FMCW毫米波防撞雷达系统

合集下载

毫米波雷达工作原理

毫米波雷达工作原理

毫米波雷达工作原理
毫米波雷达是一种使用毫米波频段的无线电波来观测和探测物体的雷达系统。

其工作原理通常可以分为以下几个步骤:
1. 发射毫米波信号:毫米波雷达系统通过发射天线向目标发射毫米波信号。

这些信号具有较短的波长(通常在1-10毫米之间),因此能够提供更高的分辨率和精度。

2. 接收回波信号:一旦毫米波信号与目标物体相交,部分信号将被目标散射回雷达系统。

接收天线将捕捉到这些回波信号,并将其送入接收机进行进一步处理。

3. 信号处理:接收机将接收到的回波信号进行放大和滤波处理。

这可以帮助提取出有用的目标信息,并减少噪声的影响。

通过对接收到的信号进行特殊处理,可以确定物体的距离、速度和方向等信息。

4. 目标检测与跟踪:在信号处理之后,目标的位置和运动信息将被推算出来。

通过比较连续扫描周期内的信号变化,可以实现对目标的检测和跟踪。

这些数据可以用于生成雷达图像或进行其他相关的应用。

5. 数据分析与应用:最后,根据目标检测和跟踪的结果,可以进行更深入的数据分析和应用。

比如在自动驾驶领域,毫米波雷达可以帮助实时监测周围的车辆和障碍物,以确保安全驾驶。

总体而言,毫米波雷达工作原理是通过发送和接收毫米波信号,
以及对信号进行处理和分析,实现目标检测和跟踪的功能。

由于毫米波信号具有较短的波长和更高的分辨率,毫米波雷达在工业、军事和汽车等领域得到广泛应用。

fmcw 雷达原理

fmcw 雷达原理

fmcw 雷达原理FMCW雷达原理FMCW(Frequency Modulated Continuous Wave)雷达是一种基于频率调制连续波的雷达技术。

它通过调制发射信号的频率,并测量回波信号的频率差来实现目标检测与距离测量。

FMCW雷达在民用和军用领域都有广泛的应用,例如气象雷达、车载雷达和航空雷达等。

FMCW雷达的工作原理是通过连续地发射和接收调制频率的信号,并分析回波信号的频率差来获取目标的距离和速度信息。

具体来说,FMCW雷达发射一种连续而带有频率调制的信号。

这个信号的频率会连续地改变,通常是线性地增加或减少。

当这个信号发射并传播到目标物体后,部分信号会被目标反射回来。

接收器会接收到这些回波信号,并与发射信号进行比较。

由于目标物体的运动会导致回波信号的频率发生变化,所以回波信号的频率差可以用来计算目标物体的距离和速度。

根据多普勒效应,当目标靠近雷达时,回波信号的频率会增加;当目标远离雷达时,回波信号的频率会减小。

通过测量回波信号的频率差,可以确定目标物体与雷达之间的距离和速度信息。

FMCW雷达相比传统的脉冲雷达具有许多优势。

首先,FMCW雷达可以提供连续的测量结果,而脉冲雷达只能提供离散的测量点。

这使得FMCW雷达在目标跟踪和运动检测方面更加精确和灵活。

其次,FMCW雷达的脉冲宽度可以非常短,因此它具有更高的分辨率和精度。

此外,FMCW雷达还可以通过改变调制信号的带宽来调整测量距离和速度的范围。

FMCW雷达的应用非常广泛。

在气象雷达中,FMCW技术可以用于测量降水的强度和位置,从而提供天气预报和水文预警等重要信息。

在车载雷达中,FMCW雷达可以用于自动驾驶系统中的障碍物检测和跟踪。

在航空雷达中,FMCW雷达可以用于飞行控制和目标识别。

尽管FMCW雷达具有许多优点,但也存在一些挑战和限制。

首先,FMCW雷达受到多径效应的影响,即回波信号可能经过不同路径到达接收器,导致测量误差。

其次,FMCW雷达的信号处理和数据分析需要较高的计算能力和复杂的算法。

FMCW雷达系统及其前端数据采集模块设计

FMCW雷达系统及其前端数据采集模块设计

1 防 撞 雷 达 系统 方 案 的选 择 及 原 理
1 1 汽 车 防撞 探测 技术 的 比较 与选择 .
C niuu v) 达 防撞 系 统 是 降 低事 故率 的重 要 ot os n Wae 雷
主 动安全 手段 。
目前 汽车 防撞探 测 主要 是采 用红外 、 声 波 、 达 超 雷 等一 些测 量方 式 _ 。其 中红 外 、 光 、 4 J 激 摄像 头等 光学 技 术 价格低 廉且 技术 简单 , 全天 候工作 效果 不好 ; 声 但 超
d c d ue . K e wo d F CW ; mil trwa e rd r a tmo i n ic liin sse ; p e mp i c t n y rs M li e ・ v a a ; uo bl a t—ol o y tm me e s r a l ai i f o
a 叶弑 22 第5 第 期 0 年 2卷 5 1
El cr nc S i e to i c.& Te h /M a .1 c. y 5. 2 2 01
F W 雷 达 系统及 其前 端 数 据 采 集 模块 设计 MC
戚 昊琛 ,解 光 军 , 张 鉴
( 合肥 工业 大学 电子科学与应用物理学院 ,安徽 合肥
s se . Th e eo me t fa t mo iea t—olso y tmsi e e t e r si to u e y tms e d v lp n uo bl n ic l in s se n rc n asi n rd c d. Ba e n aFMCW l o i y s d o mi —
过连续 波 雷达 。奔 驰 S系列 、 洲 虎 X R 系 列 、 迪 美 K 奥

汽车防碰撞系统研究文献综述

汽车防碰撞系统研究文献综述

汽车防碰撞系统研究文献综述1.引言汽车碰撞有汽车碰撞到固定的物体或与行驶中的汽车相撞两种类型。

为了防止汽车在行驶中,特别在高速行驶时发生碰撞,一些现代汽车已装备了自动控制防碰撞系统,这是一种主动安全系统。

汽车行驶时,防碰撞系统处于监测状态,当汽车接近前车车尾或超越前车时,该系统将发出警告信号。

在发出警告后,如果驾驶员没有采取减速制动措施,该系统便启动紧急制动装置,以避免发生碰撞事故。

2.概述防碰撞控制系统装有测距传感器,它们利用激光、超声波或红外线,测得汽车与障碍物间的距离,这个距离信号,加上车速传感器和车轮转角传感器的信号送入电子控制器,通过计算求出行驶汽车与前方物体的实际距离以及相互接近的相对速度,并向驾驶员发出预告信号或显示前方物体的距离。

当将要碰撞时,控制器向制动装置和节气门控制电路发出控制指令,使汽车发动机降速并及时制动,从而有效地避免碰撞。

3.测距传感器(1)防碰撞传感器① CCD照相机CCD(电荷耦合器件)摄像元件可以读取受光元件接收的光通量放出的电流值,并作为图像信号输出。

在夜间,由于照相机处于低照度的环境,只有在汽车前、后照灯打开时才能确认障碍物。

汽车装设的CCD照相机如上图所示,当点火开关接通时,变速器换档杆换到前进档或倒档,多功能显示板上就能显示出车辆前方或后方的图像。

② 激光雷达激光雷达是从激光发送至被测物体,然后反射回来被接收,其间的时间差即用来计算至障碍物的距离。

早期的车用激光雷达都是发送多股激光光束,并依靠前车反射镜的反射时间来测定距离。

现代汽车除了测定前方车的距离外还要对前方多辆车的位置进行辨识,因而开始采用扫描式激光雷达。

根据物体的反射特性,激光的反射光亮变化很大,因此可能检测出的距离也是变化的。

由于车辆后部的反射镜等容易反射,故可以检测出稳定的较长距离。

有少许凹凸的铁板等因不能得到充足的反射光量,故测出的距离较短。

另外,在检测侧面方向及后方的障碍物时,与检测前方障碍物的情况不同,如果障碍物上没有反射镜,那么由于各种障碍物的反射特性变化很大,故可能稳定测出的距离 变短。

基于毫米波雷达的汽车开门防撞系统

基于毫米波雷达的汽车开门防撞系统

基于毫米波雷达的汽车开门防撞系统基于毫米波雷达的汽车开门防撞系统随着汽车智能化的快速发展,汽车开门防撞系统作为一项重要的安全功能得到了越来越多车辆的采用。

其中,基于毫米波雷达的汽车开门防撞系统以其高精度、大范围和快速响应等特点,成为目前最为先进的技术之一。

汽车开门防撞系统的重要性不容忽视。

目前,汽车事故中很大一部分是由于开车门时发生的碰撞造成的。

特别是在繁忙的城市街道、停车场等地方,驾驶员与其他行人、自行车或其他车辆的接触频率较高。

传统的开门方式主要依赖人眼和车窗的视野来判断周围环境,但这并不能保证百分之百的安全。

因此,开发一种可靠的汽车开门防撞系统势在必行。

毫米波雷达是一种利用毫米波频段进行无线通信和探测的技术。

相比于红外线和超声波等传统的车辆探测技术,毫米波雷达具有更长的探测距离、更高的分辨率和更强的抗干扰能力。

这使得它成为汽车开门防撞系统的理想选择。

基于毫米波雷达的汽车开门防撞系统主要由毫米波雷达传感器、控制器和警示装置组成。

毫米波雷达传感器作为系统的核心部件,可以实时监测车辆周围的环境状况,包括行人、车辆和障碍物等。

同时,它还可以识别这些目标物体的运动速度和方向,为后续的决策提供基础数据。

控制器则负责接收传感器的数据,并通过算法进行数据处理和分析,以判断是否存在开门碰撞的危险。

如果存在危险,警示装置将发出声音或闪光等信号,提醒驾驶员注意,并确保开门操作的安全。

基于毫米波雷达的汽车开门防撞系统具有许多优点。

首先,它可以实时、准确地监测车辆周围的环境,无论天气条件如何,都能够正常工作。

其次,毫米波雷达具有高分辨率和强大的抗干扰能力,可以有效地识别出小型、低速运动的目标物体,避免误报和漏报的情况发生。

此外,系统的响应速度快,可以在驾驶员开门之前及时发出警报,提供更多时间做出安全决策。

最重要的是,基于毫米波雷达的汽车开门防撞系统可以在各种复杂的交通环境中工作,为驾驶员和乘客提供全方位的安全保障。

FMCW雷达港口起重机防撞系统的设计与开发

FMCW雷达港口起重机防撞系统的设计与开发

F W 雷 达 港 口起 重 机 防撞 系统 的设 计 与 开发 MC
周 洪 , 邹祥 林 ,吴邦春
( 武汉大学 自动化 系 武汉 摘 4 07 ) 3 0 2
要: 防撞系统的关键环节在于测距 , 本文设计的港 口起重机防撞系统放弃 了常用 的测距 方式 , 采用 了 F W 毫米波雷达测 MC
图 I 雷达装置原 理框f a a q i me t i . r il i g a o d re u p n n r
压控振荡器经过压控 电压调制后 , 出线性 变化 的 输
维普资讯
1 9 60
( uo ai eate t Wua nvrt,W h n4 0 7 ,C ia A tm t nDp r n , h nU i sy u a 30 2 hn ) o m ei
Ab t a t s r c :Ditn e me s r me ti r c a e h oo y i he c a h p e e tn y tm.Th li trwa e r da sa c a u e n s a c u iltc n l g n t r s — r v n i g s se e mi mee v a r l i a h r r o n o l s d i ih p e ii n r n e fn e fs o td sa c s we t e p o fa d c u d be u e n hg r cso a g d ro h r itn e,S d p li t rwa e FM— i O we a o tmil mee v CW a r o r pa e ta i o a itnc a u e n t d i h r ne c a h— r v n i y t m e i n.Th — r da t e lc r dt n ld sa e me s r me tmeho n t e c a r s p e e tng s se d sg i e de sg c e so e h d r s d o i s h me ft a wa e ba e n DSP a d s fwa e a e p e e t d i h s p p r n h r n ot r r s n e n t i a e .Ditn e me s rme te p r— r sa c a u e n x e i me t r are u ,whih p o e he fa i lt ft e s se . n swe e c rid o t c r v st e sbi y o y tm i h K e r s:c a e c a h p e e t y wo d rn rs — rv ni ng;FMCW a a ;d sa c a u e n ;DS r d r itn e me s r me t P

FMCW雷达快速高精度测距算法

FMCW雷达快速高精度测距算法

FMCW雷达快速高精度测距算法FMCW(Frequency-Modulated Continuous Wave)是一种基于连续波的雷达测距技术,由于其快速高精度的特点,在许多领域得到广泛应用。

本文将介绍FMCW雷达的原理,并详细阐述其快速高精度测距算法。

FMCW雷达通过发射一种连续频率变化的信号,并接收到反射回来的信号来实现测距。

它的测距原理是利用多普勒效应,当发射的信号遇到靠近的目标物体时,其频率会发生微小的改变,通过测量频率变化的大小,可以确定目标物体到雷达的距离。

快速高精度测距的关键在于频率变化的控制和信号的处理。

首先,为了实现快速测距,需要快速而准确地控制信号的频率变化。

通常采用锁相环(Phase Locked Loop)技术实现,通过与输入参考信号进行相位比较,产生一个错误信号,然后通过调整本振频率来消除错误信号,从而实现精确的频率变化控制。

接下来是信号的处理,FMCW雷达接收到的信号是一系列的连续波形,需要对这些波形进行处理以获取目标物体的距离信息。

常用的处理算法是快速傅里叶变换(FFT),通过对接收到的信号进行频谱分析,可以得到不同频率的成分,进而确定目标物体的距离。

在进行测距之前,需要进行一些预处理工作,例如去除杂散信号、消除信号的幅度变化等,以提高测距的精度。

同时,还需要注意参考信号与接收信号之间的相位差,这些因素都会影响测距的准确度。

除了以上基本的测距原理和处理方法,还有一些额外的技术可以提高FMCW雷达的测距性能。

例如,使用多通道接收器可以降低误差,并提高系统的鲁棒性。

同时,还可以结合其他传感器,例如惯性测量单元(Inertial Measurement Unit,简称IMU)来实现更精确的测距结果。

总之,FMCW雷达是一种快速高精度测距的技术,其原理是基于多普勒效应实现的。

通过对信号的频率变化进行控制和信号的处理,可以实现对目标物体的精确测距。

同时,还可以通过一些额外的技术手段来进一步提高测距的准确性和稳定性。

调频连续波雷达(FMCW)测距测速原理

调频连续波雷达(FMCW)测距测速原理

调频连续波雷达(FMCW)测距测速原理FMCW雷达的工作原理基于多普勒效应和频率测量。

当发射机发送连续变化的频率调制信号时,信号的频率将会随时间线性变化。

这个频率变化的斜率称为调频斜率。

当发射信号经过天线发射出去,在遇到目标后,信号会被目标散射回来,然后被接收天线接收。

当接收天线接收到返回信号时,会将信号和发射信号进行混频处理,将其与发射信号相乘。

这样做的目的是为了提取目标的频率信息。

由于目标的速度不同,返回信号的频率也会有所不同。

根据多普勒效应的原理,当目标向雷达揭示而来时,频率会比发射信号的频率高;相反,当目标远离雷达时,频率会比发射信号的频率低。

接收到的混频信号将通过低通滤波器进行滤波,以去除不想要的频率成分。

然后,信号将被转换成数字信号,通过快速傅里叶变换(Fourier Transform)进行频谱分析。

频谱的峰值表示目标的频率,根据频率的变化可以计算出目标的速度。

根据多普勒频移的公式,测量得到的频移值与目标的速度成正比。

利用目标的速度与雷达到目标的距离之间的关系,可以通过简单的数学运算得到目标的距离。

由于信号频率的线性变化,可以通过测量信号的起始频率和终止频率,以及相应的时间间隔,计算得到距离。

在FMCW雷达系统中,还需要对信号的回波强度进行测量,以评估目标的反射特性。

这可以通过测量接收信号的功率来实现。

通过分析接收到的功率信号,可以确定目标的散射截面积(Cross Section),从而估计目标的大小。

总结起来,FMCW雷达的测距测速原理基于多普勒效应和频率测量。

通过发送频率变化的信号,接收并处理返回信号,测量目标的频率和功率,从而得到目标的距离、速度和反射特性。

这种雷达系统具有高精度、高分辨率和广泛测速范围的优势,广泛应用于交通监测、无人驾驶、气象观测等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FMCW毫米波防撞雷达系统
汽车防碰撞系统对提高汽车行驶安全性十分重要,该系统的研究一直倍受重视。

从1971年开始,相继出现过超声波、激光、红外、微波等多种方式的主动汽车防碰撞系统,但是以上系统均存在一些不足,未能在汽车上大量推广应用。

随着各国高速公路网的快速发展,恶性交通事故不断增加,为减少事故,先后采用行驶安全带、安全气囊等保护措施,但这些技术均为被动防护,不能从根本上解决问题。

毫米波是指波长介于1~10mm之间的电磁波,其RF带宽大,分辨率高,天线部件尺寸小,能适应恶劣环境,所以毫米波雷达系统具有重量轻、体积小和全天候等特点,“主动汽车毫米波防碰撞雷达系统”成为近年来国际上研究与开发的热点,并已有产品开始投入市场,前景十分看好。

本文介绍了主动汽车防碰撞毫米波雷达的原理,报导了我们研制出的SAE-100型毫米波防碰撞雷达样机。

汽车防撞毫米波雷达系统原理
主动汽车防碰撞是以雷达测距、测速为基础的。

防撞雷达系统实时监测车辆的前方,当有危险目标(如行驶前方停止或慢行的车辆)出现,雷达系统提前向司机发出报警,使司机及时作出反应,同时雷达输出信号到达汽车控制系统,根据情况进行自动刹车或减速。

毫米波防撞雷达系统有调频连续波(FMCW)雷达和脉冲雷达两种。

对于脉冲雷达系统,当目标距离很近时,发射脉冲和接收脉冲之间的时间差非常小,这就要求系统采用高速信号处理技术,近距离脉冲雷达系统就变的十分复杂,成本也大幅上升。

因而汽车毫米波雷达防撞系统常采用结构简单、成本较低、适合做近距离探测的调频连续波雷达体制。

毫米波FMCW雷达系统结构
FMCW汽车雷达系统如图1所示,包括天线、收发模块、信号处理模块和报警模块或汽车制动装置。

射频收发前端是雷达系统的核心部件。

国内外已经对前端进行了大量深入研究,并取得了长足的进展。

已经研制出各种结构的前端,主要包括波导结构前端,微带结构前端以及前端的单片集成。

国内研制的射频前端主要是波导结构前端。

一个典型的射频前端主要包括线性VCO、环行器和平衡混频器三部分,如图2所示。

前端混频输出的中频信号经过中频放大送至后级数据处理部分。

数据处理部分的基本目标是消除不必要信号(如杂波)和干扰信号,并对经过中频放大的混频信号进行处理,从信号频谱中提取目标距离和速度等信息。

毫米波FMCW雷达测距、测速原理
雷达系统通过天线向外发射一列连续调频毫米波,并接收目标的反射信号。

发射波的频率随时间按调制电压的规律变化。

一般调制信号为三角波信号,发射信号与接收信号的频率变化如图3a所示。

反射波与发射波的形状相同,只是在时间上有一个延迟(t,(t与目标距离R的关系可表示为
△t=2R/c(1)
式中c:光速发射信号与反射信号在某一时刻的频率差即为混频输出的中频信号频率(f (如图3b)。

根据三角关系,由图3a可以得出目标距离R为
R=(cT/4△F)△f(2)
也就是说,目标距离与前端输出的中频频率成正比。

如果反射信号来自一个相对运动的目标,则反射信号中包括一个由目标的相对运动所引起的多谱勒频移fd(如图4)。

在三角波的上升沿和下降沿输出中频频率可分别表示为
fb+=△f-fd(3)
fb-=△f+fd(4)
式中——(f:目标相对静止时的中频频率;fd:多谱勒频移,其符号与目标相对运动的方向有关。

根据多谱勒原理,目标的相对运动速度v为
v=c/4f0(fb--fb+)
=λ(fb--fb+)(5)
式中——f0:发射波中心频率;:发射波波长。

速度v的符号与目标相对运动的方向有关,目标靠近时v为正值,反之v为负。

三角波上升沿和下降沿的中频信号频率由DSP进行FFT变换得到。

由公式(2)和(5)就可以计算出目标距离和目标相对运动速度。

SAE-100型毫米波防碰撞雷达系统的研制
上海汽车电子工程中心经过近一年的研究,已经研制出SAE-100型毫米波防碰撞雷达系统样机。

该样机采用零差FMCW体制,系统结构如图所示,工作频率35GHz,测距范围>100m,测速范围>100km/h。

系统采用了增益为26dB的小型喇叭天线,发射功率40mW 的波导结构前端,以及先进的DSP数据处理技术。

上面部分包括天线、前端和中频放大模块,尺寸为19cm(15cm(16cm,输出信号为经过放大了的中频信号。

下面部分为数据处理和显示报警模块,可以显示目标距离和相对运动速度。

当目标距离小于100m时,根据距离的不同可以用三种不同的音调进行报警。

相关文档
最新文档