sin θ.两式相加,得λ+μ=1+255sin θ+1+55cos θ=2+sin(θ+φ)≤3⎝ ⎛⎭⎪⎫其中sin φ=55,cos φ=255, 当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.7.在直角梯形ABCD 中,AB ⊥AD ,DC ∥AB ,AD =DC =2,AB =4,E ,F 分别为AB ,BC 的中点,点P 在以A 为圆心,AD 为半径的圆弧DEM 上变动(如图所示).若AP →=λED →+μAF →,其中λ,μ∈R ,则2λ-μ的取值范围是.【答案】 ⎣⎢⎡⎦⎥⎤-22,12 【解析】 建立如图所示的平面直角坐标系,则A (0,0),E (2,0),D (0,2),F (3,1),P (cos α,sin α)⎝⎛⎭⎪⎫-π2≤α≤π2,即AP →=(cos α,sin α),ED →=(-2,2),AF →=(3,1). ∵AP →=λED →+μAF →,∴(cos α,sin α)=λ(-2,2)+μ(3,1), ∴cos α=-2λ+3μ,sin α=2λ+μ,∴λ=18(3sin α-cos α),μ=14(cos α+sin α),∴2λ-μ=12sin α-12cos α=22sin ⎝ ⎛⎭⎪⎫α-π4.∵-π2≤α≤π2,∴-3π4≤α-π4≤π4.∴-22≤22sin ⎝⎛⎭⎪⎫α-π4≤12.8.如图,在边长为2的正六边形ABCDEF 中,动圆Q 的半径为1,圆心在线段CD (含端点)上运动,P 是圆Q 上及内部的动点,设向量AP →=mAB →+nAF →(m ,n 为实数),求m +n 的最大值.【答案】5【解析】如图所示,①设点O 为正六边形的中心, 则AO →=AB →+AF →.当动圆Q 的圆心经过点C 时,与边BC 交于点P ,点P 为边BC 的中点.连结OP , 则AP →=AO →+OP →, ∵OP →与FB →共线,∴存在实数t ,使得OP →=tFB →, 则AP →=AO →+tFB →=AB →+AF →+t (AB →-AF →) =(1+t )AB →+(1-t )AF →,∴此时m +n =1+t +1-t =2,取得最小值.②当动圆Q 的圆心经过点D 时,取AD 的延长线与圆Q 的交点为P ,则AP →=52AO →=52()AB →+AF →=52AB →+52AF →,此时m +n =5,为最大值.9.在△ABC 中,AB =3,AC =2,∠BAC =60°,点P 是△ABC 内一点(含边界),若AP →=23AB →+λAC →,则|AP →|的最大值为________. 【答案】2133【解析】 以A 为原点,以AB 所在的直线为x 轴,建立如图所示的坐标系,∵AB =3,AC =2,∠BAC =60°, ∴A (0,0),B (3,0),C (1,3),设点P 为(x ,y ),0≤x ≤3,0≤y ≤3, ∵AP →=23AB →+λAC →,∴(x ,y )=23(3,0)+λ(1,3)=(2+λ,3λ),∴⎩⎨⎧x =2+λ,y =3λ,∴y =3(x -2),① 直线BC 的方程为y =-32(x -3),② 联立①②,解得⎩⎪⎨⎪⎧x =73,y =33,此时|AP →|最大,∴|AP →|=499+13=2133. 10.已知三角形ABC 中,AB =AC ,BC =4,∠BAC =120°,BE →=3EC →,若点P 是BC 边上的动点,则AP →·AE →的取值范围是________.【答案】 ⎣⎢⎡⎦⎥⎤-23,103 【解析】 因为AB =AC ,BC =4,∠BAC =120°,所以∠ABC =30°,AB =433.因为BE →=3EC →,所以BE →=34BC →.设BP →=tBC →,则0≤t ≤1,所以AP →=AB →+BP →=AB →+tBC →,又AE →=AB →+BE →=AB →+34BC →,所以AP →·AE →=(AB →+tBC →)·⎝⎛⎭⎪⎫AB →+34BC →=AB →2+tBC →·AB →+34BC →·AB →+34tBC →2=163+t ×4×433cos150°+34×4×433cos150°+34t ×42=4t -23, 因为0≤t ≤1,所以-23≤4t -23≤103,即AP →·AE →的取值范围是⎣⎢⎡⎦⎥⎤-23,103.11在矩形ABCD 中,AB =5,BC =3,P 为矩形内一点,且AP =52,若AP →=λAB →+μAD →(λ,μ∈R ),则5λ+3μ的最大值为______. 【答案】102【解析】 建立如图所示的平面直角坐标系,设P (x ,y ),B (5,0),C (5,3),D (0,3).∵AP =52,∴x 2+y 2=54. 点P 满足的约束条件为 ⎩⎪⎨⎪⎧0≤x ≤5,0≤y ≤3,x 2+y 2=54,∵AP →=λAB →+μAD →(λ,μ∈R ), ∴(x ,y )=λ(5,0)+μ(0,3),∴⎩⎨⎧x =5λ,y =3μ,∴x +y =5λ+3μ.∵x +y ≤2(x 2+y 2)=2×54=102, 当且仅当x =y 时取等号, ∴5λ+3μ的最大值为102. 12.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.【答案】 (-1,0)【解析】 由题意得,OC →=kOD →(k <0), 又|k |=|OC →||OD →|<1,∴-1<k <0.又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →, ∴mOA →+nOB →=k λOA →+k (1-λ)OB →, ∴m =k λ,n =k (1-λ), ∴m +n =k ,从而m +n ∈(-1,0).。
高三数学平面向量坐标运算试题答案及解析

高三数学平面向量坐标运算试题答案及解析1.已知m,n,则“a=2”是“m n”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件【答案】B【解析】由已知m n,故知“a=2”是“m n”的充分而不必要条件,故选B.【考点】1.向量平行的条件;2.充要条件.2.已知曲线C:,直线l:x=6.若对于点A(m,0),存在C上的点P和l上的点Q使得,则m的取值范围为 .【答案】【解析】由知是的中点,设,则,由题意,,解得.【考点】向量的坐标运算.3.已知曲线C:,直线l:x=6.若对于点A(m,0),存在C上的点P和l上的点Q使得,则m的取值范围为 .【答案】【解析】由知是的中点,设,则,由题意,,解得.【考点】向量的坐标运算.4.已知△ABC的顶点分别为A(2,1),B(3,2),C(-3,-1),BC边上的高为AD,则点D的坐标为()A.(-,)B.(,-)C.(,)D.(-,-)【答案】C【解析】设点D的坐标为(x,y),∵AD是边BC上的高,∴AD⊥BC,∴⊥,又C,B,D三点共线,∴∥.又=(x-2,y-1),=(-6,-3),=(x-3,y-2),∴,解方程组得x=,y=,∴点D的坐标为(,).5. [2014·北京东城区综合练习]已知向量a=(2,3),b=(-1,2),若ma+nb与a-2b共线,则=()A.-2B.2C.-D.【答案】C【解析】由向量a=(2,3),b=(-1,2)得ma+nb=(2m-n,3m+2n),a-2b=(4,-1),因为ma+nb与a-2b共线,所以(2m-n)×(-1)-(3m+2n)×4=0,整理得=-.6.已知,,如果∥,则实数的值等于()A.B.C.D.【答案】D【解析】由题意,即.【考点】向量平行的充要条件.7.(2013•重庆)OA为边,OB为对角线的矩形中,,,则实数k= _________.【答案】4【解析】由于OA为边,OB为对角线的矩形中,OA⊥AB,∴=0,即==(﹣3,1)•(﹣2,k)﹣10=6+k﹣10=0,解得k=4,故答案为 48.(2012•广东)若向量,向量,则=()A.(﹣2,﹣4)B.(3,4)C.(6,10)D.(﹣6,﹣10)【答案】A【解析】∵向量,向量,∴,∴=(﹣4,﹣7)﹣(﹣2,﹣3)=(﹣2,﹣4).故选A.9.向量a=(-1,1)在向量b=(3,4)方向上的投影为________.【答案】【解析】设向量a=(-1,1)与b=(3,4)的夹角为θ,则向量a在向量b方向上的投影为|a|·cos θ===.10.若向量,满足条件,则x=()A.6B.5C.4D.3【答案】A【解析】∵,,∴8=(8,8)﹣(2,5)=(6,3)∵∴12+3x=30∴x=6故选A11.在平面上,⊥,||=||=1,=+.若||<,则||的取值范围是()A.(0,]B.(,]C.(,]D.(,]【答案】D【解析】因为⊥,所以可如图建立直角坐标系,设O(x,y),||=a,||=b,因为=+,所以P(a,b)因为||=||=1,所以由知,点O在以点(a,0)为圆心,1为半径的圆上,所以同理由得,.所以.又由得,而由可得,,即,所以.综上所述,即.12.已知平面向量,,. 若,则实数的值为()A.B.C.D.【答案】B【解析】由题意知,,由于,则,解得,故选B.【考点】1.平面向量的坐标运算;2.共线向量13.已知A(-2,4)、B(3,-1)、C(-3,-4)且=3,=2,求点M、N及的坐标.【答案】(9,-18).【解析】∵ A(-2,4)、B(3,-1)、C(-3,-4),∴=(1,8),=(6,3),∴=3=(3,24),=2=(12,6).设M(x,y),则有=(x+3,y+4),∴ M点的坐标为(0,20).同理可求得N点的坐标为(9,2),因此=(9,-18).故所求点M、N的坐标分别为(0,20)、(9,2),的坐标为(9,-18).14.已知点点是线段的等分点,则等于.【答案】【解析】由题设,,,,……,,…… , .所以,,,,……,,…… , ,= = ,=所以答案是:【考点】1、等差数列的前项和;2、向量的坐标运算;3、向量的模.15.在平面直角坐标系中,若点,,,则________.【答案】【解析】.【考点】向量的坐标运算及向量的模.16.在平面直角坐标系中,△的顶点坐标分别为,,点在直线上运动,为坐标原点,为△的重心,则的最小值为__________.【答案】9【解析】把数量积用坐标表示出来,应该能求出其最小值了.设,由点坐标为,因此,所以当时,取得最小值9.【考点】数量积的坐标运算.17.已知向量,则向量的夹角为 .【答案】【解析】,所以,=,故答案为.【考点】平面向量的坐标运算、数量积、夹角.18.已知平面向量,,则向量()A.B.C.D.【答案】B【解析】,故选B.【考点】平面向量的坐标运算19.已知平面向量,,且,则向量()A.B.C.D.【答案】A【解析】,,,则,所以,故选A.【考点】平面向量的坐标运算20.在中,,,,则的大小为()A.B.C.D.【答案】B【解析】,,即,而,,解得,,,,,,故选B.【考点】1.平面向量的坐标运算;2.平面向量的数量积21.已知两点,向量,若,则实数的值为( )A.-2B.﹣l C.1D.2【答案】B【解析】由已知得,所以由得,,解得.【考点】向量垂直的坐标表示22.已知向量,,如果向量与垂直,则的值为()A.B.C.D.【答案】C【解析】,,,由于向量与垂直,所以,故选C.【考点】1.平面向量垂直;2.平面向量的坐标运算23.已知是正三角形,若与向量的夹角大于,则实数的取值范围是__________.【答案】【解析】建立如图所示坐标系,不妨设,则,所以,,由与向量的夹角大于,得,即,故答案为.【考点】平面向量的坐标运算,平面向量的数量积、夹角、模.24.设,,若,则实数________.【答案】【解析】因为,又,所以,答案,.【考点】平面向量坐标运算、平面向量数量积.25.已知双曲线:,若存在过右焦点的直线与双曲线相交于两点且,则双曲线离心率的最小值为()A.B.C.D.【答案】C【解析】因为过右焦点的直线与双曲线相交于两点且,故直线与双曲线相交只能如图所示的情况,即A点在双曲线的左支,B点在右支,设,右焦点,因为,所以,由图可知,,所以故,即,即,选C.【考点】平面向量的坐标运算、双曲线性质、双曲线离心率、不等式的性质.26.平行四边形中,=(1,0),=(2,2),则等于()A.4B.-4C.2D.-2【答案】A【解析】由,所以.故选A.【考点】1.向量的加减运算;2.向量的数量积27.若,则 .【答案】(3,4)【解析】.【考点】向量的坐标运算.28.若向量,则向量与的夹角的余弦值为 .【答案】【解析】,,两向量的夹角的余弦为.【考点】向量的加、减、数量积运算.29.已知向量a=(1,2),b=(x,1),u=a+2b,v=2a-b,且 u//v,则实数x的值是______.【答案】【解析】由,,又,所以,即.【考点】向量的坐标运算.30.在ΔABC中,=600,O为ΔABC的外心,P为劣弧AC上一动点,且(x,y∈R),则x+y的取值范围为_____.【答案】[1,2]【解析】如图建立直角坐标系,O为坐标原点,设C(1,0),,,则,,,即,,解得,,又,,.【考点】向量坐标运算、三角函数.31.如图,在扇形中,,为弧上且与不重合的一个动点,且,若存在最大值,则的取值范围为()A.B.C.D.【答案】D【解析】设扇形所在的圆的半径为1,以所在的直线为轴,为原点建立平面直角坐标系,,则,由题意可得,令,则在不是单调函数,从而在一定有解,即在时有解,可得,即,经检验此时此时正好有极大值点.【考点】1.向量的坐标运算;2.函数的性质.32.如图,AB是圆O的直径,C、D是圆O上的点,∠CBA=60°,∠ABD=45°,则()A. B. C. D.【答案】A【解析】设圆的半径为1,以作为坐标原点建立坐标系,则,,,,,,,,因为,所以,所以,,所以.【考点】向量运算点评:本题关键是建立坐标系,求出向量坐标,利用向量相等解题是关键,属中档题.33.若向量,且的夹角为钝角,则的取值范围是【答案】【解析】因为的夹角为钝角,所以,所以的取值范围是。