随机二叉搜索树上的若干强极限性质
二叉树知识点总结

二叉树知识点总结1. 二叉树的性质1.1 二叉树的性质一:二叉树的深度二叉树的深度是指从根节点到叶子节点的最长路径长度。
对于一个空树而言,它的深度为0;对于只有一个根节点的树而言,它的深度为1。
根据定义可知,深度为k的二叉树中,叶子节点的深度值为k。
由此可知,二叉树的深度为所有叶子节点深度的最大值。
1.2 二叉树的性质二:二叉树的高度二叉树的高度是指从根节点到叶子节点的最短路径长度。
对于一个空树而言,它的高度为0;对于只有一个根节点的树而言,它的高度为1。
由此可知,二叉树的高度总是比深度大一。
1.3 二叉树的性质三:二叉树的节点数量对于一个深度为k的二叉树而言,它最多包含2^k - 1个节点。
而对于一个拥有n个节点的二叉树而言,它的深度最多为log2(n+1)。
1.4 二叉树的性质四:满二叉树满二叉树是一种特殊类型的二叉树,它的每个节点要么是叶子节点,要么拥有两个子节点。
满二叉树的性质是:对于深度为k的满二叉树而言,它的节点数量一定是2^k - 1。
1.5 二叉树的性质五:完全二叉树完全二叉树是一种特殊类型的二叉树,它的所有叶子节点都集中在树的最低两层,并且最后一层的叶子节点从左到右依次排列。
对于一个深度为k的完全二叉树而言,它的节点数量一定在2^(k-1)和2^k之间。
2. 二叉树的遍历二叉树的遍历是指按照一定的顺序访问二叉树的所有节点。
二叉树的遍历主要包括前序遍历、中序遍历和后序遍历三种。
2.1 前序遍历(Pre-order traversal)前序遍历的顺序是:根节点 -> 左子树 -> 右子树。
对于一个二叉树而言,前序遍历的结果就是按照“根-左-右”的顺序访问所有节点。
2.2 中序遍历(In-order traversal)中序遍历的顺序是:左子树 -> 根节点 -> 右子树。
对于一个二叉树而言,中序遍历的结果就是按照“左-根-右”的顺序访问所有节点。
2.3 后序遍历(Post-order traversal)后序遍历的顺序是:左子树 -> 右子树 -> 根节点。
动态规划-最优二叉搜索树

动态规划-最优⼆叉搜索树摘要: 本章介绍了⼆叉查找树的概念及操作。
主要内容包括⼆叉查找树的性质,如何在⼆叉查找树中查找最⼤值、最⼩值和给定的值,如何找出某⼀个元素的前驱和后继,如何在⼆叉查找树中进⾏插⼊和删除操作。
在⼆叉查找树上执⾏这些基本操作的时间与树的⾼度成正⽐,⼀棵随机构造的⼆叉查找树的期望⾼度为O(lgn),从⽽基本动态集合的操作平均时间为θ(lgn)。
1、⼆叉查找树 ⼆叉查找树是按照⼆叉树结构来组织的,因此可以⽤⼆叉链表结构表⽰。
⼆叉查找树中的关键字的存储⽅式满⾜的特征是:设x为⼆叉查找树中的⼀个结点。
如果y是x的左⼦树中的⼀个结点,则key[y]≤key[x]。
如果y是x的右⼦树中的⼀个结点,则key[x]≤key[y]。
根据⼆叉查找树的特征可知,采⽤中根遍历⼀棵⼆叉查找树,可以得到树中关键字有⼩到⼤的序列。
介绍了⼆叉树概念及其遍历。
⼀棵⼆叉树查找及其中根遍历结果如下图所⽰:书中给出了⼀个定理:如果x是⼀棵包含n个结点的⼦树的根,则其中根遍历运⾏时间为θ(n)。
问题:⼆叉查找树性质与最⼩堆之间有什么区别?能否利⽤最⼩堆的性质在O(n)时间内,按序输出含有n个结点的树中的所有关键字?2、查询⼆叉查找树 ⼆叉查找树中最常见的操作是查找树中的某个关键字,除了基本的查询,还⽀持最⼤值、最⼩值、前驱和后继查询操作,书中就每种查询进⾏了详细的讲解。
(1)查找SEARCH 在⼆叉查找树中查找⼀个给定的关键字k的过程与⼆分查找很类似,根据⼆叉查找树在的关键字存放的特征,很容易得出查找过程:⾸先是关键字k与树根的关键字进⾏⽐较,如果k⼤⽐根的关键字⼤,则在根的右⼦树中查找,否则在根的左⼦树中查找,重复此过程,直到找到与遇到空结点为⽌。
例如下图所⽰的查找关键字13的过程:(查找过程每次在左右⼦树中做出选择,减少⼀半的⼯作量)书中给出了查找过程的递归和⾮递归形式的伪代码:1 TREE_SEARCH(x,k)2 if x=NULL or k=key[x]3 then return x4 if(k<key[x])5 then return TREE_SEARCH(left[x],k)6 else7 then return TREE_SEARCH(right[x],k)1 ITERATIVE_TREE_SEARCH(x,k)2 while x!=NULL and k!=key[x]3 do if k<key[x]4 then x=left[x]5 else6 then x=right[x]7 return x(2)查找最⼤关键字和最⼩关键字 根据⼆叉查找树的特征,很容易查找出最⼤和最⼩关键字。
二叉排序树

二叉排序树1.二叉排序树定义二叉排序树(Binary Sort Tree)或者是一棵空树;或者是具有下列性质的二叉树:(1)若左子树不空,则左子树上所有结点的值均小于根结点的值;若右子树不空,则右子树上所有结点的值均大于根结点的值。
(2)左右子树也都是二叉排序树,如图6-2所示。
2.二叉排序树的查找过程由其定义可见,二叉排序树的查找过程为:(1)若查找树为空,查找失败。
(2)查找树非空,将给定值key与查找树的根结点关键码比较。
(3)若相等,查找成功,结束查找过程,否则:①当给值key小于根结点关键码,查找将在以左孩子为根的子树上继续进行,转(1)。
②当给值key大于根结点关键码,查找将在以右孩子为根的子树上继续进行,转(1)。
3.二叉排序树插入操作和构造一棵二叉排序树向二叉排序树中插入一个结点的过程:设待插入结点的关键码为key,为将其插入,先要在二叉排序树中进行查找,若查找成功,按二叉排序树定义,该插入结点已存在,不用插入;查找不成功时,则插入之。
因此,新插入结点一定是作为叶子结点添加上去的。
构造一棵二叉排序树则是逐个插入结点的过程。
对于关键码序列为:{63,90,70,55,67,42,98,83,10,45,58},则构造一棵二叉排序树的过程如图6-3所示。
4.二叉排序树删除操作从二叉排序树中删除一个结点之后,要求其仍能保持二叉排序树的特性。
设待删结点为*p(p为指向待删结点的指针),其双亲结点为*f,删除可以分三种情况,如图6-4所示。
(1)*p结点为叶结点,由于删去叶结点后不影响整棵树的特性,所以,只需将被删结点的双亲结点相应指针域改为空指针,如图6-4(a)所示。
(2)*p结点只有右子树或只有左子树,此时,只需将或替换*f结点的*p子树即可,如图6-4(b)、(c)所示。
(3)*p结点既有左子树又有右子树,可按中序遍历保持有序地进行调整,如图6-4(d)、(e)所示。
设删除*p结点前,中序遍历序列为:① P为F的左子女时有:…,Pi子树,P,Pj,S子树,Pk,Sk子树,…,P2,S2子树,P1,S1子树,F,…。
二叉排序树

就维护表的有序性而言,二叉排序树无须移 动结点,只需修改指针即可完成插入和删 除操作,且其平均的执行时间均为O(lgn), 因此更有效。二分查找所涉及的有序表是 一个向量,若有插入和删除结点的操作, 则维护表的有序性所花的代价是O(n)。当 有序表是静态查找表时,宜用向量作为其 存储结构,而采用二分查找实现其查找操 作;若有序表里动态查找表,则应选择二 叉排序树作为其存储结构。
if(q->lchild) //*q的左子树非空,找*q的左子 树的最右节点r. {for(q=q->lchild;q->rchild;q=q->rchild); q->rchild=p->rchild; } if(parent->lchild==p)parent->lchild=p>lchild; else parent->rchild=p->lchild; free(p); /释放*p占用的空间 } //DelBSTNode
下图(a)所示的树,是按如下插入次序构成的: 45,24,55,12,37,53,60,28,40,70 下图(b)所示的树,是按如下插入次序构成的: 12,24,28,37,40,45,53,55,60,70
在二叉排序树上进行查找时的平均查找长度和二叉树的形态 有关: ①在最坏情况下,二叉排序树是通过把一个有序表的n 个结点依次插入而生成的,此时所得的二叉排序树蜕化为 棵深度为n的单支树,它的平均查找长度和单链表上的顺 序查找相同,亦是(n+1)/2。 ②在最好情况下,二叉排序树在生成的过程中,树的形 态比较匀称,最终得到的是一棵形态与二分查找的判定树 相似的二叉排序树,此时它的平均查找长度大约是lgn。 ③插入、删除和查找算法的时间复杂度均为O(lgn)。 (3)二叉排序树和二分查找的比较 就平均时间性能而言,二叉排序树上的查找和二分查找 差不多。
二叉树实验心得(优秀5篇)

二叉树实验心得(优秀5篇)二叉树实验心得篇1二叉树实验心得在进行二叉树实验的过程中,我不仅掌握了一个重要的数据结构——二叉树,还从中体验到了深入理解一个数据结构的魅力和乐趣。
在实验开始时,我首先学习了二叉树的基本概念,如节点、左子树、右子树等。
我明白了二叉树是一种重要的数据结构,它具有层次结构,每个节点最多有两个子节点,且没有祖先节点的左或右子树中的任何一个节点。
接下来,我学习了二叉树的遍历,包括前序遍历、中序遍历和后序遍历。
通过实验,我明白了这些遍历方式的实现原理,并能够灵活地应用它们。
此外,我还学习了递归和迭代两种方法来实现这些遍历方式,这两种方法各有优点和缺点,我深入了解了它们之间的差异。
在进行实验的过程中,我遇到了一些问题,如递归方法导致的栈溢出,以及中序遍历中的栈和队列的使用。
我通过查阅资料和讨论,解决了这些问题,并从中获得了宝贵的经验。
通过这次实验,我更加深入地理解了二叉树的结构和遍历方式,并能够在实际应用中灵活使用。
我明白了数据结构的重要性,以及深入理解数据结构的过程中的乐趣。
同时,我也学会了如何解决问题,并从中获得了宝贵的经验。
总的来说,这次实验是一个非常有意义的经历,我不仅掌握了新的知识,还锻炼了自己的解决问题的能力。
我相信,这次实验将对我未来的学习和工作产生积极的影响。
二叉树实验心得篇2二叉树实验心得这次实验我们了解了二叉树的基本概念,包括二叉树、结点、左子树、右子树、祖先节点等概念。
通过实验,我们对二叉树的性质有了更深刻的理解,比如二叉树只有左子树或右子树,没有左右子树的情况,即空子树。
在实现二叉树时,我们了解了二叉树节点的定义和插入节点的多种方法,包括先插法、后插法等。
我们还学会了利用二叉树来解决实际问题,比如快速查找等问题。
在实验过程中,我们对二叉树的知识进行了深入探究,收获颇丰。
通过这次实验,我对二叉树有了更深刻的认识,明白了二叉树在计算机科学中的重要性。
同时,我对自己的编程能力也有了新的认识,发现自己可以在理解算法的基础上更好地实现它们。
数据结构——- 二叉树

证明: 5.1 二叉树的概念
(1)总结点数为 ●二叉树的主要性质 n=n0+n1+n2 (2)除根结点外,每个 ●性质3: 结点都有一个边e进入 任何一棵二叉树,若其终端结点数为n0, n=e+1 度为2的结点数为n2,则n0=n2+1 (3)边e又是由度为1或2 A 的点射出,因此 e=n1+2n2 G B (4)由(2)(3) F C D n=n1+2n2+1 (5)由(4)-(1)可得 G n0=n2+1
《数据结构与算法》
★★★★★
第五章 二叉树
廊坊师范学院 数学与信息科学学院
树型结构--实例:五子棋
A
B
D
E
F
C
…...........
…...........
第五章 二叉树
本章重点难点
重点: 二叉树的定义,性质,存储结 构以及相关的应用——遍历,二叉搜 索树,堆优先 队列,Huffman树等 难点: 二叉树的遍历算法及相关应用
证明: 5.1 二叉树的概念
(1)总结点数为 ●二叉树的主要性质 n=n0+n1+n2 (2)除根结点外,每个 ●性质3: 结点都有一个边e进入 任何一棵二叉树,若其终端结点数为n0, n=e+1 度为2的结点数为n2,则n0=n2+1 (3)边e又是由度为1或2 A 的点射出,因此 e=n1+2n2 G B (4)由(2)(3) F C D n=n1+2n2+1 (5)由(4)-(1)可得 G n0=n2+1
A B C E D F G
证明: 由性质4可推出
由性质2(深度为k的 二叉树,至多有2k+1-1 个结点)可知,高度 为h(k+1)的二叉树,其 有n (n>0)个结点的完全二叉树的高度为 结点个数n满足: 「log2(n+1) ,深度为「log2(n+1) -1 2h-1-1<n<=2h-1 高度:二叉树中最大叶结点的层数+1 2h-1<n+1<=2h 取对数得到: 0层 1 h-1<log2(n+1)<=h 3 1层 2 因为h是整数,所以 h= log2(n+1) 5 2层 4
二叉树的性质总结

一、二叉树的性质性质1、二叉树的第i 层上至多有2 i-1(i ≥1)个结点。
用数学归纳法证明推广:k 叉树(或度为k 的树)的第i 层上至多有k i-1(i ≥1)个结点性质2、度为h 的二叉树中至多含有2h-1个结点。
21-1 + 2 2-1+……+ 2 h-1 = 2 h -1推广:深度为h 的k 叉树(或度为k 的树)中至多含有 (k h -1)/(k-1)个结点k 1-1 + k 2-1+……+ k h-1 =( k h -1)/(k-1)性质3、若在任意一棵二叉树中,有n0个叶子结点,有n2个度为2的结点,则:n0=n2+1证明:设:有n0个叶子结点,有n1个度为1的结点,有n2个度为2的结点, 则二叉树中结点总数为:n=n0+n1+ n2 (1)设分支的总数为m,则:m= n1+2 n2 (2)因为n=m+1(3)所以: n0+n1+ n2 = n1+2 n2 +1整理得: n0= n2+1推广: 度为k 的树有n 1个度为1的结点, n 2个度为2的结点,n k 个度为k 的结点则n 0为:性质3推广的证明于性质3的证明设:有n 0个叶子结点,有n 1个度为1的结点, n 2个度为2的结点,n k 个度为k 的结点 则结点总数为:n=n 0+n 1+ n 2 +……+n k (1)设分支的总数为m,则:m= n 1+2 n 2+……+kn k因为n=m+1(3)所以:n 0+n 1+ n 2 +……+n k = n 1+2 n 2+……+kn k +1整理得: n 0= 0n 1+1n 2+……+(k-1)n k +1性质4、具有n 个结点的完全二叉树,其深度为⎣㏒2n ⎦+1证明:设n 个结点的完全二叉树的深度为k ,根据性质2可知,k-1层满二叉树的结点总数为: 2k-1-1k 层满二叉树的结点总数为: 2k -1显然有:2k-1 - 1 < n ≤ 2k - 1 [ 2k- 1 ≤ n < 2k取对数有:k -1 ≤ log 2n < k因为k 是整数,所以k -1 = ⎣log 2n ⎦ , k= ⎣㏒2n ⎦+1结论成立。
数据结构 -第12周查找第3讲-二叉排序树.pdf

以二叉树或树作为表的组织形式,称为树表,它是一类动态查找表,不仅适合于数据查找,也适合于表插入和删除操作。
常见的树表:二叉排序树平衡二叉树B-树B+树9.3.1 二叉排序树二叉排序树(简称BST)又称二叉查找(搜索)树,其定义为:二叉排序树或者是空树,或者是满足如下性质(BST性质)的二叉树:❶若它的左子树非空,则左子树上所有节点值(指关键字值)均小于根节点值;❷若它的右子树非空,则右子树上所有节点值均大于根节点值;❸左、右子树本身又各是一棵二叉排序树。
注意:二叉排序树中没有相同关键字的节点。
二叉树结构满足BST性质:节点值约束二叉排序树503080209010854035252388例如:是二叉排序树。
66不试一试二叉排序树的中序遍历序列有什么特点?二叉排序树的节点类型如下:typedef struct node{KeyType key;//关键字项InfoType data;//其他数据域struct node*lchild,*rchild;//左右孩子指针}BSTNode;二叉排序树可看做是一个有序表,所以在二叉排序树上进行查找,和二分查找类似,也是一个逐步缩小查找范围的过程。
1、二叉排序树上的查找Nk< bt->keybtk> bt->key 每一层只和一个节点进行关键字比较!∧∧p查找到p所指节点若k<p->data,并且p->lchild=NULL,查找失败。
若k>p->data,并且p->rchild=NULL,查找失败。
查找失败的情况加上外部节点一个外部节点对应某内部节点的一个NULL指针递归查找算法SearchBST()如下(在二叉排序树bt上查找关键字为k的记录,成功时返回该节点指针,否则返回NULL):BSTNode*SearchBST(BSTNode*bt,KeyType k){if(bt==NULL||bt->key==k)//递归出口return bt;if(k<bt->key)return SearchBST(bt->lchild,k);//在左子树中递归查找elsereturn SearchBST(bt->rchild,k);//在右子树中递归查找}在二叉排序树中插入一个关键字为k的新节点,要保证插入后仍满足BST性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机二叉搜索树上的若干强极限性质
随机图论近十年已成为离散数学的主流之一,它创始于上世纪40年代,也就是图论发展的第三个阶段,由Erdos等人创立,是图论的一个分支。
在随机图中,边的出现成为概率事件。
随机图和经典图之间最大的区别在于引入了随机的方法,使得图的空间变得更大,其数学性质也发生了巨大的变化。
本文所研究的随机二叉搜索树是随机图论二叉树的一种。
本文细致讨论随机二叉搜索树的顶点数目X<sub>n</sub>和大小为k的子树数目S<sub>n,k</sub>的性质,根据递归等式计算X<sub>n</sub>和
S<sub>n,k</sub>的4阶矩,再根据Chebychev不等式和Borel-Cantelli引理得到X<sub>n</sub>和S<sub>n,k</sub>的强极限性质,Y<sub>n</sub>和
Z<sub>n</sub>的结果可类似的得到。
本文在第一章中主要介绍了图论和随机图论的产生和发展。
第二章介绍了图和随机二叉搜索树的基本知识。
第三章考察了随机二叉搜索树的顶点数目X<sub>n</sub>的强极限性质。
第四章考察了随机二叉树子树数目S<sub>j,k</sub>强极限性质。