高中数学(人教版a版必修一)配套课时作业:第一章 集合与函数的概念 1.1.3第2课时 word版含解析

合集下载

高中数学(人教版A版必修一)配套课时作业:第一章 集合与函数的概念 1.1.3第2课时 Word版含解析

高中数学(人教版A版必修一)配套课时作业:第一章 集合与函数的概念 1.1.3第2课时 Word版含解析

第2课时 补集及综合应用 课时目标 1.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.2.熟练掌握集合的基本运算.1.全集:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为________,通常记作________.2.补集(1)∁U U =____;(2)∁U ∅=____;(3)∁U (∁U A )=____;(4)A ∪(∁U A )=____;(5)A ∩(∁U A )=____.一、选择题1.已知集合U ={1,3,5,7,9},A ={1,5,7},则∁U A 等于( )A .{1,3}B .{3,7,9}C .{3,5,9}D .{3,9}2.已知全集U =R ,集合M ={x |x 2-4≤0},则∁U M 等于( )A .{x |-2<x <2}B .{x |-2≤x ≤2}C .{x |x <-2或x >2}D .{x |x ≤-2或x ≥2}3.设全集U ={1,2,3,4,5},A ={1,3,5},B ={2,5},则A ∩(∁U B )等于( )A .{2}B .{2,3}C.{3}D.{1,3}4.设全集U和集合A、B、P满足A=∁U B,B=∁U P,则A与P的关系是() A.A=∁U P B.A=PC.A P D.A P5.如图,I是全集,M、P、S是I的3个子集,则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪SC.(M∩P)∩∁I S D.(M∩P)∪∁I S6.已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},那么集合{2,7}是() A.A∪B B.A∩BC.∁U(A∩B) D.∁U(A∪B)二、填空题7.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________.8.设全集U={x|x<9且x∈N},A={2,4,6},B={0,1,2,3,4,5,6},则∁U A=____________________,∁U B=________________,∁B A=____________.9.已知全集U,A B,则∁U A与∁U B的关系是____________________.三、解答题10.设全集是数集U={2,3,a2+2a-3},已知A={b,2},∁U A={5},求实数a,b的值.11.已知集合A={1,3,x},B={1,x2},设全集为U,若B∪(∁U B)=A,求∁U B.能力提升12.已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A等于()A.{1,3}B.{3,7,9}C.{3,5,9}D.{3,9}13.学校开运动会,某班有30名学生,其中20人报名参加赛跑项目,11人报名参加跳跃项目,两项都没有报名的有4人,问两项都参加的有几人?1.全集与补集的互相依存关系(1)全集并非是包罗万象、含有任何元素的集合,它是对于研究问题而言的一个相对概念,它仅含有所研究问题中涉及的所有元素,如研究整数,Z就是全集,研究方程的实数解,R就是全集.因此,全集因研究问题而异.(2)补集是集合之间的一种运算.求集合A的补集的前提是A是全集U的子集,随着所选全集的不同,得到的补集也是不同的,因此,它们是互相依存、不可分割的两个概念.(3)∁U A的数学意义包括两个方面:首先必须具备A⊆U;其次是定义∁U A={x|x ∈U,且x∉A},补集是集合间的运算关系.2.补集思想做题时“正难则反”策略运用的是补集思想,即已知全集U,求子集A,若直接求A困难,可先求∁U A,再由∁U(∁U A)=A求A.第2课时补集及综合应用知识梳理1.全集U 2.不属于集合A∁U A{x|x∈U,且x∉A}3.(1)∅(2)U(3)A(4)U(5)∅作业设计1.D[在集合U中,去掉1,5,7,剩下的元素构成∁U A.]2.C[∵M={x|-2≤x≤2},∴∁U M={x|x<-2或x>2}.]3.D[由B={2,5},知∁U B={1,3,4}.A∩(∁U B)={1,3,5}∩{1,3,4}={1,3}.]4.B[由A=∁U B,得∁U A=B.又∵B=∁U P,∴∁U P=∁U A.即P=A,故选B.]5.C[依题意,由图知,阴影部分对应的元素a具有性质a∈M,a∈P,a∈∁I S,所以阴影部分所表示的集合是(M∩P)∩∁I S,故选C.]6.D[由A∪B={1,3,4,5,6},得∁U (A ∪B )={2,7},故选D.]7.-3解析 ∵∁U A ={1,2},∴A ={0,3},故m =-3.8.{0,1,3,5,7,8} {7,8} {0,1,3,5}解析 由题意得U ={0,1,2,3,4,5,6,7,8},用Venn 图表示出U ,A ,B ,易得∁U A ={0,1,3,5,7,8},∁U B ={7,8},∁B A ={0,1,3,5}.9.∁U B ∁U A解析 画Venn 图,观察可知∁U B∁U A .10.解 ∵∁U A ={5},∴5∈U 且5∉A .又b ∈A ,∴b ∈U ,由此得⎩⎨⎧a 2+2a -3=5,b =3. 解得⎩⎨⎧ a =2,b =3或⎩⎨⎧a =-4,b =3经检验都符合题意. 11.解 因为B ∪(∁U B )=A ,所以B ⊆A ,U =A ,因而x 2=3或x 2=x .①若x 2=3,则x =±3.当x =3时,A ={1,3,3},B ={1,3},U =A ={1,3,3},此时∁U B ={3}; 当x =-3时,A ={1,3,-3},B ={1,3},U =A ={1,3,-3},此时∁U B ={-3}.②若x 2=x ,则x =0或x =1.当x =1时,A 中元素x 与1相同,B 中元素x 2与1也相同,不符合元素的互异性,故x ≠1;当x =0时,A ={1,3,0},B ={1,0},U =A ={1,3,0},从而∁U B ={3}.综上所述,∁U B ={3}或{-3}或{3}.12.D [借助于Venn 图解,因为A ∩B ={3},所以3∈A ,又因为(∁U B )∩A ={9},所以9∈A ,所以选D.]13.解 如图所示,设只参加赛跑、只参加跳跃、两项都参加的人数分别为a ,b ,x .根据题意有⎩⎨⎧ a +x =20,b +x =11,a +b +x =30-4.解得x =5,即两项都参加的有5人.。

高中数学(人教版A版必修一)配套课时作业:第1章 集合与函数的概念 1.1习题课 Word版含解析

高中数学(人教版A版必修一)配套课时作业:第1章 集合与函数的概念 1.1习题课 Word版含解析

§1.1习题课课时目标1.巩固和深化对基础知识的理解与掌握.2.重点掌握好集合间的关系与集合的基本运算.1.若A={x|x+1>0},B={x|x-3<0},则A∩B等于()A.{x|x>-1}B.{x|x<3}C.{x|-1<x<3}D.{x|1<x<3}2.已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N等于() A.{x|x<-5或x>-3}B.{x|-5<x<5}C.{x|-3<x<5}D.{x|x<-3或x>5}3.设集合A={x|x≤13},a=11,那么()A.a A B.a∉AC.{a}∉A D.{a}A4.设全集I={a,b,c,d,e},集合M={a,b,c},N={b,d,e},那么(∁M)∩(∁I N)等于()IA.∅B.{d}C.{b,e}D.{a,c}5.设A={x|x=4k+1,k∈Z},B={x|x=4k-3,k∈Z},则集合A与B的关系为____________.6.设A={x∈Z|-6≤x≤6},B={1,2,3},C={3,4,5,6},求:(1)A∪(B∩C);(2)A∩(∁A(B∪C)).一、选择题1.设P={x|x<4},Q={x|x2<4},则()A.P⊆Q B.Q⊆PC.P⊆∁R Q D.Q⊆∁R P2.符合条件{a}P⊆{a,b,c}的集合P的个数是()A.2B.3C.4D.53.设M={x|x=a2+1,a∈N*},P={y|y=b2-4b+5,b∈N*},则下列关系正确的是()A.M=P B.M PC.P M D.M与P没有公共元素4.如图所示,M,P,S是V的三个子集,则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪SC.(M∩S)∩(∁S P) D.(M∩P)∪(∁V S)5.已知集合A={x|a-1≤x≤a+2},B={x|3<x<5},则能使A⊇B成立的实数a的范围是()A.{a|3<a≤4}B.{a|3≤a≤4}C.{a|3<a<4}D.∅二、填空题6.已知集合A={x|x≤2},B={x|x>a},如果A∪B=R,那么a的取值范围是________.7.集合A={1,2,3,5},当x∈A时,若x-1∉A,x+1∉A,则称x为A的一个“孤立元素”,则A中孤立元素的个数为____.8.已知全集U={3,7,a2-2a-3},A={7,|a-7|},∁U A={5},则a=________.9.设U=R,M={x|x≥1},N={x|0≤x<5},则(∁U M)∪(∁U N)=________________.三、解答题10.已知集合A={x|-1≤x<3},B={x|2x-4≥x-2}.(1)求A∩B;(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.11.某班50名同学参加一次智力竞猜活动,对其中A,B,C三道知识题作答情况如下:答错A者17人,答错B者15人,答错C者11人,答错A,B者5人,答错A,C者3人,答错B,C者4人,A,B,C都答错的有1人,问A,B,C都答对的有多少人?能力提升12.对于k∈A,如果k-1∉A且k+1∉A,那么k是A的一个“孤立元”,给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“孤立元”的集合共有几个?13.设数集M={x|m≤x≤m+34},N={x|n-13≤x≤n},且M,N都是集合U={x|0≤x≤1}的子集,定义b-a为集合{x|a≤x≤b}的“长度”,求集合M∩N 的长度的最小值.将题目中符号语言准确转化为文字语言.2.集合运算的法则可借助于Venn图理解,无限集的交集、并集和补集运算可结合数轴,运用数形结合思想.3.熟记一些常用结论和性质,可以加快集合运算的速度.4.在有的集合题目中,如果直接去解可能比较麻烦,若用补集的思想解集合问题可变得更简单.§1.1习题课双基演练1.C[∵A={x|x>-1},B={x|x<3},∴A∩B={x|-1<x<3},故选C.]2.A[画出数轴,将不等式-3<x≤5,x<-5,x>5在数轴上表示出来,不难看出M∪N={x|x<-5或x>-3}.]3.D4.A[∵∁I M={d,e},∁I N={a,c},∴(∁I M)∩(∁I N)={d,e}∩{a,c}=∅.]5.A=B解析4k-3=4(k-1)+1,k∈Z,可见A=B.6.解∵A={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}(1)又∵B∩C={3},∴A∪(B∩C)={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}.(2)又∵B∪C={1,2,3,4,5,6},∴∁A(B∪C)={-6,-5,-4,-3,-2,-1,0}∴A∩(∁A(B∪C))={-6,-5,-4,-3,-2,-1,0}.作业设计1.B[Q={x|-2<x<2},可知B正确.]2.B[集合P内除了含有元素a外,还必须含b,c中至少一个,故P={a,b},{a,c},{a,b,c}共3个.]3.B[∵a∈N*,∴x=a2+1=2,5,10,….∵b∈N*,∴y=b2-4b+5=(b-2)2+1=1,2,5,10,….∴M P.]4.C [阴影部分是M ∩S 的部分再去掉属于集合P 的一小部分,因此为(M ∩S )∩(∁S P ).]5.B [根据题意可画出下图.∵a +2>a -1,∴A ≠∅.有⎩⎨⎧a -1≤3,a +2≥5.解得3≤a ≤4.] 6.a ≤2解析 如图中的数轴所示,要使A ∪B =R ,a ≤2.7.1解析 当x =1时,x -1=0∉A ,x +1=2∈A ;当x =2时,x -1=1∈A ,x +1=3∈A ;当x =3时,x -1=2∈A ,x +1=4∉A ;当x =5时,x -1=4∉A ,x +1=6∉A ;综上可知,A 中只有一个孤立元素5.8.4解析 ∵A ∪(∁U A )=U ,由∁U A ={5}知,a 2-2a -3=5,∴a =-2,或a =4.当a =-2时,|a -7|=9,9∉U ,∴a ≠-2.a =4经验证,符合题意.9.{x |x <1或x ≥5}解析 ∁U M ={x |x <1},∁U N ={x |x <0或x ≥5},故(∁U M )∪(∁U N )={x |x <1或x ≥5}或由M ∩N ={x |1≤x <5},(∁U M )∪(∁U N )=∁U (M ∩N )={x |x <1或x ≥5}.10.解 (1)∵B ={x |x ≥2},∴A ∩B ={x |2≤x <3}.(2)∵C={x|x>-a2},B∪C=C⇔B⊆C,∴-a2<2,∴a>-4.11.解由题意,设全班同学为全集U,画出Venn图,A表示答错A的集合,B 表示答错B的集合,C表示答错C的集合,将其集合中元素数目填入图中,自中心区域向四周的各区域数目分别为1,2,3,4,10,7,5,因此A∪B∪C中元素数目为32,从而至少错一题的共32人,因此A,B,C全对的有50-32=18人.12.解依题意可知,“孤立元”必须是没有与k相邻的元素,因而无“孤立元”是指在集合中有与k相邻的元素.因此,符合题意的集合是:{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8}共6个.13.解在数轴上表示出集合M与N,可知当m=0且n=1或n-13=0且m+34=1时,M∩N的“长度”最小.当m=0且n=1时,M∩N={x|23≤x≤34},长度为34-23=112;当n=13且m=14时,M∩N={x|14≤x≤13},长度为13-14=112.综上,M∩N的长度的最小值为1 12.。

人教版高中数学必修1课后习题答案(第一章集合与函数概念)人教A版

人教版高中数学必修1课后习题答案(第一章集合与函数概念)人教A版

高中数学必修1课后习题答案 第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.用符号“∈”或“∉”填空:(1)设A 为所有亚洲国家组成的集合,则:中国_______A ,美国_______A ,印度_______A ,英国_______A ;(2)若2{|}A x x x ==,则1-_______A ; (3)若2{|60}B x x x =+-=,则3_______B ;(4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C . 1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===.(3)3∉B 2{|60}{3,2}B x x x =+-==-. (4)8∈C ,9.1∉C 9.1N ∉.2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合; (2)由小于8的所有素数组成的集合;(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (4)不等式453x -<的解集.2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-; (2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7};(3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.写出集合{,,}a b c 的所有子集.1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ; 取两个元素,得{,},{,},{,}a b a c b c ; 取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.用适当的符号填空:(1)a ______{,,}a b c ; (2)0______2{|0}x x =; (3)∅______2{|10}x R x ∈+=; (4){0,1}______N ;(5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=. 2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集;(5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.判断下列两个集合之间的关系:(1){1,2,4}A =,{|8}B x x =是的约数;(2){|3,}A x x k k N ==∈,{|6,}B x x z z N ==∈;(3){|410}A x x x N +=∈是与的公倍数,,{|20,}B x x m m N +==∈.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以AB ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,BA ;(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.设{3,5,6,8},{4,5,7,8}A B ==,求,A B A B .1.解:{3,5,6,8}{4,5,7,8}{5,8}A B ==, {3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}AB ==.2.设22{|450},{|1}A x x x B x x =--===,求,AB A B .2.解:方程2450x x --=的两根为121,5x x =-=, 方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-, 即{1},{1,1,5}AB A B =-=-.3.已知{|}A x x =是等腰三角形,{|}B x x =是直角三角形,求,A B A B .3.解:{|}A B x x =是等腰直角三角形,{|}AB x x =是等腰三角形或直角三角形.4.已知全集{1,2,3,4,5,6,7}U =,{2,4,5},{1,3,5,7}A B ==, 求(),()()U U U AB A B 痧?.4.解:显然{2,4,6}U B =ð,{1,3,6,7}U A =ð, 则(){2,4}U AB =ð,()(){6}U U A B =痧. 1.1集合习题1.1 (第11页) A 组1.用符号“∈”或“∉”填空:(1)237_______Q ; (2)23______N ; (3)π_______Q ;(4_______R ; (5Z ; (6)2_______N .1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数;(3)Q π∉ π是个无理数,不是有理数; (4R 是实数;(5Z3=是个整数; (6)2N ∈ 2)5=是个自然数.2.已知{|31,}A x x k k Z ==-∈,用 “∈”或“∉” 符号填空: (1)5_______A ; (2)7_______A ; (3)10-_______A .2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-; 3.用列举法表示下列给定的集合: (1)大于1且小于6的整数;(2){|(1)(2)0}A x x x =-+=; (3){|3213}B x Z x =∈-<-≤.3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求; (3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求. 4.试选择适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合;(2)反比例函数2y x=的自变量的值组成的集合; (3)不等式342x x ≥-的解集.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-;(2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥.5.选用适当的符号填空:(1)已知集合{|233},{|2}A x x x B x x =-<=≥,则有:4-_______B ; 3-_______A ; {2}_______B ; B _______A ;(2)已知集合2{|10}A x x =-=,则有:1_______A ; {1}-_______A ; ∅_______A ; {1,1}-_______A ; (3){|}x x 是菱形_______{|}x x 是平行四边形; {|}x x 是等腰三角形_______{|}x x 是等边三角形.5.(1)4B -∉; 3A -∉; {2}B ; BA ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合{|24},{|3782}A x x B x x x =≤<=-≥-,求,AB A B .6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥, 则{|2}AB x x =≥,{|34}A B x x =≤<.7.设集合{|9}A x x =是小于的正整数,{1,2,3},{3,4,5,6}B C ==,求A B ,AC ,()A B C ,()A B C .7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数, 则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}B C =,{3}B C =, 则(){1,2,3,4,5,6}AB C =,(){1,2,3,4,5,6,7,8}A B C =.8.学校里开运动会,设{|}A x x =是参加一百米跑的同学,{|}B x x =是参加二百米跑的同学,{|}C x x =是参加四百米跑的同学,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定, 并解释以下集合运算的含义:(1)A B ;(2)A C . 8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项, 即为()A B C =∅.(1){|}A B x x =是参加一百米跑或参加二百米跑的同学; (2){|}AC x x =是既参加一百米跑又参加四百米跑的同学.9.设{|}S x x =是平行四边形或梯形,{|}A x x =是平行四边形,{|}B x x =是菱形,{|}C x x =是矩形,求BC ,A B ð,S A ð.9.解:同时满足菱形和矩形特征的是正方形,即{|}BC x x =是正方形,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即{|}A B x x =是邻边不相等的平行四边形ð, {|}S A x x =是梯形ð.10.已知集合{|37},{|210}A x x B x x =≤<=<<,求()R AB ð,()R A B ð,()R A B ð,()R A B ð.10.解:{|210}AB x x =<<,{|37}A B x x =≤<,{|3,7}R A x x x =<≥或ð,{|2,10}R B x x x =≤≥或ð, 得(){|2,10}R A B x x x =≤≥或ð, (){|3,7}R A B x x x =<≥或ð, (){|23,710}R A B x x x =<<≤<或ð,(){|2,3710}R AB x x x x =≤≤<≥或或ð.B 组1.已知集合{1,2}A =,集合B 满足{1,2}A B =,则集合B 有 个.1.4 集合B 满足AB A =,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.在平面直角坐标系中,集合{(,)|}C x y y x ==表示直线y x =,从这个角度看, 集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示什么?集合,C D 之间有什么关系?2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合,即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得D C .3.设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求,A B A B .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==, 当3a =时,集合{3}A =,则{1,3,4},A B A B ==∅; 当1a =时,集合{1,3}A =,则{1,3,4},{1}A B A B ==; 当4a =时,集合{3,4}A =,则{1,3,4},{4}AB A B ==;当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},AB a A B ==∅.4.已知全集{|010}U AB x N x ==∈≤≤,(){1,3,5,7}U A B =ð,试求集合B .4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U AB =,得U B A ⊆ð,即()U UAB B =痧,而(){1,3,5,7}U A B =ð, 得{1,3,5,7}U B =ð,而()U UB B =痧,即{0,2,4,6,8.9,10}B =.第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.求下列函数的定义域:(1)1()47f x x =+; (2)()1f x =+.1.解:(1)要使原式有意义,则470x +≠,即74x ≠-,得该函数的定义域为7{|}4x x ≠-;(2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤. 2.已知函数2()32f x x x =+,(1)求(2),(2),(2)(2)f f f f -+-的值; (2)求(),(),()()f a f a f a f a -+-的值.2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=,同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+,同理得22()3()2()32f a a a a a -=⨯-+⨯-=-, 则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.判断下列各组中的函数是否相等,并说明理由:(1)表示炮弹飞行高度h 与时间t 关系的函数21305h t t =-和二次函数21305y x x =-; (2)()1f x =和0()g x x =.3.解:(1)不相等,因为定义域不同,时间0t >; (2)不相等,因为定义域不同,0()(0)g x x x =≠. 1.2.2函数的表示法练习(第23页)1.如图,把截面半径为25cm 的圆形木头锯成矩形木料,如果矩形的一边长为xcm , 面积为2ycm ,把y 表示为x 的函数.1,y ==,且050x <<,即(050)y x =<<.2.下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事. (1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进. 3.画出函数|2|y x =-的图象. 3.解:2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示.{|},{0,1}A x x B ==是锐角,从A 到B 的映射是“求正弦”,4.设中元素60相对应与AB 中的元素是什么?与B相对应的A 中元素是什的么?4.解:因为3sin 602=,所以与A 中元素60相对应的B中的元素是2; 因为2sin 452=,所以与B 中的元素2相对应的A 中元素是45.(A )(B )(C )(D )。

人教A版高中数学必修课后习题及答案(第一章集合与函数概念) 副本

人教A版高中数学必修课后习题及答案(第一章集合与函数概念)  副本

高中数学必修1课后习题答案第一章集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.用符号“∈”或“∉”填空:(1)设A为所有亚洲国家组成的集合,则:中国_______A,美国_______A,印度_______A,英国_______A;(2)若2A x x x==,则1-_______A;{|}(3)若2=+-=,则3_______B;{|60}B x x x(4)若{|110}C x N x=∈≤≤,则8_______C,9.1_______C.2.试选择适当的方法表示下列集合:(1)由方程290x-=的所有实数根组成的集合;(2)由小于8的所有素数组成的集合;(3)一次函数3y x=-+的图象的交点组成的集合;=+与26y x(4)不等式453x-<的解集.1.1.2集合间的基本关系练习(第7页)1.写出集合{,,}a b c的所有子集.2.用适当的符号填空:(1)a ______{,,}a b c ; (2)0______2{|0}x x =;(3)∅______2{|10}x R x ∈+=; (4){0,1}______N ;(5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=.3.判断下列两个集合之间的关系:(1){1,2,4}A =,{|8}B x x =是的约数;(2){|3,}A x x k k N ==∈,{|6,}B x x z z N ==∈;(3){|410}A x x x N +=∈是与的公倍数,,{|20,}B x x m m N +==∈.1.1.3集合的基本运算练习(第11页)1.设{3,5,6,8},{4,5,7,8}A B ==,求,A B A B .2.设22{|450},{|1}A x x x B x x =--===,求,A B A B .3.已知{|}A x x =是等腰三角形,{|}B x x =是直角三角形,求,A B A B .1.1集合习题1.1 (第11页) A 组1.用符号“∈”或“∉”填空:(1)237_______Q ; (2)23______N ; (3)π_______Q ;(4_______R ; (5Z ; (6)2_______N .2.已知{|31,}A x x k k Z ==-∈,用 “∈”或“∉”符号填空:(1)5_______A ; (2)7_______A ; (3)10-_______A .3.用列举法表示下列给定的集合:(1)大于1且小于6的整数;(2){|(1)(2)0}A x x x =-+=;(3){|3213}B x Z x =∈-<-≤.4.试选择适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合;(2)反比例函数2y x=的自变量的值组成的集合;(3)不等式342x x ≥-的解集.5.选用适当的符号填空:(1)已知集合{|233},{|2}A x x x B x x =-<=≥,则有:4-_______B ; 3-_______A ; {2}_______B ; B _______A ; (2)已知集合2{|10}A x x =-=,则有:1_______A ; {1}-_______A ; ∅_______A ; {1,1}-_______A ;(3){|}x x 是菱形_______{|}x x 是平行四边形;{|}x x 是等腰三角形_______{|}x x 是等边三角形.6.设集合{|24},{|3782}A x x B x x x =≤<=-≥-,求,A B A B .7.设集合{|9}A x x =是小于的正整数,{1,2,3},{3,4,5,6}B C ==,求A B , A C ,()A B C ,()A B C .8.学校里开运动会,设{|}A x x =是参加一百米跑的同学,{|}B x x =是参加二百米跑的同学,{|}C x x =是参加四百米跑的同学,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定,并解释以下集合运算的含义:(1)A B ;(2)A C . .9.设{|}S x x =是平行四边形或梯形,{|}A x x =是平行四边形,{|}B x x =是菱形, {|}C x x =是矩形,求B C ,A B ð,S A ð.10.已知集合{|37},{|210}A x x B x x =≤<=<<,求()R A B ð,()R A B ð,()R A B ð,()R A B ð.B 组1.已知集合{1,2}A =,集合B 满足{1,2}A B =,则集合B 有个.2.在平面直角坐标系中,集合{(,)|}C x y y x ==表示直线y x =,从这个角度看, 集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示什么?集合,C D 之间有什么关系? 3.设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求,A B A B .4.已知全集{|010}U A B x N x ==∈≤≤,(){1,3,5,7}U A B =ð,试求集合B .。

2020高中数学(人教版A版必修一)配套课时作业:第一章 集合与函数的概念 1.1.2 Word版含解析

2020高中数学(人教版A版必修一)配套课时作业:第一章 集合与函数的概念 1.1.2 Word版含解析

1.1.2 集合间的基本关系一、选择题1.集合P={x|y=x+1},集合Q={y|y=x-1},则P与Q的关系是( ) A.P=Q B.P QC.P Q D.P∩Q=∅2.满足条件{1,2}M⊆{1,2,3,4,5}的集合M的个数是( )A.3B.6C.7D.83.对于集合A、B,“A⊆B不成立”的含义是( )A.B是A的子集B.A中的元素都不是B中的元素C.A中至少有一个元素不属于BD.B中至少有一个元素不属于A4.下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若∅A,则A≠∅.其中正确的个数是( )A.0B.1C.2D.35.下列正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的Venn图是( )6.集合M={x|x=3k-2,k∈Z},P={y|y=3n+1,n∈Z},S={z|z=6m+1,m∈Z}之间的关系是( )A.S P M B.S=P MC.S P=M D.P=M S二、填空题7.已知M={x|x≥22,x∈R},给定下列关系:①π∈M;②{π}M;③πM;④{π}∈M.其中正确的有________.(填序号)8.已知集合A={x|1<x<2},B={x|x<a},若A B,则实数a的取值范围是________.9.已知集合A{2,3,7},且A中至多有1个奇数,则这样的集合共有________个.三、解答题10.若集合A={x|x2+x-6=0},B={x|x2+x+a=0},且B⊆A,求实数a的取值范围.11.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.若B⊆A,求实数m的取值范围.能力提升12.已知集合A={x|1<ax<2},B={x|-1<x<1},求满足A⊆B的实数a的取值范围.13.已知集合A{1,2,3},且A中至少含有一个奇数,则这样的集合有________个..1.1.2 集合间的基本关系作业设计1.B [∵P={x|y=x+1}={x|x≥-1},Q={y|y≥0}∴P Q,∴选B.]2.C [M中含三个元素的个数为3,M中含四个元素的个数也是3,M中含5个元素的个数只有1个,因此符合题意的共7个.]3.C4.B [只有④正确.]5.B [由N={-1,0},知N M,故选B.]6.C [运用整数的性质方便求解.集合M、P表示成被3整除余1的整数集,集合S表示成被6整除余1的整数集.]7.①②解析 ①、②显然正确;③中π与M 的关系为元素与集合的关系,不应该用“”符号;④中{π}与M 的关系是集合与集合的关系,不应该用“∈”符号.8.a ≥2解析 在数轴上表示出两个集合,可得a ≥2.9.6解析 (1)若A 中有且只有1个奇数,则A ={2,3}或{2,7}或{3}或{7};(2)若A 中没有奇数,则A ={2}或∅.10.解 A ={-3,2}.对于x 2+x +a =0,(1)当Δ=1-4a <0,即a >14时,B =∅,B ⊆A 成立; (2)当Δ=1-4a =0,即a =14时,B ={-12},B ⊆A 不成立; (3)当Δ=1-4a >0,即a <14时,若B ⊆A 成立, 则B ={-3,2},∴a =-3×2=-6.综上:a 的取值范围为a >14或a =-6. 11.解 ∵B ⊆A ,∴①若B =∅,则m +1>2m -1,∴m <2.②若B ≠∅,将两集合在数轴上表示,如图所示. 要使B ⊆A ,则⎩⎪⎨⎪⎧ m +1≤2m -1,m +1≥-2,2m -1≤5,解得⎩⎪⎨⎪⎧ m ≥2,m ≥-3,m ≤3,∴2≤m ≤3.由①、②,可知m ≤3.∴实数m 的取值范围是m ≤3.12.解 (1)当a =0时,A =∅,满足A ⊆B .(2)当a >0时,A ={x |1a <x <2a}. 又∵B ={x |-1<x <1},A ⊆B ,∴⎩⎨⎧1a ≥-1,2a ≤1,∴a ≥2. (3)当a <0时,A ={x |2a <x <1a }. ∵A ⊆B ,∴⎩⎨⎧ 2a ≥-1,1a ≤1,∴a ≤-2. 综上所述,a =0或a ≥2或a ≤-2.13.5 解析 若A 中有一个奇数,则A 可能为{1},{3},{1,2},{3,2}, 若A 中有2个奇数,则A ={1,3}.。

高中数学 人教A版必修一 第一章集合与函数的概念课后作业答案

高中数学   人教A版必修一   第一章集合与函数的概念课后作业答案

高一数学必修一第一章课时作业 1.1.1 集合的含义与表示第1课时 集合的含义 一、基础过关1. 下列各项中,不可以组成集合的是( )A .所有的正数B .等于2的数C .接近于0的数D .不等于0的偶数2. 集合A 中只含有元素a ,则下列各式正确的是( )A .0∈AB .a ∉AC .a ∈AD .a =A 3. 由实数x ,-x ,|x |,x 2,-3x 3所组成的集合,最多含( )A .2个元素B .3个元素C .4个元素D .5个元素4. 由下列对象组成的集体属于集合的是________.(填序号)①不超过π的正整数;②本班中成绩好的同学;③高一数学课本中所有的简单题;④平方后等于自身的数.5. 如果有一集合含有三个元素1,x ,x 2-x ,则实数x 的取值范围是________. 6. 判断下列说法是否正确?并说明理由.(1)参加2012年伦敦奥运会的所有国家构成一个集合; (2)未来世界的高科技产品构成一个集合; (3)1,0.5,32,12组成的集合含有四个元素;(4)某校的年轻教师.7.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求a .二、能力提升8. 已知集合S 中三个元素a ,b ,c 是△ABC 的三边长,那么△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形9. 已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 为( )A .2B .3C .0或3D .0,2,3均可10.方程x 2-2x -3=0的解集与集合A 相等,若集合A 中的元素是a ,b ,则a +b =________.11.设P 、Q 为两个非空实数集合,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P +Q 中元素的个数是多少?三、探究与拓展12.设A 为实数集,且满足条件:若a ∈A ,则11-a∈A (a ≠1).求证:(1)若2∈A ,则A 中必还有另外两个元素; (2)集合A 不可能是单元素集.需要高中数学的朋友请加QQ :182337727,有你想要的精心整理的导学案、专题训练、综合训练、单元试题第2课时 集合的表示一、基础过关1. 集合{x ∈N +|x -3<2}用列举法可表示为( )A .{0,1,2,3,4}B .{1,2,3,4}C .{0,1,2,3,4,5}D .{1,2,3,4,5} 2. 集合{(x ,y )|y =2x -1}表示( )A .方程y =2x -1B .点(x ,y )C .平面直角坐标系中的所有点组成的集合D .函数y =2x -1图象上的所有点组成的集合3. 将集合⎩⎪⎨⎪⎧(x ,y )|⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x +y =52x -y =1表示成列举法,正确的是 ( )A .{2,3}B .{(2,3)}C .{(3,2)}D .(2,3)4. 若集合A ={-1,1},B ={0,2},则集合{z |z =x +y ,x ∈A ,y ∈B }中的元素的个数为( )A .5B .4C .3D .25. 用列举法表示下列集合:(1)A ={x ∈N ||x |≤2}=________;(2)B ={x ∈Z ||x |≤2}=________; (3)C ={(x ,y )|x 2+y 2=4,x ∈Z ,y ∈Z }=______. 6. 下列各组集合中,满足P =Q 的有________.(填序号)①P ={(1,2)},Q ={(2,1)};②P ={1,2,3},Q ={3,1,2}; ③P ={(x ,y )|y =x -1,x ∈R },Q ={y |y =x -1,x ∈R }. 7. 用适当的方法表示下列集合.(1)方程x (x 2+2x +1)=0的解集;(2)在自然数集内,小于1 000的奇数构成的集合; (3)不等式x -2>6的解的集合;(4)大于0.5且不大于6的自然数的全体构成的集合.8. 已知集合A ={x |y =x 2+3},B ={y |y =x 2+3},C ={(x ,y )|y =x 2+3},它们三个集合相等吗?试说明理由.二、能力提升9. 下列集合中,不同于另外三个集合的是( )A .{x |x =1}B .{y |(y -1)2=0}C .{x =1}D .{1} 10.集合M ={(x ,y )|xy <0,x ∈R ,y ∈R }是( )A .第一象限内的点集B .第三象限内的点集C .第四象限内的点集D .第二、四象限内的点集11.下列各组中的两个集合M 和N ,表示同一集合的是______.(填序号)①M ={π},N ={3.141 59}; ②M ={2,3},N ={(2,3)};③M ={x |-1<x ≤1,x ∈N },N ={1}; ④M ={1,3,π},N ={π,1,|-3|}.12.集合A ={x |kx 2-8x +16=0},若集合A 只有一个元素,试求实数k 的值,并用列举法表示集合A .三、探究与拓展13.定义集合运算A *B ={z |z =xy ,x ∈A ,y ∈B }.设A ={1,2},B ={0,2},则集合A *B 的所有元素之和是多少?1.1.2 集合间的基本关系一、基础过关1. 下列集合中,结果是空集的是( )A .{x ∈R |x 2-1=0}B .{x |x >6或x <1}C .{(x ,y )|x 2+y 2=0}D .{x |x >6且x <1}2. 集合P ={x |y =x +1},集合Q ={y |y =x -1},则P 与Q 的关系是( )A .P =QB .P QC .QPD .P ∩Q =∅3. 下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若∅A ,则A ≠∅. 其中正确的个数是( )A .0B .1C .2D .34. 下列正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的Venn 图是()5. 已知M ={x |x ≥22,x ∈R },给定下列关系:①π∈M ;②{π}M ;③πM ;④{π}∈M .其中正确的有________.(填序号)6. 已知集合A ={x |1<x <2},B ={x |x <a },若A B ,则实数a 的取值范围是________. 7. 已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,求实数m 的取值范围.8. 若集合A ={x |x 2+x -6=0},B ={x |x 2+x +a =0},且B ⊆A ,求实数a 的取值范围.二、能力提升9. 适合条件{1}⊆A {1,2,3,4,5}的集合A 的个数是( )A .15个B .16个C .31个D .32个10.集合M ={x |x =3k -2,k ∈Z },P ={y |y =3n +1,n ∈Z },S ={z |z =6m +1,m Z ∈}之间的关系是 ( )A .S P MB .S =P MC .S P =MD .P =M S11.已知集合A {2,3,7},且A 中至多有1个奇数,则这样的集合共有________个. 12.已知集合A ={x |1<ax <2},B ={x |-1<x <1},求满足A ⊆B 的实数a 的取值范围.三、探究与拓展13.已知集合A ={x ||x -a |=4},B ={1,2,b }.问是否存在实数a ,使得对于任意实数b (b ≠1,b ≠2)都有A ⊆B .若存在,求出对应的a 值;若不存在,说明理由.1.1.3 集合的基本运算第1课时 并集与交集一、基础过关1. 若集合A ={0,1,2,3},B ={1,2,4},则集合A ∪B 等于( )A .{0,1,2,3,4}B .{1,2,3,4}C .{1,2}D .{0}2. 集合A ={x |-1≤x ≤2},B ={x |x <1},则A ∩B 等于( )A .{x |x <1}B .{x |-1≤x ≤2}C .{x |-1≤x ≤1}D .{x |-1≤x <1}3. 若集合A ={参加伦敦奥运会比赛的运动员},集合B ={参加伦敦奥运会比赛的男运动员},集合C ={参加伦敦奥运会比赛的女运动员},则下列关系正确的是( )A .A ⊆B B .B ⊆C C .A ∩B =CD .B ∪C =A4. 已知集合M ={(x ,y )|x +y =2},N ={(x ,y )|x -y =4},那么集合M ∩N 为( )A .x =3,y =-1B .(3,-1)C .{3,-1}D .{(3,-1)} 5. 设集合M ={-1,0,1},N ={x |x 2≤x },则M ∩N 等于( )A .{0}B .{0,1}C .{-1,1}D .{-1,0,1}6. 设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a =________. 7. 设A ={-4,2a -1,a 2},B ={a -5,1-a,9},已知A ∩B ={9},求A ∪B .8. 设集合A ={-2},B ={x |ax +1=0,a R ∈},若A ∩B =B ,求a 的值.二、能力提升9. 已知集合A ={1,3,m },B ={1,m },A ∪B =A ,则m 等于( )A .0或 3B .0或3C .1或 3D .1或310.设集合A={-3,0,1},B={t 2-t+1}.若A∪B=A,则t=________.11.设集合A={x|-1≤x≤2},B={x|-1<x≤4},C={x|-3<x<2}且集合A∩(B∪C)={x|a≤x≤b},则a=________,b=________.12.已知方程x2+px+q=0的两个不相等实根分别为α,β,集合A={α,β},B={2,4,5,6},C={1,2,3,4},A∩C=A,A∩B=∅.求p,q的值.三、探究与拓展13.已知集合A={x|2a+1≤x≤3a-5},B={x|x<-1,或x>16},分别根据下列条件求实数a的取值范围.(1)A∩B=∅;(2)A⊆(A∩B).第2课时补集及综合应用一、基础过关1.已知集合U={1,3,5,7,9},A={1,5,7},则∁U A等于() A.{1,3} B.{3,7,9} C.{3,5,9} D.{3,9}2.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为() A.{1,2,4} B.{2,3,4} C.{0,2,4} D.{0,2,3,4}3.设集合A={x|1<x<4},集合B={x|-1≤x≤3},则A∩(∁R B)等于() A.(1,4) B.(3,4) C.(1,3) D.(1,2)∪(3,4)4.设全集U和集合A、B、P满足A=∁U B,B=∁U P,则A与P的关系是() A.A=∁U P B.A=P C.A P D.P A5.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________.6.设全集U={x|x<9且x∈N},A={2,4,6},B={0,1,2,3,4,5,6},则∁U A=____________,∁U B=________,∁B A=________.7.设全集是数集U={2,3,a2+2a-3},已知A={b,2},∁U A={5},求实数a,b的值.8.(1)设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},求N∩(∁U M);(2)设集合M={m∈Z|-3<m<2},N={n∈Z|-1≤n≤3},求M∪N.二、能力提升9.如图,I是全集,M、P、S是I的3个子集,则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪S C.(M∩P)∩(∁I S) D.(M∩P)∪(∁I S)10.已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(∁U A)∩(∁U B)等于()A.{5,8} B.{7,9} C.{0,1,3} D.{2,4,6}11.已知全集U,A B,则∁U A与∁U B的关系是____________________.12.已知集合A={1,3,x},B={1,x2},设全集为U,若B∪(∁U B)=A,求∁U B.三、探究与拓展13.学校开运动会,某班有30名学生,其中20人报名参加赛跑项目,11人报名参加跳跃项目,两项都没有报名的有4人,问两项都参加的有几人?习题课一、基础过关1.设P={x|x<4},Q={x|x2<4},则()A.P⊆Q B.Q⊆P C.P⊆∁R Q D.Q⊆∁R P2.符合条件{a} P⊆{a,b,c}的集合P的个数是()A.2 B.3 C.4 D.53.已知集合A,B均为集合U={1,3,5,7,9}的子集,若A∩B={1,3},(∁U A)∩B={5},则集合B等于() A.{1,3} B.{3,5} C.{1,5} D.{1,3,5}4.设M={x|x=a2+1,a∈N*},P={y|y=b2-4b+5,b∈N*},则下列关系正确的是()A.M=P B.M P C.P M D.M与P没有公共元素5.全集U={1,2,3,4,5,6},集合M={2,3,5},N={4,5},则∁U(M∪N)等于()A.{1,3,5} B.{2,4,6} C.{1,5} D.{1,6}6.已知集合A={x|x≤2},B={x|x>a},如果A∪B=R,那么a的取值范围是________.7.已知集合A={x|-1≤x<3},B={x|2x-4≥x-2}.(1)求A∩B;(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.8.设A={x|x2+ax+b=0},B={x|x2+cx+15=0},又A∪B={3,5},A∩B={3},求实数a,b,c的值.二、能力提升9.已知集合A={x|x<3或x≥7},B={x|x<a}.若(∁U A)∩B≠∅,则a的取值范围为()A.a>3 B.a≥3 C.a≥7 D.a>710.集合A={1,2,3,5},当x∈A时,若x-1∉A,x+1∉A,则称x为A的一个“孤立元素”,则A中孤立元素的个数为____.11.设U =R ,M ={x |x ≥1},N ={x |0≤x <5},则(∁U M )∪(∁U N )=________.12.某班50名同学参加一次智力竞猜活动,对其中A ,B ,C 三道知识题作答情况如下:答错A 者17人,答错B 者15人,答错C 者11人,答错A ,B 者5人,答错A ,C 者3人,答错B ,C 者4人,A ,B ,C 都答错的有1人,问A ,B ,C 都答对的有多少人?三、探究与拓展13.已知集合A ={x |1<x <3},B ={x |2≤x ≤4}.(1)试定义一种新的集合运算Δ,使A ΔB ={x |1<x <2}; (2)按(1)的运算,求B ΔA .需要高中数学的朋友请加QQ :182337727,有你想要的精心整理的导学案、专题训练、综合训练、单元试题1.2.1 函数的概念一、基础过关 1. 下列对应:①M =R ,N =N +,对应关系f :“对集合M 中的元素,取绝对值与N 中的元素对应”; ②M ={1,-1,2,-2},N ={1,4},对应关系f :x →y =x 2,x ∈M ,y ∈N ;③M ={三角形},N ={x |x >0},对应关系f :“对M 中的三角形求面积与N 中元素对应”. 是集合M 到集合N 上的函数的有( )A .1个B .2个C .3个D .0个 2. 下列各组函数中,表示同一个函数的是( )A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=x 2和g (x )=(x +1)2D .f (x )=(x )2x 和g (x )=x(x )23. 函数y =1-x +x 的定义域为( )A .{x |x ≤1}B .{x |x ≥0}C .{x |x ≥1或x ≤0}D .{x |0≤x ≤1}4. 函数y =x +1的值域为( )A .[-1,+∞)B .[0,+∞)C .(-∞,0]D .(-∞,-1]5. 已知函数f (x )=2x -3,x ∈{x ∈N |1≤x ≤5},则函数f (x )的值域为________. 6. 若A ={x |y =x +1},B ={y |y =x 2+1},则A ∩B =________ 7. 判断下列对应是否为集合A 到集合B 的函数.(1)A =R ,B ={x |x >0},f :x →y =|x |; (2)A =Z ,B =Z ,f :x →y =x 2;(3)A =Z ,B =Z ,f :x →y =x ; (4)A ={x |-1≤x ≤1},B ={0},f :x →y =0. 8. 已知函数f (1-x1+x )=x ,求f (2)的值.二、能力提升9. 设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的有( )A .①②③④B .①②③C .②③D .② 10.下列函数中,不满足...f (2x )=2f (x )的是( )A .f (x )=|x |B .f (x )=x -|x |C .f (x )=x +1D .f (x )=-x11.若函数f (x )的定义域是[0,1],则函数f (2x )+f (x +23)的定义域为________.12.如图,该曲线表示一人骑自行车离家的距离与时间的关系.骑车者9时离开家,15时回家.根据这个曲线图,请你回答下列问题:(1)最初到达离家最远的地方是什么时间?离家多远? (2)何时开始第一次休息?休息多长时间? (3)第一次休息时,离家多远? (4)11∶00到12∶00他骑了多少千米?(5)他在9∶00~10∶00和10∶00~10∶30的平均速度分别是多少? (6)他在哪段时间里停止前进并休息用午餐?三、探究与拓展13.如图,某灌溉渠的横断面是等腰梯形,底宽为2 m ,渠深为1.8 m ,斜坡的倾斜角是45°.(临界状态不考虑)(1)试将横断面中水的面积A (m 2)表示成水深h (m)的函数;(2)确定函数的定义域和值域; (3)画出函数的图象.1.2.2 函数的表示法第1课时 函数的表示法一、基础过关1. 一个面积为100 cm 2的等腰梯形,上底长为x cm ,下底长为上底长的3倍,则把它的高y 表示成x 的函数为( )A .y =50x (x >0)B .y =100x (x >0)C .y =50x(x >0)D .y =100x(x >0)2. 一水池有2个进水口,1个出水口,进出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则正确论断的个数是( ) A .0B .1C .2D .33. 已知x ≠0时,函数f (x )满足f (x -1x )=x 2+1x2,则f (x )的表达式为( )A .f (x )=x +1x (x ≠0)B .f (x )=x 2+2(x ≠0)C .f (x )=x 2(x ≠0)D .f (x )=(x -1x )2(x ≠0)4. 已知在x 克a %的盐水中,加入y 克b %(a ≠b )的盐水,浓度变为c %,将y 表示成x 的函数关系式为( )A .y =c -ac -bxB .y =c -a b -c xC .y =c -bc -axD .y =b -cc -ax5. 如图,函数f (x )的图象是折线段ABC ,其中点A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则f {f [f (2)]}=________.6. 已知f (x )是一次函数,若f (f (x ))=4x +8,则f (x )的解析式为________. 7. 已知f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.求f (x )的解析式.8. 已知二次函数f (x )满足f (0)=f (4),且f (x )=0的两根的平方和为10,图象过(0,3)点,求f (x )的解析式.二、能力提升9. 如果f (1x )=x1-x,则当x ≠0,1时,f (x )等于( )A .1xB .1x -1C .11-xD .1x-110.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于..6·时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( )A .y =[x10]B .y =[x +310]C .y =[x +410]D .y =[x +510]11.已知函数y =f (x )满足f (x )=2f (1x )+x ,则f (x )的解析式为____________.12.画出函数f (x )=-x 2+2x +3的图象,并根据图象回答下列问题:(1)比较f (0)、f (1)、f (3)的大小; (2)若x 1<x 2<1,比较f (x 1)与f (x 2)的大小; (3)求函数f (x )的值域.三、探究与拓展13.已知函数y =1ax +1(a <0且a 为常数)在区间(-∞,1]上有意义,求实数a 的值.第2课时 分段函数及映射一、基础过关1. 已知函数f (x )=⎩⎪⎨⎪⎧2x , x >0,x +1, x ≤0,若f (a )+f (1)=0,则实数a 的值等于( )A .-3或-1B .-1C .1D .-3 2. 已知f (x )=⎩⎪⎨⎪⎧x -5 (x ≥6),f (x +2) (x <6),则f (3)为( )A .2B .3C .4D .53. 某单位为鼓励职工节约用水,作出了如下规定:每位职工每月用水不超过10立方米的,按每立方米m元收费;用水超过10立方米的,超过部分按每立方米2m 元收费.某职工某月缴水费16m 元,则该职工这个月实际用水为( )A .13立方米B .14立方米C .18立方米D .26立方米4. 已知集合P ={x |0≤x ≤4},Q ={y |0≤y ≤2},下列不能表示从P 到Q 的映射的是( )A .f :x →y =12xB .f :x →y =13xC .f :x →y =23xD .f :x →y =x5. 下列对应关系f 中,构成从集合P 到S 的映射的是( )A .P =R ,S =(-∞,0),x ∈P ,y ∈S ,f ∶x →y =|x |B .P =N ,S =N +,x ∈P ,y ∈S ,f ∶y =x 2C .P ={有理数},S ={数轴上的点},x ∈P ,f ∶x →数轴上表示x 的点D .P =R ,S ={y |y >0},x ∈P ,y ∈S ,f ∶x →y =1x26. 设A =Z ,B ={x |x =2n +1,n ∈Z },C =R ,且从A 到B 的映射是x →2x -1,从B 到C 的映射是y →12y +1,则经过两次映射,A 中元素1在C 中的象为________. 7. 化简f (x )=x +|x |x ,并作图求值域.8. 已知f (x )=⎩⎪⎨⎪⎧x 2 (-1≤x ≤1)1 (x >1或x <-1),(1)画出f (x )的图象; (2)求f (x )的定义域和值域. 二、能力提升9. 已知函数y =⎩⎪⎨⎪⎧x 2+1(x ≤0),-2x (x >0),使函数值为5的x 的值是( )A .-2B .2或-52 C .2或-2D .2或-2或-5210.已知函数f (x )的图象如下图所示,则f (x )的解析式是________.11.设f (x )=⎩⎪⎨⎪⎧2x +2, -1≤x <0,-12x , 0<x <2,3, x ≥2,则f {f [f (-34)]}的值为______,f (x )的定义域是_ __.12. 如图,动点P 从边长为4的正方形ABCD 的顶点B 开始,顺次经C 、D 、A 绕边界运动,用x 表示点P 的行程,y 表示△APB 的面积,求函数y =f (x ) 的解析式.三、探究与拓展13.提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.当0≤x ≤200时,求函数v (x )的表达式.1.3.1 单调性与最大(小)值第1课时 函数的单调性一、基础过关1. 下列函数中,在(-∞,0]内为增函数的是( )A .y =x 2-2B .y =3xC .y =1+2xD .y =-(x +2)22. 已知f (x )为R 上的减函数,则满足f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是( )A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)3. 如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( )A .a >-14B .a ≥-14C .-14≤a <0D .-14≤a ≤04. 如果函数f (x )在[a ,b ]上是增函数,对于任意的x 1,x 2∈ [a ,b ](x 1≠x 2),则下列结论中不正确的是( )A .f (x 1)-f (x 2)x 1-x 2>0B .(x 1-x 2)[f (x 1)-f (x 2)]>0C .f (a )<f (x 1)<f (x 2)<f (b )D .x 1-x 2f (x 1)-f (x 2)>05. 设函数f (x )是R 上的减函数,若f (m -1)>f (2m -1),则实数m 的取值范围是________.6. 函数f (x )=2x 2-mx +3,当x ∈ [2,+∞)时是增函数,当x ∈ (-∞,2]时是减函数,则f (1)=______________. 7. 画出函数y =-x 2+2|x |+3的图象,并指出函数的单调区间.8. 已知f (x )=x 2-1,试判断f (x )在[1,+∞)上的单调性,并证明.二、能力提升9. 已知函数f (x )的图象是不间断的曲线,f (x )在区间[a ,b ]上单调,且f (a )·f (b )<0,则方程f (x )=0在区间[a ,b ]上( )A .至少有一个根B .至多有一个根C .无实根D .必有唯一的实根10.若定义在R 上的二次函数f (x )=ax 2-4ax +b 在区间[0,2]上是增函数,且f (m )≥f (0),则实数m 的取值范围是( )A .0≤m ≤4B .0≤m ≤2C .m ≤0D .m ≤0或m ≥411.函数f (x )=ax +1x +2(a 为常数)在(-2,2)内为增函数,则实数a 的取值范围是________.12.求证:函数f (x )=-x 3+1在(-∞,+∞)上是减函数.三、探究与拓展13.已知函数f (x )=x 2+ax (a >0)在(2,+∞)上递增,求实数a 的取值范围.第2课时 函数的最大(小)值一、基础过关1. 函数f (x )=1x在[1,+∞)上( )A .有最大值无最小值B .有最小值无最大值C .有最大值也有最小值D .无最大值也无最小值 2. 函数y =x +2x -1( )A .有最小值12,无最大值B .有最大值12,无最小值C .有最小值12,有最大值2 D .无最大值,也无最小值3. 函数f (x )=⎩⎪⎨⎪⎧2x +6, x ∈[1,2]x +7, x ∈[-1,1],则f (x )的最大值、最小值为( )A .10,6B .10,8C .8,6D .以上都不对 4. 函数y =|x -3|-|x +1|的( )A .最小值是0,最大值是4B .最小值是-4,最大值是0C .最小值是-4,最大值是4D .没有最大值也没有最小值 5. 函数f (x )=11-x (1-x )的最大值是( )A .45B .54C .34D .436. 函数y =-x 2+6x +9在区间[a ,b ](a <b <3)上有最大值9,最小值-7,则a =______,b =________. 7. 已知函数f (x )=x 2-x +1,求f (x )在区间[-1,1]上的最大值和最小值.8. 已知函数f (x )=x 2-2x +2.(1)求f (x )在区间[12,3]上的最大值和最小值;(2)若g (x )=f (x )-mx 在[2,4]上是单调函数,求m 的取值范围.二、能力提升9. 函数f (x )=x 2-4x +5在区间[0,m ]上的最大值为5,最小值为1,则m 的取值范围是( )A .[2,+∞)B .[2,4]C .(-∞,2]D .[0,2]10.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x ,其中x 为销售量(单位:辆).若该公司在两地共销售15辆,则能获得的最大利润为 ( ) A .90万元B .60万元C .120万元D .120.25万元11.当x ∈ (1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围是________. 12.已知函数f (x )=1a -1x(a >0,x >0),(1)求证:f (x )在(0,+∞)上是单调递增函数; (2)若f (x )在[12,2]上的值域是[12,2],求a 的值.三、探究与拓展13.若二次函数满足f (x +1)-f (x )=2x 且f (0)=1. (1)求f (x )的解析式;(2)若在区间[-1,1]上不等式f (x )>2x +m 恒成立,求实数m 的取值范围.1.3.2 奇偶性第1课时 奇偶性的概念一、基础过关1. 下列说法正确的是( )A .如果一个函数的定义域关于坐标原点对称,则这个函数为奇函数B .如果一个函数为偶函数,则它的定义域关于坐标原点对称C .如果一个函数的定义域关于坐标原点对称,则这个函数为偶函数D .如果一个函数的图象关于y 轴对称,则这个函数为奇函数 2. f (x )是定义在R 上的奇函数,下列结论中,不正确的是( )A .f (-x )+f (x )=0B .f (-x )-f (x )=-2f (x )C .f (x )·f (-x )≤0D .f (x )f (-x )=-13. 下列函数中,在其定义域内既是奇函数又是增函数的是( )A .y =-x 2+5(x ∈R )B .y =-xC .y =x 3(x ∈R )D .y =-1x (x ∈R ,x ≠0)4. 已知y =f (x ),x ∈(-a ,a ),F (x )=f (x )+f (-x ),则F (x )是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数 5. 设奇函数f (x )的定义域为[-5,5],若当x ∈[0,5]时,f (x )的图象如图所示,则不等式f (x )<0的解集是______.6. 若函数f (x )=⎩⎪⎨⎪⎧x 2+2x (x ≥0)g (x )(x <0)为奇函数,则f (g (-1))=________.7. 判断下列函数的奇偶性:(1)f (x )=3,x ∈R ; (2)f (x )=5x 4-4x 2+7,x ∈[-3,3]; (3)f (x )=|2x -1|-|2x +1|; (4)f (x )=⎩⎪⎨⎪⎧1-x 2, x >0,0, x =0,x 2-1, x <0.8. 已知函数f (x )=ax 2+1bx +c (a ,b ,c ∈Z )是奇函数,又f (1)=2,f (2)<3,求a ,b ,c 的值.二、能力提升9. 给出函数f (x )=|x 3+1|+|x 3-1|,则下列坐标表示的点一定在函数y =f (x )的图象上的是 ( )A .(a ,-f (a ))B .(a ,f (-a ))C .(-a ,-f (a ))D .(-a ,-f (-a ))10.已知定义在R 上的奇函数f (x )满足f (x )=x 2+2x (x ≥0),若f (3-a 2)>f (2a -a 2),则实数a 的取值范围是________. 11.已知函数f (x )=1-2x.(1)若g (x )=f (x )-a 为奇函数,求a 的值;(2)试判断f (x )在(0,+∞)内的单调性,并用定义证明.12.已知奇函数f (x )=⎩⎪⎨⎪⎧-x 2+2x (x >0)0 (x =0)x 2+mx (x <0).(1)求实数m 的值,并画出y =f (x )的图象;(2)若函数f (x )在区间[-1,a -2]上单调递增,试确定a 的取值范围.三、探究与拓展13.已知函数f (x )=x 2+ax(x ≠0).(1)判断f (x )的奇偶性,并说明理由;(2)若f (1)=2,试判断f (x )在[2,+∞)上的单调性.第2课时 奇偶性的应用一、基础过关1. 下面四个结论:①偶函数的图象一定与y 轴相交;②奇函数的图象一定过原点;③偶函数的图象关于y轴对称;④没有一个函数既是奇函数,又是偶函数. 其中正确命题的个数是( )A .1B .2C .3D .42. 已知函数f (x )=(m -1)x 2-2mx +3是偶函数,则在(-∞,0)上此函数( )A .是增函数B .不是单调函数C .是减函数D .不能确定3. 定义在R 上的函数f (x )在(-∞,2)上是增函数,且f (x +2)的图象关于y 轴对称,则( )A .f (-1)<f (3)B .f (0)>f (3)C .f (-1)=f (3)D .f (0)=f (3)4. 设奇函数f (x )在(0,+∞)上为减函数,且f (1)=0,则不等式f (x )-f (-x )x<0的解集为( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1) 5. 已知定义在R 上的奇函数f (x ),当x >0时,f (x )=x 2+|x |-1,那么x <0时,f (x )=________.6. 设f (x )是(-∞,+∞)上的奇函数,且f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (7.5)=________. 7. 设函数f (x )在R 上是偶函数,在区间(-∞,0)上递增,且f (2a 2+a +1)<f (2a 2-2a +3),求a 的取值范围.8. 已知函数f (x )是定义在R 上的单调函数,满足f (-3)=2,且对任意的实数a ∈R 有f (-a )+f (a )=0恒成立.(1)试判断f (x )在R 上的单调性,并说明理由. (2)解关于x 的不等式f (2-xx )<2.二、能力提升9. 已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (x )<f (1)的x 的取值范围是( )A .(-1,1)B .(-1,0)C .(0,1)D .[-1,1)10.设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是 ( )A .f (π)>f (-3)>f (-2)B .f (π)>f (-2)>f (-3)C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3) 11.y =f (x )在(0,2)上是增函数,y =f (x +2)是偶函数,则f (1),f (52),f (72)的大小关系是________________.12.已知函数f (x )=ax +1x2(x ≠0,常数a ∈R ).(1)讨论函数f (x )的奇偶性,并说明理由;(2)若函数f (x )在x ∈[3,+∞)上为增函数,求a 的取值范围.三、探究与拓展13.已知函数f (x )=ax 2+bx +1(a ,b 为常数),x ∈R.F (x )=⎩⎪⎨⎪⎧f (x ) (x >0)-f (x ) (x <0).(1)若f (-1)=0,且函数f (x )的值域为[0,+∞),求F (x )的表达式;(2)在(1)的条件下,当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围; (3)设m ·n <0,m +n >0,a >0,且f (x )为偶函数,判断F (m )+F (n )能否大于零?【章末检测】一、选择题1. 若集合A ={x ||x |≤1,x ∈R },B ={y |y =x 2,x ∈R },则A ∩B 等于( ) A .{x |-1≤x ≤1}B .{x |x ≥0}C .{x |0≤x ≤1}D .∅ 2. 已知函数f (x )=ax 2+(a 3-a )x +1在(-∞,-1]上递增,则a 的取值范围是( )A .a ≤ 3B .-3≤a ≤ 3C .0<a ≤ 3D .-3≤a <0 3. 若f (x )=ax 2-2(a >0),且f (2)=2,则a 等于( )A .1+22B .1-22C .0D .24. 若函数f (x )满足f (3x +2)=9x +8,则f (x )的解析式是( )A .f (x )=9x +8B .f (x )=3x +2C .f (x )=-3x -4D .f (x )=3x +2或f (x )=-3x -45. 已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若N ∩(∁I M )=∅,则M ∪N 等于( )A .MB .NC .ID .∅6. 已知函数f :A →B (A 、B 为非空数集),定义域为M ,值域为N ,则A 、B 、M 、N 的关系是 ( )A .M =A ,N =BB .M ⊆A ,N =BC .M =A ,N ⊆BD .M ⊆A ,N ⊆B 7. 下列函数中,既是奇函数又是增函数的为( )A .y =x +1B .y =-x 3C .y =1xD .y =x |x |8. 已知函数f (x )=1x在区间[1,2]上的最大值为A ,最小值为B ,则A -B 等于 ( )A.12B .-12C .1D .-1 9. 设f (x )=⎩⎪⎨⎪⎧x +3 (x >10)f (f (x +5)) (x ≤10),则f (5)的值是( )A .24B .21C .18D .16 10.f (x )=(m -1)x 2+2mx +3为偶函数,则f (x )在区间(2,5)上是( )A .增函数B .减函数C .有增有减D .增减性不确定11.若f (x )和g (x )都是奇函数,且F (x )=f (x )+g (x )+2在(0,+∞)上有最大值8,则在(-∞,0)上F (x )有 ( )A .最小值-8B .最大值-8C .最小值-6D .最小值-412. 在函数y =|x |(x ∈[-1,1])的图象上有一点P (t ,|t |),此函数与x 轴、直线x =-1及x =t 围成图形(如图阴影部分)的面积为S ,则S 与t 的函数关系的图象可表示为()二、填空题13.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=______.14.已知函数f (x )=4x 2-mx +5在区间[-2,+∞)上是增函数,则f (1)的取值范围是________.15.若定义运算a ⊙b =⎩⎪⎨⎪⎧b ,a ≥ba ,a <b ,则函数f (x )=x ⊙(2-x )的值域为________.16.用描述法表示如图中阴影部分的点(含边界)的坐标的集合(不含虚线)为________.三、解答题17.设集合A ={x |2x 2+3px +2=0},B ={x |2x 2+x +q =0},其中p 、q 为常数,x ∈R ,当A ∩B ={12}时,求p 、q 的值和A ∪B .18.已知f (x ),g (x )在(a ,b )上是增函数,且a <g (x )<b ,求证:f (g (x ))在(a ,b )上也是增函数.19.函数f (x )=4x 2-4ax +a 2-2a +2在区间[0,2]上有最小值3,求a 的值.20.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围.21.某公司计划投资A 、B 两种金融产品,根据市场调查与预测,A 产品的利润与投资量成正比例,其关系如图1,B 产品的利润与投资量的算术平方根成正比例,其关系如图2(注:利润与投资量的单位:万元). (1)分别将A 、B 两产品的利润表示为投资量的函数关系式;(2)该公司已有10万元资金,并全部投入A 、B 两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?22.已知函数y =x +tx有如下性质:如果常数t >0,那么该函数在(0,t ]上是减函数,在[t ,+∞)上是增函数.(1)已知f (x )=4x 2-12x -32x +1,x ∈ [0,1],利用上述性质,求函数f (x )的单调区间和值域;(2)对于(1)中的函数f (x )和函数g (x )=-x -2a ,若对任意x 1∈[0,1],总存在x 2∈[0,1],使得g (x 2)=f (x 1)成立,求实数a 的值.第一章参考答案第一节 集合的含义与表示参考答案1. C 2.C 3.A 4.①④ 5.x ≠0,1,2,1±52.6. 解 (1)正确.因为参加2012年伦敦奥运会的国家是确定的,明确的.(2)不正确.因为高科技产品的标准不确定.(3)不正确.对一个集合,它的元素必须是互异的,由于0.5=12,在这个集合中只能作为一个元素,故这个集合含有三个元素.(4)不正确.因为年轻没有明确的标准.7. 解 由-3∈A ,可得-3=a -2或-3=2a 2+5a ,∴a =-1或a =-32.则当a =-1时,a -2=-3,2a 2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去. 当a =-32时,a -2=-72,2a 2+5a =-3,∴a =-32.8. D 9.B 10.211.解 ∵当a =0时,b 依次取1,2,6,得a +b 的值分别为1,2,6;当a =2时,b 依次取1,2,6,得a +b 的值分别为3,4,8; 当a =5时,b 依次取1,2,6,得a +b 的值分别为6,7,11.由集合元素的互异性知P +Q 中元素为1,2,3,4,6,7,8,11,共8个. 12.证明 (1)若a ∈A ,则11-a∈A .又∵2∈A ,∴11-2=-1∈A . ∵-1∈A ,∴11-(-1)=12∈A .∵12∈A ,∴11-12=2∈A . ∴A 中另外两个元素为-1,12.(2)若A 为单元素集,则a =11-a, 即a 2-a +1=0,方程无解. ∴a ≠11-a,∴集合A 不可能是单元素集.第一节 集合的含义与表示(2)答案1. B 2.D 3.B 4.C 5.(1){0,1,2} (2){-2,-1,0,1,2} (3){(2,0),(-2,0),(0,2),(0,-2)} 6.②7. 解 (1)∵方程x (x 2+2x +1)=0的解为0和-1,∴解集为{0,-1};(2){x |x =2n +1,且x <1 000,n ∈N }; (3){x |x >8}; (4){1,2,3,4,5,6}.8. 解 因为三个集合中代表的元素性质互不相同,所以它们是互不相同的集合.理由如下:集合A 中代表的元素是x ,满足条件y =x 2+3中的x ∈R ,所以A =R ;集合B 中代表的元素是y ,满足条件y =x 2+3中y 的取值范围是y ≥3,所以B ={y |y ≥3}.集合C 中代表的元素是(x ,y ),这是个点集,这些点在抛物线y =x 2+3上,所以C ={P |P 是抛物线y =x 2+3上的点}. 9. C 10.D 11.④12.解 (1)当k =0时,原方程变为-8x +16=0,x =2.此时集合A ={2}.(2)当k ≠0时,要使一元二次方程kx 2-8x +16=0有一个实根. 只需Δ=64-64k =0,即k =1.此时方程的解为x 1=x 2=4,集合A ={4},满足题意. 综上所述,实数k 的值为0或1.当k =0时,A ={2}; 当k =1时,A ={4}.13.解 当x =1或2,y =0时,z =0;当x =1,y =2时,z =2;当x =2,y =2时,z =4.所以A *B ={0,2,4},所以元素之和为0+2+4=6.第二节 集合间的基本关系答案1. D 2.B 3.B 4.B 5.①② 6.a ≥27. 解 A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},且B ⊆A .①若B =∅,则m +1>2m -1,解得m <2, 此时有B ⊆A ;②若B ≠∅,则m +1≤2m -1,即m ≥2, 由B ⊆A ,得⎩⎪⎨⎪⎧m ≥2m +1≥-22m -1≤5,解得2≤m ≤3. 由①②得m ≤3.∴实数m 的取值范围是{m |m ≤3}. 8. 解 A ={-3,2}.对于x 2+x +a =0,①当Δ=1-4a <0,即a >14时,B =∅,B ⊆A 成立;②当Δ=1-4a =0,即a =14时,B ={-12},B ⊆A 不成立;③当Δ=1-4a >0,即a <14时,若B ⊆A 成立,则B ={-3,2},∴a =-3×2=-6. 综上:a 的取值范围为a >14或a =-6.9. A 10.C 11.612.解 ①当a =0时,A =∅,满足A ⊆B .②当a >0时,A ={x |1a <x <2a }.又∵B ={x |-1<x <1},A ⊆B ,∴⎩⎨⎧1a≥-1,2a ≤1,∴a ≥2.③当a <0时,A ={x |2a <x <1a}.∵A ⊆B ,∴⎩⎨⎧2a≥-1,1a ≤1,∴a ≤-2.综上所述,a =0或a ≥2或a ≤-2.13.解 不存在.理由如下:要使对任意的实数b 都有A ⊆B ,则1,2是A 中的元素,又因A ={a -4,a +4},所以⎩⎪⎨⎪⎧ a -4=1,a +4=2,或⎩⎪⎨⎪⎧a +4=1,a -4=2.这两个方程组均无解,故这样的实数不存在.第三节 集合间的运算(1)答案1. A 2.D 3.D 4.D 5.B 6.17. 解 ∵A ∩B ={9},∴9∈A ,所以a 2=9或2a -1=9,解得a =±3或a =5.当a =3时,A ={9,5,-4},B ={-2,-2,9},B 中元素违背了互异性,舍去.当a =-3时,A ={9,-7,-4},B ={-8,4,9},A ∩B ={9}满足题意,故A ∪B ={-7,-4,-8,4,9}. 当a =5时,A ={25,9,-4},B ={0,-4,9},此时A ∩B ={-4,9},与A ∩B ={9}矛盾,故舍去. 综上所述,A ∪B ={-7,-4,-8,4,9}. 8. 解 ∵A ∩B =B ,∴B ⊆A .∵A ={-2}≠∅,∴B =∅或B ≠∅.当B =∅时,方程ax +1=0无解,此时a =0. 当B ≠∅时,此时a ≠0,则B ={-1a },∴-1a ∈A ,即有-1a =-2,得a =12.综上,a =0或a =12.9. B 10.0或1 11.-1 212.解 由A ∩C =A ,A ∩B =∅,可得:A ={1,3},即方程x 2+px +q =0的两个实根为1,3.∴⎩⎪⎨⎪⎧ 1+3=-p 1×3=q ,∴⎩⎪⎨⎪⎧p =-4q =3. 13.解 (1)若A =∅,则A ∩B =∅成立.此时2a +1>3a -5, 即a <6.若A ≠∅,如图所示,则⎩⎪⎨⎪⎧2a +1≤3a -5,2a +1≥-1,3a -5≤16,解得6≤a ≤7.综上,满足条件A ∩B =∅的实数a 的取值范围是{a |a ≤7}. (2)因为A ⊆(A ∩B ),且(A ∩B )⊆A , 所以A ∩B =A ,即A ⊆B . 显然A =∅满足条件,此时a <6.若A ≠∅,如图所示,则⎩⎪⎨⎪⎧ 2a +1≤3a -5,3a -5<-1或⎩⎪⎨⎪⎧2a +1≤3a -5,2a +1>16.由⎩⎪⎨⎪⎧ 2a +1≤3a -5,3a -5<-1解得a ∈∅; 由⎩⎪⎨⎪⎧2a +1≤3a -5,2a +1>16解得a >152.综上,满足条件A ⊆(A ∩B )的实数a 的取值范围是{a |a <6或a >152}. 第三节 集合间的运算(2)1. D 2.C 3.B 4.B 5.-3 6.{0,1,3,5,7,8} {7,8} {0,1,3,5} 7. 解 ∵∁U A ={5},∴5∈U 且5∉A .又b ∈A ,∴b ∈U ,由此得⎩⎪⎨⎪⎧a 2+2a -3=5,b =3.解得⎩⎪⎨⎪⎧ a =2,b =3或⎩⎪⎨⎪⎧a =-4,b =3经检验都符合题意.8. 解 (1)∵U ={1,2,3,4,5},M ={1,4},∴∁U M ={2,3,5}.又∵N ={1,3,5}, ∴N ∩(∁U M )={3,5}. (2)∵M ={m ∈Z |-3<m <2}, ∴M ={-2,-1,0,1};∵N ={n ∈Z |-1≤n ≤3},∴N ={-1,0,1,2,3},∴M ∪N ={-2,-1,0,1,2,3}.9. C 10.B 11.(∁U B ) (∁U A ) 12.解 因为B ∪(∁U B )=A ,所以B ⊆A ,U =A ,因而x 2=3或x 2=x . ①若x 2=3,则x =±3.当x =3时,A ={1,3,3},B ={1,3}, U =A ={1,3,3},此时∁U B ={3};当x =-3时,A ={1,3,-3},B ={1,3},U =A ={1,3,-3},此时∁U B ={-3}.②若x 2=x ,则x =0或x =1.当x =1时,A 中元素x 与1相同,B 中元素x 2与1也相同,不符合元素的互异性,故x ≠1;当x =0时,A ={1,3,0},B ={1,0},U =A ={1,3,0},从而∁U B ={3}. 综上所述,∁U B ={3}或{-3}或{3}.13.解 如图所示,设只参加赛跑、只参加跳跃、两项都参加的人数分别为a ,b ,x.根据题意有⎩⎪⎨⎪⎧a +x =20,b +x =11,a +b +x =30-4.解得x =5,即两项都参加的有5人.结合习题课答案1. B 2.B 3.D 4.B 5.D 6.a ≤2 7. 解 (1)∵B ={x |x ≥2},∴A ∩B ={x |2≤x <3}. (2)∵C ={x |x >-a2},B ∪C =C ⇔B ⊆C , ∴-a2<2,∴a >-4.8. 解 ∵A ∩B ={3},∴3∈B ,∴32+3c +15=0,∴c =-8.由方程x 2-8x +15=0解得x =3或x =5, ∴B ={3,5}.由A ⊆(A ∪B )={3,5}知,3∈A,5A (否则5∈A ∩B ,与A ∩B ={3}矛盾)故必有A ={3},∴方程x 2+ax +b =0有两相同的根3,由根与系数的关系得3+3=-a,3×3=b ,即a=-6,b =9,c =-8.9. A 10.1 11.{x |x <1或x ≥5}12. 解 由题意,设全班同学为全集U ,画出Venn 图,A 表示答错A的集合,B 表示答错B 的集合,C 表示答错C 的集合,将其集合中 元素数目填入图中,自中心区域向四周的各区域数目分别为 1,2,3,4,10,7,5,因此A ∪B ∪C 中元素数目为32,从而至少错一题的 共32人,因此A ,B ,C 全对的有50-32=18(人). 13.解 A ={x |1<x <3},B ={x |2≤x ≤4}.(1)∵A ΔB ={x |1<x <2},由上图可知A ΔB 中的元素都在A 中但不在B 中, ∴定义A ΔB ={x |x ∈A ,且xB }.(2)由(1)可知B ΔA ={x |x ∈B ,且x A }={x |3≤x ≤4}.函数部分第一节 函数及其表示(1)1. A 2.D 3.D 4.B 5.{-1,1,3,5,7} 6.[1,+∞) 7. 解 (1)A 中的元素0在B 中没有对应元素,故不是集合A 到集合B 的函数.(2)对于集合A 中的任意一个整数x ,按照对应关系f :x →y =x 2在集合B 中都有唯一一个确定的整数x 2与其对应,故是集合A 到集合B 的函数.(3)集合A 中的负整数没有平方根,故在集合B 中没有对应的元素,故不是集合A 到集合B 的函数. (4)对于集合A 中任意一个实数x ,按照对应关系f :x →y =0在集合B 中都有唯一一个确定的数0和它对应,故是集合A 到集合B 的函数. 8. 解 由1-x 1+x=2,解得x =-13,所以f (2)=-13.9. C 10.C 11.[0,13]12.解 (1)最初到达离家最远的地方的时间是12时,离家30千米.(2)10∶30开始第一次休息,休息了半小时. (3)第一次休息时,离家17千米. (4)11∶00至12∶00他骑了13千米.(5)9∶00~10∶00的平均速度是10千米/时;10∶00~10∶30的平均速度是14千米/时. (6)从12时到13时停止前进,并休息用午餐较为符合实际情形.13.解 (1)由已知,横断面为等腰梯形,下底为2 m ,上底为(2+2h )m ,高为h m ,∴水的面积A =[2+(2+2h )]h 2=h 2+2h (m 2).(2)定义域为{h |0<h <1.8}.值域由二次函数A =h 2+2h (0<h <1.8)求得.由函数A =h 2+2h =(h +1)2-1的图象可知,在区间(0,1.8)上函数值随自变量的增大而增大,∴0<A <6.84.故值域为{A |0<A <6.84}.(3)由于A =(h +1)2-1,对称轴为直线h =-1,顶点坐标为(-1,-1),且图象过(0,0)和(-2,0)两点,又考虑到0<h <1.8,∴A =h 2+2h 的图象仅是抛物线的一部分,如图所示.第一节 函数及其表示(2)答案1. C 2.B 3.B 4.B 5.2 6.f (x )=2x +83或f (x )=-2x -87. 解 设f (x )=ax 2+bx +c (a ≠0),∴f (x +2)=a (x +2)2+b (x +2)+c , 则f (x +2)-f (x )=4ax +4a +2b =4x +2.∴⎩⎪⎨⎪⎧4a =4,4a +2b =2. ∴⎩⎪⎨⎪⎧a =1,b =-1. 又f (0)=3,∴c =3,∴f (x )=x 2-x +3. 8. 解 设f (x )=ax 2+bx +c (a ≠0).由f (0)=f (4)知⎩⎪⎨⎪⎧f (0)=c ,f (4)=16a +4b +c ,f (0)=f (4),得4a +b =0.①又图象过(0,3)点,所以c =3.② 设f (x )=0的两实根为x 1,x 2, 则x 1+x 2=-b a ,x 1x 2=ca.所以x 21+x 22=(x 1+x 2)2-2x 1x 2=(-b a )2-2·ca =10.即b 2-2ac =10a 2.③由①②③得a =1,b =-4,c =3. 所以f (x )=x 2-4x +3.9. B 10.B 11.f (x )=-x 2+23x(x ≠0)12.解 因为函数f (x )=-x 2+2x +3的定义域为R ,列表:(1)根据图象,容易发现f (0)=3,f (1)=4,f (3)=0, 所以f (3)<f (0)<f (1).(2)根据图象,容易发现当x 1<x 2<1时,有f (x 1)<f (x 2).(3)根据图象,可以看出函数的图象是以(1,4)为顶点,开口向下的抛物线,因此,函数的值域为(-∞,4]. 13.解 要使函数y =1a x +1(a <0且a 为常数)在区间(-∞,1]上有意义,必须有1ax +1≥0,a <0,∴x ≤-a,即函数的定义域为(-∞,-a ], ∵函数在区间(-∞,1]上有意义,∴(-∞,1]⊆(-∞,-a ],∴-a ≥1,即a ≤-1,∴a 的取值范围是(-∞,-1].第一节 函数及其表示(3)答案 1. D 2.A 3.A 4.C 5.C 6.137. 解 f (x )=x +|x |x =⎩⎪⎨⎪⎧x +1,x >0,x -1,x <0.其图象如图所示.由图象可知,f (x )的值域为(-∞,-1)∪(1,+∞). 8. 解 (1)利用描点法,作出f (x )的图象,如图所示.(2)由条件知,函数f (x )的定义域为R .由图象知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1], 当x >1或x <-1时,f (x )=1, 所以f (x )的值域为[0,1].9. A 10.f (x )=⎩⎪⎨⎪⎧x +1, -1≤x <0,-x , 0≤x ≤111.32 {x |x ≥-1且x ≠0}12.解 当点P 在BC 上运动,即0≤x ≤4时,y =12×4x =2x ;当点P 在CD 上运动,即4<x ≤8时,y =12×4×4=8;当点P 在DA 上运动,即8<x ≤12时, y =12×4×(12-x )=24-2x . 综上可知,f (x )=⎩⎪⎨⎪⎧2x , 0≤x ≤4,8, 4<x ≤8,24-2x , 8<x ≤12.13.解 由题意,当0≤x ≤20时,v (x )=60;当20≤x ≤200时,设v (x )=ax +b .。

高中数学(人教A版,必修一) 第一章集合与函数概念 1.1.1第2课时 课时作业(含答案)

第2课时集合的表示课时目标 1.掌握集合的两种表示方法(列举法、描述法).2.能够运用集合的两种表示方法表示一些简单集合.1.列举法把集合的元素____________出来,并用花括号“{}”括起来表示集合的方法叫做列举法.2.描述法用集合所含元素的共同特征表示集合的方法称为__________.不等式x-7<3的解集为__________.所有偶数的集合可表示为________________.一、选择题1.集合{x∈N+|x-3<2}用列举法可表示为()A.{0,1,2,3,4} B.{1,2,3,4}C.{0,1,2,3,4,5} D.{1,2,3,4,5}2.集合{(x,y)|y=2x-1}表示()A.方程y=2x-1B.点(x,y)C.平面直角坐标系中的所有点组成的集合D.函数y=2x-1图象上的所有点组成的集合3.将集合表示成列举法,正确的是()A.{2,3} B.{(2,3)}C.{x=2,y=3} D.(2,3)4.用列举法表示集合{x|x2-2x+1=0}为()A.{1,1} B.{1}C.{x=1} D.{x2-2x+1=0}5.已知集合A={x∈N|-3≤x≤3},则有()A.-1∈A B.0∈AC.3∈A D.2∈A6.方程组的解集不可表示为()A.B.C.{1,2} D.{(1,2)}二、填空题7.用列举法表示集合A={x|x∈Z,86-x∈N}=______________.8.下列各组集合中,满足P=Q的有________.(填序号)①P={(1,2)},Q={(2,1)};②P={1,2,3},Q={3,1,2};③P={(x,y)|y=x-1,x∈R},Q={y|y=x-1,x∈R}.9.下列各组中的两个集合M和N,表示同一集合的是________.(填序号)①M={π},N={3.141 59};②M={2,3},N={(2,3)};③M={x|-1<x≤1,x∈N},N={1};④M={1,3,π},N={π,1,|-3|}.三、解答题10.用适当的方法表示下列集合①方程x(x2+2x+1)=0的解集;②在自然数集内,小于1 000的奇数构成的集合;③不等式x-2>6的解的集合;④大于0.5且不大于6的自然数的全体构成的集合.11.已知集合A={x|y=x2+3},B={y|y=x2+3},C={(x,y)|y=x2+3},它们三个集合相等吗?试说明理由.能力提升12.下列集合中,不同于另外三个集合的是()A.{x|x=1} B.{y|(y-1)2=0}C.{x=1} D.{1}13.已知集合M={x|x=k2+14,k∈Z},N={x|x=k4+12,k∈Z},若x0∈M,则x0与N的关系是() A.x0∈NB.x0∉NC.x0∈N或x0∉N D.不能确定1.在用列举法表示集合时应注意:①元素间用分隔号“,”;②元素不重复;③元素无顺序;④列举法可表示有限集,也可以表示无限集,若元素个数比较少用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示.2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合、还是其他形式?(2)元素具有怎样的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.第2课时 集合的表示知识梳理1.一一列举 2.描述法 {x |x <10} {x ∈Z |x =2k ,k ∈Z }作业设计1.B [{x ∈N +|x -3<2}={x ∈N +|x <5}={1,2,3,4}.]2.D [集合{(x ,y )|y =2x -1}的代表元素是(x ,y ),x ,y 满足的关系式为y =2x -1,因此集合表示的是满足关系式y =2x -1的点组成的集合,故选D.]3.B [解方程组⎩⎪⎨⎪⎧ x +y =5,2x -y =1.得⎩⎪⎨⎪⎧ x =2,y =3. 所以答案为{(2,3)}.]4.B [方程x 2-2x +1=0可化简为(x -1)2=0,∴x 1=x 2=1,故方程x 2-2x +1=0的解集为{1}.]5.B6.C [方程组的集合中最多含有一个元素,且元素是一对有序实数对,故C 不符合.]7.{5,4,2,-2}解析 ∵x ∈Z ,86-x∈N , ∴6-x =1,2,4,8.此时x =5,4,2,-2,即A ={5,4,2,-2}.8.②解析 ①中P 、Q 表示的是不同的两点坐标;②中P =Q ;③中P 表示的是点集,Q 表示的是数集.9.④解析 只有④中M 和N 的元素相等,故答案为④.10.解 ①∵方程x (x 2+2x +1)=0的解为0和-1,∴解集为{0,-1};②{x |x =2n +1,且x <1 000,n ∈N };③{x |x >8};④{1,2,3,4,5,6}.11.解 因为三个集合中代表的元素性质互不相同,所以它们是互不相同的集合.理由如下:集合A 中代表的元素是x ,满足条件y =x 2+3中的x ∈R ,所以A =R ;集合B 中代表的元素是y ,满足条件y =x 2+3中y 的取值范围是y ≥3,所以B ={y |y ≥3}.集合C 中代表的元素是(x ,y ),这是个点集,这些点在抛物线y =x 2+3上,所以C ={P |P是抛物线y =x 2+3上的点}.12.C [由集合的含义知{x |x =1}={y |(y -1)2=0}={1},而集合{x =1}表示由方程x =1组成的集合,故选C.]13.A [M ={x |x =2k +14,k ∈Z },N ={x |x =k +24,k ∈Z }, ∵2k +1(k ∈Z )是一个奇数,k +2(k ∈Z )是一个整数,∴x 0∈M 时,一定有x 0∈N ,故选A.]。

高中数学(人教版A版必修一)配套课时作业:第一章 集合与函数的概念 1.3习题课 Word版含解析.doc

§1.3 习题课课时目标 1.加深对函数的基本性质的理解.2.培养综合运用函数的基本性质解题的能力.1.若函数y =(2k +1)x +b 在R 上是减函数,则( ) A .k >12B .k <12C .k >-12D .k <-122.定义在R 上的函数f (x )对任意两个不相等的实数a ,b ,总有f (a )-f (b )a -b >0成立,则必有( ) A .函数f (x )先增后减 B .函数f (x )先减后增 C .f (x )在R 上是增函数 D .f (x )在R 上是减函数3.已知函数f (x )在(-∞,+∞)上是增函数,a ,b ∈R ,且a +b >0,则有( )A .f (a )+f (b )>-f (a )-f (b )B .f (a )+f (b )<-f (a )-f (b )C .f (a )+f (b )>f (-a )+f (-b )D .f (a )+f (b )<f (-a )+f (-b )4.函数f (x )的图象如图所示,则最大、最小值分别为( )A .f (32),f (-32)B .f (0),f (32)C .f (0),f (-32) D .f (0),f (3)5.已知f (x )=ax 2+bx +3a +b 是偶函数,定义域为[a -1,2a ],则a =________,b =________. 6.已知f (x )=⎩⎪⎨⎪⎧12x -1, x ≥0,1x ,x <0,若f (a )>a ,则实数a 的取值范围是______________.一、选择题1.设f (x )是定义在R 上的偶函数,且在(-∞,0)上是增函数,已知x 1>0,x 2<0,且f (x 1)<f (x 2),那么一定有( ) A .x 1+x 2<0B .x 1+x 2>0C .f (-x 1)>f (-x 2)D .f (-x 1)·f (-x 2)<0 2.下列判断:①如果一个函数的定义域关于坐标原点对称,那么这个函数为偶函数; ②对于定义域为实数集R 的任何奇函数f (x )都有f (x )·f (-x )≤0; ③解析式中含自变量的偶次幂而不含常数项的函数必是偶函数; ④既是奇函数又是偶函数的函数存在且唯一. 其中正确的序号为( ) A .②③④B .①③C .②D .④3.定义两种运算:a ⊕b =ab ,a ⊗b =a 2+b 2,则函数f (x )=2⊕x(x ⊗2)-2为( )A .奇函数B .偶函数C .既不是奇函数也不是偶函数D .既是奇函数也是偶函数4.用min{a,b}表示a,b两数中的最小值,若函数f(x)=min{|x|,|x+t|}的图象关于直线x=-12对称,则t的值为()A.-2B.2C.-1D.15.如果奇函数f(x)在区间[1,5]上是减函数,且最小值为3,那么f(x)在区间[-5,-1]上是()A.增函数且最小值为3B.增函数且最大值为3C.减函数且最小值为-3D.减函数且最大值为-36.若f(x)是偶函数,且当x∈[0,+∞)时,f(x)=x-1,则f(x-1)<0的解集是()A.(-1,0) B.(-∞,0)∪(1,2)C.(1,2) D.(0,2)二、填空题7.若函数f(x)=-x+abx+1为区间[-1,1]上的奇函数,则它在这一区间上的最大值为____.8.已知函数f(x)是定义域为R的奇函数,且当x>0时,f(x)=2x-3,则f(-2)+f(0)=________.9.函数f(x)=x2+2x+a,若对任意x∈[1,+∞),f(x)>0恒成立,则实数a的取值范围是________.三、解答题10.已知奇函数f(x)的定义域为(-∞,0)∪(0,+∞),且f(x)在(0,+∞)上是增函数,f(1)=0.(1)求证:函数f(x)在(-∞,0)上是增函数;(2)解关于x的不等式f(x)<0.11.已知f(x)=x2+ax+bx,x∈(0,+∞).(1)若b≥1,求证:函数f(x)在(0,1)上是减函数;(2)是否存在实数a,b,使f(x)同时满足下列两个条件:①在(0,1)上是减函数,(1,+∞)上是增函数;②f(x)的最小值是3.若存在,求出a,b的值;若不存在,请说明理由.能力提升12.设函数f(x)=1-1x+1,x∈[0,+∞)(1)用单调性的定义证明f(x)在定义域上是增函数;(2)设g(x)=f(1+x)-f(x),判断g(x)在[0,+∞)上的单调性(不用证明),并由此说明f(x)的增长是越来越快还是越来越慢?13.如图,有一块半径为2的半圆形纸片,计划剪裁成等腰梯形ABCD的形状,它的下底AB是⊙O的直径,上底CD的端点在圆周上,设CD=2x,梯形ABCD的周长为y.(1)求出y关于x的函数f(x)的解析式;(2)求y的最大值,并指出相应的x值.1.函数单调性的判定方法 (1)定义法.(2)直接法:运用已知的结论,直接判断函数的单调性,如一次函数,二次函数,反比例函数;还可以根据f (x ),g (x )的单调性判断-f (x ),1f (x ),f (x )+g (x )的单调性等.(3)图象法:根据函数的图象判断函数的单调性. 2.二次函数在闭区间上的最值对于二次函数f (x )=a (x -h )2+k (a >0)在区间[m ,n ]上最值问题,有以下结论: (1)若h ∈[m ,n ],则y min =f (h )=k ,y max =max{f (m ),f (n )}; (2)若h ∉[m ,n ],则y min =min{f (m ),f (n )}, y max =max{f (m ),f (n )}(a <0时可仿此讨论). 3.函数奇偶性与单调性的差异.函数的奇偶性是相对于函数的定义域来说的,这一点与研究函数的单调性不同,从这个意义上说,函数的单调性是函数的“局部”性质,而奇偶性是函数的“整体”性质,只是对函数定义域内的每一个值x ,都有f (-x )=-f (x )[或f (-x )=f (x )],才能说f (x )是奇函数(或偶函数).§1.3 习题课双基演练1.D [由已知,令2k +1<0,解得k <-12.]2.C [由f (a )-f (b )a -b >0,知f (a )-f (b )与a -b 同号,由增函数的定义知选C.]3.C [∵a +b >0,∴a >-b ,b >-a .由函数的单调性可知,f (a )>f (-b ),f (b )>f (-a ). 两式相加得C 正确.]4.C[由图象可知,当x=0时,f(x)取得最大值;当x=-32时,f(x)取得最小值.故选C.]5.130解析偶函数定义域关于原点对称,∴a-1+2a=0.∴a=1 3.∴f(x)=13x2+bx+1+b.又∵f(x)是偶函数,∴b=0. 6.(-∞,-1)解析若a≥0,则12a-1>a,解得a<-2,∴a∈∅;若a<0,则1a>a,解得a<-1或a>1,∴a<-1.综上,a∈(-∞,-1).作业设计1.B[由已知得f(x1)=f(-x1),且-x1<0,x2<0,而函数f(x)在(-∞,0)上是增函数,因此由f(x1)<f(x2),则f(-x1)<f(x2)得-x1<x2,x1+x2>0.故选B.] 2.C[判断①,一个函数的定义域关于坐标原点对称,是这个函数具有奇偶性的前提条件,但并非充分条件,故①错误.判断②正确,由函数是奇函数,知f(-x)=-f(x),特别地当x=0时,f(0)=0,所以f(x)·f(-x)=-[f(x)]2≤0.判断③,如f(x)=x2,x∈[0,1],定义域不关于坐标原点对称,即存在1∈[0,1],而-1 [0,1];又如f(x)=x2+x,x∈[-1,1],有f(x)≠f(-x).故③错误.判断④,由于f(x)=0,x∈[-a,a],根据确定一个函数的两要素知,a取不同的实数时,得到不同的函数.故④错误.综上可知,选C.]3.A[f(x)=2xx2+2,f(-x)=-f(x),选A.] 4.D[当t>0时f(x)的图象如图所示(实线)对称轴为x=-t2,则t2=12,∴t=1.]5.D[当-5≤x≤-1时1≤-x≤5,∴f(-x)≥3,即-f(x)≥3.从而f(x)≤-3,又奇函数在原点两侧的对称区间上单调性相同,故f(x)在[-5,-1]上是减函数.故选D.]6.D[依题意,因为f(x)是偶函数,所以f(x-1)<0化为f(|x-1|)<0,又x∈[0,+∞)时,f(x)=x-1,所以|x-1|-1<0,即|x-1|<1,解得0<x<2,故选D.]7.1解析f(x)为[-1,1]上的奇函数,且在x=0处有定义,所以f(0)=0,故a=0.又f(-1)=-f(1),所以--1-b+1=1b+1,故b=0,于是f(x)=-x.函数f(x)=-x在区间[-1,1]上为减函数,当x取区间左端点的值时,函数取得最大值1. 8.-1解析∵f(-0)=-f(0),∴f(0)=0,且f(2)=22-3=1.∴f(-2)=-f(2)=-1,∴f(-2)+f(0)=-1.9.a>-3解析∵f(x)=x2+2x+a=(x+1)2+a-1,∴[1,+∞)为f(x)的增区间,要使f(x)在[1,+∞)上恒有f(x)>0,则f(1)>0,即3+a>0,∴a>-3.10.(1)证明设x1<x2<0,则-x1>-x2>0.∵f(x)在(0,+∞)上是增函数,∴f(-x1)>f(-x2).∵f(x)是奇函数,∴f(-x1)=-f(x1),f(-x2)=-f(x2),∴-f(x1)>-f(x2),即f(x1)<f(x2).∴函数f(x)在(-∞,0)上是增函数.(2)解若x>0,则f(x)<f(1),∴x<1,∴0<x<1;若x<0,则f(x)<f(-1),∴x<-1.∴关于x的不等式f(x)<0的解集为(-∞,-1)∪(0,1).11.(1)证明设0<x1<x2<1,则x1x2>0,x1-x2<0.又b>1,且0<x1<x2<1,∴x1x2-b<0.∵f(x1)-f(x2)=(x1-x2)(x1x2-b)x1x2>0,∴f(x1)>f(x2),所以函数f(x)在(0,1)上是减函数.(2)解设0<x1<x2<1,则f(x1)-f(x2)=(x1-x2)(x1x2-b)x1x2由函数f(x)在(0,1)上是减函数,知x1x2-b<0恒成立,则b≥1. 设1<x1<x2,同理可得b≤1,故b=1.x∈(0,+∞)时,通过图象可知f(x)min=f(1)=a+2=3.故a=1.12.(1)证明设x1>x2≥0,f(x1)-f(x2)=(1-1x1+1)-(1-1x2+1)=x1-x2(x1+1)(x2+1).由x1>x2≥0⇒x1-x2>0,(x1+1)(x2+1)>0,得f(x1)-f(x2)>0,即f(x1)>f(x2).所以f(x)在定义域上是增函数.(2)解g(x)=f(x+1)-f(x)=1(x+1)(x+2),g(x)在[0,+∞)上是减函数,自变量每增加1,f(x)的增加值越来越小,所以f(x)的增长是越来越慢.13.解(1)作OH,DN分别垂直DC,AB交于H,N,连结OD.由圆的性质,H是中点,设OH=h,h=OD2-DH2=4-x2.又在直角△AND中,AD=AN2+DN2=(2-x)2+(4-x2)=8-4x=22-x,所以y=f(x)=AB+2AD+DC=4+2x+42-x,其定义域是(0,2).(2)令t=2-x,则t∈(0,2),且x=2-t2,所以y=4+2·(2-t2)+4t=-2(t-1)2+10,当t=1,即x=1时,y的最大值是10.。

高中数学第一章集合与函数概念1.1.1.1集合的含义课时作业(含解析)新人教A版必修1

1.1.1.1 集合的含义[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.下列能构成集合的是( )A.中央电视台著名节目主持人B.我市跑得快的汽车C.上海市所有的中学生D.香港的高楼解析:A,B,D中研究的对象不确定,因此不能构成集合.答案:C2.由形如x=3k+1,k∈Z的数组成集合A,则下列表示正确的是( )A.-1∈A B.-11∈AC.15∈A D.32∈A解析:-11=3×(-4)+1,故选B.答案:B3.已知集合A中元素x满足-5≤x≤5,且x∈N*,则必有( )A.-1∈A B.0∈AC.3∈A D.1∈A解析:x∈N*,且-5≤x≤5,所以x=1,2.所以1∈A.答案:D4.设A是方程x2-ax-5=0的解集,且-5∈A,则实数a的值为( )A.-4 B.4C.1 D.-1解析:因为-5∈A,所以(-5)2-a×(-5)-5=0,所以a=-4.故选A.答案:A5.若以集合A的四个元素a、b、c、d为边长构成一个四边形,则这个四边形可能是( ) A.梯形 B.平行四边形C.菱形 D.矩形解析:由集合中元素互异性可知,a,b,c,d互不相等,从而四边形中没有边长相等的边.答案:A二、填空题(每小题5分,共15分)6.判断下列说法正确的是________.(1)某个单位里的年轻人组成一个集合;(2)1,32,64,⎪⎪⎪⎪⎪⎪-12,12这些数组成的集合含有五个元素; (3)由a ,b ,c 组成的集合与由b ,a ,c 组成的集合是同一个集合;(4)方程(x -3)(x -2)2=0的解组成的集合有3个元素.解析:(1)不正确.因为“年轻人”没有明确的标准,不具有确定性,不能组成集合.(2)不正确.根据互异性知,这个集合是由三个元素1,32,12组成的. (3)正确.集合中的元素相同,只是次序不同,它们表示同一个集合.(4)不正确.方程(x -3)(x -2)2=0的解是x 1=3,x 2=x 3=2,因此写成集合时只有3和2两个元素.答案:(3)7.给出下列关系:(1)13∈R ;(2)5∈Q ;(3)-3∉Z ;(4)-3∉N ,其中正确的是________. 解析:13是实数,(1)正确;5是无理数,(2)错误;-3是整数,(3)错误;-3是无理数,(4)正确.答案:(1)(4)8.已知集合A 含有三个元素1,0,x ,若x 2∈A ,则实数x =________.解析:因为x 2∈A ,所以x 2=1,或x 2=0,或x 2=x ,所以x =±1,或x =0.当x =0,或x =1时,不满足集合中元素的互异性,所以x =-1.答案:-1三、解答题(每小题10分,共20分)9.判断下列说法是否正确?并说明理由.(1)大于3的所有自然数组成一个集合;(2)未来世界的高科技产品构成一个集合;(3)1,0.5,32,12组成的集合含有四个元素; (4)接近于0的数的全体组成一个集合.解析:(1)中的对象是确定的,互异的,所以可构成一个集合,故(1)正确;(2)和(4)中的“高科技”、“接近于0”都是标准不确定的,所以不能构成集合,故(2)、(4)错误;由于0.5=12,所以1,0.5,32,12组成的集合含有3个元素,故(3)错误.10.数集A 满足条件:若a ∈A ,则1+a 1-a ∈A (a ≠1).若13∈A ,求集合中的其他元素. 解析:因为13∈A ,所以1+131-13=2∈A , 所以1+21-2=-3∈A , 所以1-31+3=-12∈A , 所以1-121+12=13∈A . 故当13∈A 时,集合中的其他元素为2,-3,-12. [能力提升](20分钟,40分)11.已知集合A 含有三个元素2,4,6,且当a ∈A ,有6-a ∈A ,那么a 为( )A .2B .2或4C .4D .0解析:集合A 含有三个元素2,4,6,且当a ∈A ,有6-a ∈A ,a =2∈A,6-a =4∈A , 所以a =2,或者a =4∈A,6-a =2∈A ,所以a =4,综上所述,a =2或4.故选B.答案:B12.设直线y =2x +3上的点集为P ,点(2,7)与点集P 的关系为(2,7)________P (填“∈”或“∉”).解析:直线y =2x +3上的点的横坐标x 和纵坐标y 具有y =2x +3的关系,即只要具备此关系的点就是集合P 的元素.由于当x =2时,y =2×2+3=7,故(2,7)∈P .答案:∈13.设A 是由满足不等式x <6的自然数组成的集合,若a ∈A 且3a ∈A ,求a 的值. 解析:因为a ∈A 且3a ∈A ,所以⎩⎪⎨⎪⎧ a <6,3a <6,解得a <2.又a ∈N ,所以a =0或1.14.定义满足“如果a ∈A ,b ∈A ,那么a ±b ∈A ,且ab ∈A ,且a b∈A (b ≠0)”的集合A 为“闭集”.试问数集N ,Z ,Q ,R 是否分别为“闭集”?若是,请说明理由;若不是,请举反例说明.解析:数集N ,Z 不是“闭集”,数集Q ,R 是“闭集”.例如,3∈N,2∈N ,而32=1.5∉N ; 3∈Z ,-2∈Z ,而3-2=-1.5∉Z ,故N ,Z 不是闭集. 由于两个有理数a 与b 的和,差,积,商,即a ±b ,ab ,a b (b ≠0)仍是有理数,故Q 是闭集.同理R 也是闭集.。

2020年高中数学人教A版必修第一册课时作业 1.1 集合的概念(含答案)


12.已知集合 A {x | ax 2 3x 2 0}至多有一个元素,则 a 的取值范围

若至少有一个元素,则 a 的取值范围
.
三、解答题 13.已知由方程 kx2-8x+16=0 的根组成的集合 A 只有一个元素,试求实数 k 的值.
14.已知集合 M 含有两个元素 a-3 和 2a+1,若-2∈M,求实数 a 取值的集合.
15.解: (1)用列举法表示为{3,-3},用描述法表示为{x|x2-9=0}.集合中有 2 个元素,是有限 集. (2)用列举法表示为{1,3,5,7,9},用描述法表示为{x|x=2k-1,k∈N+且 1≤k≤5}.集合中有 5 个元素,是有限集. (3)用描述法表示为{x|x>5}.集合中有无数个元素,是无限集. (4)用描述法表示为{(x,y)|y=x2}.抛物线上的点有无数个,因此该集合是无限集. (5)方程x2+x+1=0 无实数解,故该方程的解集为∅,是有限集.
2020 年高中数学人教 A 版必修第一册课时作业
1.1 集合的概念
一、选择题
1.已知集合 A={0,1,a2-2a},实数 a∈A,则 a 的值是(
A.0 或 1
B.1
C.3
) D.1 或 3
2.若集合 A {x kx2 4x 4 0, x R} 中只有一个元素,则实数 k 的值为( )
A.①
B.②
C.③
D.以上都不对
二、填空题 9.集合A中含有三个元素 2,4,6,若a∈A,且 6-a∈A,那么a为________.
10.已知 A={1,0,-1,2},B={y|y=|x|,x∈A},则 B=
.
11.方程x2-3x-4=0 的解集与集合A相等,若集合A中的元素是a,b,则a+b=________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时 补集及综合应用 课时目标 1.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.2.熟练掌握集合的基本运算.
1.全集:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为________,通常记作________.
2.补集
(1)∁U U =____;(2)∁U ∅=____;(3)∁U (∁U A )=____;(4)A ∪(∁U A )=____;
(5)A ∩(∁U A )=____.
一、选择题
1.已知集合U ={1,3,5,7,9},A ={1,5,7},则∁U A 等于( )
A .{1,3}
B .{3,7,9}
C .{3,5,9}
D .{3,9}
2.已知全集U =R ,集合M ={x |x 2-4≤0},则∁U M 等于( )
A .{x |-2<x <2}
B .{x |-2≤x ≤2}
C .{x |x <-2或x >2}
D .{x |x ≤-2或x ≥2}
3.设全集U ={1,2,3,4,5},A ={1,3,5},B ={2,5},则A ∩(∁U B )等于( )
A .{2}
B .{2,3}
C.{3}D.{1,3}
4.设全集U和集合A、B、P满足A=∁U B,B=∁U P,则A与P的关系是()
A.A=∁U P B.A=P
C.A P D.A P
5.如图,I是全集,M、P、S是I的3个子集,则阴影部分所表示的集合是()
A.(M∩P)∩S B.(M∩P)∪S
C.(M∩P)∩∁I S D.(M∩P)∪∁I S
6.已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},那么集合{2,7}是()
A.A∪B B.A∩B
C.∁U(A∩B) D.∁U(A∪B)
二、填空题
7.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=
________.
8.设全集U={x|x<9且x∈N},A={2,4,6},B={0,1,2,3,4,5,6},则∁U A=____________________,∁U B=________________,∁B A=____________.
9.已知全集U,A B,则∁U A与∁U B的关系是____________________.
三、解答题
10.设全集是数集U={2,3,a2+2a-3},已知A={b,2},∁U A={5},求实数a,b的值.
11.已知集合A={1,3,x},B={1,x2},设全集为U,若B∪(∁U B)=A,求∁U B.
能力提升
12.已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A等于()
A.{1,3}B.{3,7,9}
C.{3,5,9}D.{3,9}
13.学校开运动会,某班有30名学生,其中20人报名参加赛跑项目,11人报名参加跳跃项目,两项都没有报名的有4人,问两项都参加的有几人?
1.全集与补集的互相依存关系
(1)全集并非是包罗万象、含有任何元素的集合,它是对于研究问题而言的一个相对概念,它仅含有所研究问题中涉及的所有元素,如研究整数,Z就是全集,研究方程的实数解,R就是全集.因此,全集因研究问题而异.(2)补集是集合之间的一种运算.求集合A的补集的前提是A是全集U的子集,随着所选全集的不同,得到的补集也是不同的,因此,它们是互相依存、不可分割的两个概念.
(3)∁U A的数学意义包括两个方面:首先必须具备A⊆U;其次是定义∁U A={x|x ∈U,且x∉A},补集是集合间的运算关系.
2.补集思想
做题时“正难则反”策略运用的是补集思想,即已知全集U,求子集A,若直接求A困难,可先求∁U A,再由∁U(∁U A)=A求A.
第2课时补集及综合应用
知识梳理
1.全集U 2.不属于集合A∁U A{x|x∈U,且x∉A}
3.(1)∅(2)U(3)A(4)U(5)∅
作业设计
1.D[在集合U中,去掉1,5,7,剩下的元素构成∁U A.]
2.C[∵M={x|-2≤x≤2},
∴∁U M={x|x<-2或x>2}.]
3.D[由B={2,5},知∁U B={1,3,4}.
A∩(∁U B)={1,3,5}∩{1,3,4}={1,3}.]
4.B[由A=∁U B,得∁U A=B.
又∵B=∁U P,∴∁U P=∁U A.
即P=A,故选B.]
5.C [依题意,由图知,阴影部分对应的元素a 具有性质a ∈M ,a ∈P ,a ∈∁I S ,所以阴影部分所表示的集合是(M ∩P )∩∁I S ,故选C.]
6.D [由A ∪B ={1,3,4,5,6},
得∁U (A ∪B )={2,7},故选D.]
7.-3
解析 ∵∁U A ={1,2},∴A ={0,3},故m =-3.
8.{0,1,3,5,7,8} {7,8} {0,1,3,5}
解析 由题意得U ={0,1,2,3,4,5,6,7,8},用Venn 图表示出U ,A ,B ,易得∁U A ={0,1,3,5,7,8},∁U B ={7,8},∁B A ={0,1,3,5}.
9.∁U B ∁U A
解析 画Venn 图,观察可知∁U B
∁U A .
10.解 ∵∁U A ={5},∴5∈U 且5∉A .
又b ∈A ,∴b ∈U ,由此得⎩⎨⎧
a 2+2a -3=5,
b =3. 解得⎩⎨⎧ a =2,b =3或⎩⎨⎧
a =-4,
b =3
经检验都符合题意. 11.解 因为B ∪(∁U B )=A ,
所以B ⊆A ,U =A ,因而x 2=3或x 2=x .
①若x 2=3,则x =±3.
当x =3时,A ={1,3,3},B ={1,3},U =A ={1,3,3},此时∁U B ={3};
当x =-3时,A ={1,3,-3},B ={1,3},U =A ={1,3,-3},此时∁U B ={-3}.
②若x 2=x ,则x =0或x =1.
当x =1时,A 中元素x 与1相同,B 中元素x 2与1也相同,不符合元素的互异性,故x ≠1;
当x =0时,A ={1,3,0},B ={1,0},
U =A ={1,3,0},从而∁U B ={3}.
综上所述,∁U B ={3}或{-3}或{3}.
12.D [借助于Venn 图解,因为A ∩B ={3},所以3∈A ,又因为(∁U B )∩A ={9},所以9∈A ,所以选D.]
13.
解 如图所示,设只参加赛跑、只参加跳跃、两项都参加的人数分别为a ,b ,x .
根据题意有⎩⎨⎧ a +x =20,
b +x =11,
a +
b +x =30-4.
解得x =5,即两项都参加的有5人.。

相关文档
最新文档