Bi_2O_3_TiO_2复合纳米颗粒的可见光光催化性能_英文_杨娟
Bi2O3-TiO2复合光催化剂的制备及研究

Bi2O3-TiO2复合光催化剂的制备及研究徐平;蒙元兰;庄海敏;邢焰【摘要】采用高温固相反应法,以TiO2、Bi2O3固体粉末为原料,制备不同比例、不同煅烧温度的Bi2O3-TiO2复合光催化剂.同时,对制备的复合催化剂进行X-射线衍射(XRD)分析.分析发现,掺杂比列及煅烧温度对复合催化剂的晶体结构存在一定的影响.结果显示,TiO2与Bi2O3存在一定的耦合,在煅烧温度为500℃,Bi2O3掺杂量为1.5%时制备的Bi2O3-TiO2催化剂以是锐钛矿相为主,催化剂晶粒尺寸最小,通过对罗丹明B的降解实验发现,该条件下制备的复合催化剂,具有较高的可见光催化活性.【期刊名称】《黔南民族师范学院学报》【年(卷),期】2015(035)004【总页数】5页(P117-120,124)【关键词】高温固相法;掺杂;复合催化剂;可见光【作者】徐平;蒙元兰;庄海敏;邢焰【作者单位】黔南民族师范学院化学与化工系,贵州都匀558000;黔南民族师范学院化学与化工系,贵州都匀558000;黔南民族师范学院化学与化工系,贵州都匀558000;黔南民族师范学院化学与化工系,贵州都匀558000【正文语种】中文【中图分类】O643.36Key words: high temperature solid phase reaction method; doping; comp osite photocatalyst; visible light纳米TiO2作为一种半导体材料,因其成本低,稳定性能好、对人体无害并具有较强的光催化特性而被广泛研究。
但由于其禁带宽度较宽(Eg=3.2eV),对太阳能的利用率很低。
因此,缩短其禁带宽度,[1](P161-164)抑制光生电子与空穴的复合是提高TiO2对太阳能利用率的技术关键。
[2](P2492-2504)研究表明,通过对半导体材料TiO2进行有机染料敏化、表面沉积金属或金属氧化物、半导体复研究表明,催化剂的制备方法、掺杂量及焙烧温度,对催化剂的晶体结构及催化活性都具有一定的影响。
Nd掺杂Bi2O3—TiO2纳米复合材料的制备、表征与模拟太阳光催化活性

Nd掺杂Bi2O3—TiO2纳米复合材料的制备、表征与模拟太阳光催化活性采用溶胶-凝胶法制备了Nd掺杂Bi2O3-TiO2纳米复合材料,利用X射线衍射(XRD)、拉曼光谱(Raman)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)、紫外-可见漫反射吸收光谱(UV-vis DRS)等分析测试手段对样品的微观结构和吸光性能等进行了表征,并以甲基橙溶液的降解作为探针反应,考察了样品的模拟太阳光催化性能。
结果表明:所有S-X样品均呈锐钛矿结构;Nd以氧化物的形式附着在Bi2O3-TiO2纳米复合材料表面;Nd具有敏化Bi2O3-TiO2纳米复合材料的作用;S-0.250样品的光催化活性最好,当其用量为2.5g/L时,25mg/L的甲基橙溶液在模拟太阳光下照射5h后,脱色率可达到99.3%。
标签:Bi2O3-TiO2纳米复合材料;Nd掺杂;模拟太阳光;光催化活性;甲基橙引言据国家环保部统计,我国每年排放的污水总量至今仍有2500余万吨,如何经济、高效地处理这些污水也成了科研工作者们亟待解决的问题[1]。
目前,常用的污水处理方法包括过滤法、吸附法、浮上法、超临界水氧化法、光催化降解法、混凝法、电化学法、活性污泥法、生物膜法等[2-5]。
其中,高效、节能且不产生二次污染的光催化降解技术尤受重视。
TiO2是公认的理想催化剂,但也存在光能利用率低和自由基产率小的致命弱点[6-7]。
为了克服上述不足,国内外学者们提出了Bi2O3复合改性TiO2的思路。
Yang等采用溶胶与水热相结合的方法合成了不同铋钛质量比的Bi2O3-TiO2纳米复合颗粒[8]。
其中,铋钛质量比为0.020的样品活性最高,在可见光照射下,7h降解约69%的4-氯酚溶液(13mg/L)。
刘元德等则以CATB为增溶剂,采用溶胶-凝胶法制备了不同铋钛原子比的Bi2O3/TiO2纳米复合材料[9]。
研究发现,铋钛原子比为0.0175的样品活性最好,在可见光照射下,5h降解约71%的甲基橙溶液(25mg/L)。
水热法合成在可见光照射下具有高催化活性的纳米TiO_2催化剂_英文_

A rticle ID :0253-9837(2004)12-0925-03C ommu nication :925~927Received date :2004-08-23. First author :TANG Peisong,male,born in 1975,PhD student.Correspondin g author :HONG Zhanglian.Tel/Fax:(0571)87951234;E -mail:hong zhanglian@.Fou ndation item :Supported by the Education Department of Zhejiang Province (20030625),SRF for ROCS,SEM (2003-14)and the Na -tional Natural Science Foundation of China (50272059).Preparation of Nanosized TiO 2Catalyst with High Photocatalytic Activity under Visible Light Irradiation by Hydrothermal MethodTANG Peisong,HONG Zhanglian,ZHOU Shifeng,FAN Xianping,WANG Minquan(Dep ar tment of Mater ials Science and Engineer ing ,Zhej iang U niver sity ,H angz hou 310027,China)Key words:nanosize,titania,photocatalysis,hydro thermal method,visible light C LC number:O643 Document code :AT he semiconductor T iO 2is the most important photocatalyst for the degradation of pollutants.Anatase T iO 2has a large band gap of 3 2eV that re -quires powerful UV light to initiate the photocataly tic reactions.Many modification methods such as metal ion doping,composite semiconductors and metal layer modification have been used to extend the light ab -sorption of the catalyst to the v isible lig ht region buthave little effect [1~4].Surface sensitization withdyes [5]is not practical in application as most dyes sel-fdegrade easily.Therefore,the preparation of TiO 2w ith good w avelength response in the visible light re -g ion and high photocatalytic activity for pollutant degradation using natural sunlight is an important g oal in TiO 2photocatalysis.In this paper,the nanosized T iO 2catalyst with high photocatalytic activity under visible light irradia -tion was prepared by the hy drothermal method [6]w ith acetone as the solvent.A high pressure reactor (WH F -0 25L,Weihai Reactor Ltd.,China )and analytical reagent grade tetrabutyl titanate,acetone and alcohol were used.The hydrothermal reaction w as carried out at 240 for 6h at a heating rate of about 2 /min.The T iO 2pow ders were taken out from the cooled reactor and w ashed 4times w ith alco -hol,and dried at 50 for 24h in a vacuum dryer.T he dried powders were calcined at 180,250and 365 for 2h,respectively,and samples TiO 2-1,T iO 2-2and T iO 2-3were obtained.T he TiO 2samples were characterized by XRD,T EM and UV -Vis spectroscopy on an XD -98X -ray diffractometer,a JEM -200CX electron microscopeand a Lambda 20U V -Vis spectrometer,respectively.Diffuse reflectance spectra (DRS)were measured by PELA -1020w ith an integrating sphere accessory in a Lambda 900U V -Vis spectrometer.The photo -catalytic experiments w ere carried out in a sel-f assem -bled instrument w ith a metal halog en lamp (HQI -BT ,400W/D,OSRAM ,German)as the irradiation source.In a 50ml g lass cup,20mg TiO 2and 10ml methyl orange solution (20mg/L)w ere mixed and dispersed by ultrasonic treatm ent for 5m in follow ed by 30m in irradiation w ith a JB450filter (Shanghai Optical Glass Corp.,China)that transmits visible lig ht of w avelength above 450nm.UV -Vis spectra of the upper transparent solution w ere measured after centrifugation.The photocatalytic efficiency w as ca-lculated using the absorption intensity of the standard methyl orange solution at 464nm.Our test revealed that the adsorption amount of methyl orange on the surface of TiO 2-3in darkness w as about 2%,w hich is within the measurement error of the degradation ef -ficiency and would not affect the result of the pho -catalytic efficiency.The removal rate of COD Cr was determined w ith potassium dichromate. The physico -chemical properties and photo -catalytic efficiencies of different T iO 2samples are list -ed in Table 1.It can be seen that TiO 2-1and TiO 2-2show ed high photocatalytic efficiencies of about 99%and 90%,respectively,under visible light illumina -tion ( 450nm),w hile T iO 2-3and P25gave very low degradation rate.The reduction of the COD Cr value for TiO 2-1was above 90%,w hich was m uch higher than that for commercial P25.All the pre -第25卷第12期催 化 学 报2004年12月Vol.25No.12Chinese Jour nal of CatalysisDecember 2004pared TiO 2sam ples could deg rade methyl orange com -pletely under direct visible light irradiation w ithin 10min.Even T iO 2-3w ith a low deg radation rate undervisible light could fully deg rade methyl orange,andits photocatalytic efficiency w as hig her than that of P25.T able 1 Physico -chemical properties and photocatalytic efficiencies for methyl orange degradation of different TiO 2s amplesCatalyst T reatment condition Crystal type Average grain size (nm)M ass loss at 120~500 (%)Reflection ratio at 500nm (%)Degradati on rate(%)T i O 2-1180 ,2h pure anatase 10 3.6521.399 1T i O 2-2250 ,2h pure anatase 10 2.3739.690 3T i O 2-3365 ,2hpure anatase 110.3290.416 2P25*80%anatase+20%rutile300.6094.38 3*Commerical pow der,Degussa Ltd.Fig 1 DRS spectra of d ifferent TiO 2samples (1)T iO 2-1,(2)TiO 2-2,(3)T iO 2-3,(4)P25As show n in Table 1,all the prepared TiO 2sam -ples had sim ilar crystal phase and average grain size,but their mass loss at 120~500 w as different.T here ex isted difference in DRS behaviors of different T iO 2samples.The reflection ratios of TiO 2-1,T iO 2-2,T iO 2-3and P25at 500nm w ere 21 3%,39 6%,90 4%and 94 3%,respectively.Fig 1show s the DRS spectra of different T iO 2samples.In the v isible light reg ion,T iO 2-1and TiO 2-2had similar DRS spectra w ith a low reflection ratio.How ever,both T iO 2-3and P25showed a high reflection ratio.In g eneral,the sum of transmittance,reflectance and absorbance is about 100%[7]when light irradiates a solid surface.The transmittance could be neglected in the T iO 2samples,which had a thickness of about 4mm for the DRS measurements.Therefore,a hig h reflectance in the DRS spectra meant a low ab -sorbance for the TiO 2catalyst.The results imply that the v isible light absorption of TiO 2-1and TiO 2-2w as higher than that of either TiO 2-3or P25.It is inter -esting that w ith the decrease in mass loss at 120~500,the absorbility and the photocatalytic degradationefficiency of T iO 2decreased.Fig 2 TG -DT A cu rves of TiO 2-1Generally,the crystal structure and grain size are the tw o key factors affecting TiO 2photocatalytic activity.Nevertheless,the difference in photocatalyt -ic efficiency of TiO 2-1,TiO 2-2and T iO 2-3under vis -ible light cannot be explained by either the crystal type or grain size.Fig 2show s TG -DTA curves of TiO 2-1.The mass loss at 120~500 on the TG curve corresponded to the exotherm ic peaks at 185,276and 377 on the DTA curve.The mass loss and ex othermic peaks were likely the result of the desorp -tion and oxidation of adsorbed organic materials on the TiO 2surface [8].Thus,we suggest that the high degradation efficiency should orig inate from the ad -sorbed organic materials.The function,kind and amount of these organic materials are still not clear at present,but they are very im portant and need to be clarified.One possibility is that they have a similar role to surface sensitization dyes w hich have high ab -926催 化 学 报第25卷sorption for visible lig ht.The high absorption under v isible lig ht irradiation,which is in good agreement w ith the high visible lig ht degradation efficiency,may be due to an appropriate amount of adsorbed or -g anic materials for both T iO 2-1and T iO 2-2.As for T iO 2-3,most of the surface organic residues desorbed after treatment at high tem perature,thus the ab -sorbance for visible light absorption and the degrada -tion efficiency under visible light dropped to a low v alue comparable to that of P25.T he adsorbed organ -ic materials are thermally stable under 250 heat treatm ent (TiO 2-2)w hile most of the dyes are easilydecomposed and have no surface sensitization effect after such a hig h temperature treatment process. In summary,nanosized TiO 2catalyst with ad -sorbed organic material residues on its surface synthe -sized by the acetone hydrothermal method showed high photocatalytic efficiency and good thermal stabi-lity under visible light irradiation.This nanosized T iO 2pow der is a prom ising photocatalyst for use un -der sunlight irradiation.References1 L insebig ler A L,Lu G Q ,Y ates T Jr.Chem Rev ,1995,95(3):7352 Asahi R,M orikawa T ,Ohw aki T ,Aoki K,T aga Y.Sci -ence ,2001,293(5528):2693 K han S U M ,A-l Shahr y M ,Ingler W B Jr.Science ,2002,297(27):22434 Z hao W,M a W H,Chen Ch Ch,Zhao J C.J A m Chem Soc ,2004,126(15):47825 R amakrishna G ,Ghosh H N.J Phy Chem B ,2001,105(29):70006 Wu M M ,L ong J B,Huang A H ,Luo Y J,Feng S H,Xu R R.L angmuir ,1999,15(26):88227 F ang R Ch.Spectrosco py of Solids (In Chinese).Hefei:Press U niv Sci T echnol China,2001.1-58 Deng X Y ,Cui Z L,Du F L ,Peng Ch.Wuj i Cailiao X ue -bao (Chin J I norg M ater ),2001,16(6):1089水热法合成在可见光照射下具有高催化活性的纳米TiO 2催化剂唐培松, 洪樟连*, 周时凤, 樊先平, 王民权(浙江大学材料与科学工程系,浙江杭州310027)摘要:以丙酮为溶剂,采用水热法在240 合成了表面吸附有机物的纳米T iO 2粉体光催化剂,并采用XR D,T EM ,U V -V is 和DRS 等技术对催化剂进行了表征.结果表明,合成的纳米T iO 2催化剂在可见光激发下具有良好的光催化降解甲基橙的性能和较好的热稳定性.经180,250和365 热处理后,催化剂的晶型和尺寸没有变化,但催化剂表面吸附的有机物发生了明显变化.催化剂表面吸附的有机物、可见光波段的光响应性能和可见光下催化降解甲基橙的效率之间存在良好的关联性,催化剂表面吸附适量的有机物可提高纳米T iO 2催化剂在可见光波段的光响应性能,从而提高其在可见光照射下催化降解甲基橙的性能.关键词:纳米,二氧化钛,光催化,水热法,可见光(Ed YHM)927第12期唐培松等:水热法合成在可见光照射下具有高催化活性的纳米T iO 2催化剂。
纳米TiO2光催化

纳米TiO2的应用
环保方面的应用
A .无机污染物的光催化氧化还原
光催化能够解决Cr6+、Hg2+、Pd2+等重金属离子的污染 光催化还可分解转化其它无机污染物,如CN-、NO2-、H2S、SO2、NOx等
金红石 型TiO2
锐钛矿 型TiO2
改进后的方法(前躯体:TiOCl2不加碱性沉淀剂 )
加热干燥 白色晶型沉淀 TiOCl2 水溶液 加热干燥 白色晶型沉淀 锐钛矿型纳 米TiO2粉体 金红石型纳 米TiO2粉体
溶胶-凝胶法(Sol-Gel) (前驱体(TNB))
钛酸丁酯 加入总醇量 2/3的醇 缓慢滴加 1/3醇+水
纳米TiO2光催化剂
资科1201 11 蒋鹏
纳米TiO2光催化剂简介※
纳米TiO2光催化剂的特点
纳米TiO2光催化剂的制备※
纳米TiO2光催化剂的应用
总结
纳米TiO2光催化剂简介 什么是多相光催化剂?
多相光催化是指在有光参与的情况下,发生在催化剂及表面吸附物(如H2O, O2分子和被分解物等)多相之间的一种光化学反应。 光催化反应是光和物质之间相互作用的多种方式之一,是光反应和催化反应 的融合,是光和催化剂同时作用下所进行的化学反应。 纳米TiO2是一种新型的无机金属氧化物材料,它是一种N型半导体材料,由 于具有较大的比表面积和合适的禁带宽度,因此具有光催化氧化降解一些化合物 的能力,纳米TiO2具有优异的光催化活性,并且价格便宜,无毒无害等优点因此 被广泛的应用。
纳米TiO_2膜的制备及其光催化性能

纳米TiO_2膜的制备及其光催化性能
艾智慧;杨鹏;陆晓华
【期刊名称】《环境科学与技术》
【年(卷),期】2004(27)B08
【摘要】采用溶胶凝胶法(Sol Gel)制备了负载型纳米TiO2膜,分别考察了原料配比、pH值、煅烧温度对薄膜性质的影响,并利用XRD对其结构进行了表征,同时,用负载型TiO2膜对活性艳红X 3B(X 3B)模拟染料废水进行了微波辅助光催化脱色的研究。
结果表明,改变原料配比及pH值可以制备出不同粒径的纳米TiO2膜,在450℃煅烧时TiO2呈锐态矿结构,在650℃以上出现锐态矿与金红石混晶结构,750℃时完全转变为金红石结构。
所制得的纳米TiO2薄膜对X 3B具有较好的光催化活性。
【总页数】3页(P4-6)
【关键词】TiO2薄膜;活性艳红X-3B;微波辅助光催化
【作者】艾智慧;杨鹏;陆晓华
【作者单位】华中科技大学环境科学研究所
【正文语种】中文
【中图分类】X703.01
【相关文献】
1.纳米TiO_2/丝素复合膜的制备及其光催化性能 [J], 夏友谊
2.TiO_2/GO/PAN纳米纤维膜的制备及光催化性能 [J], 王成;蒋叶群;姚理荣
3.玻璃负载纳米TiO_2/SiO_2膜的制备和光催化性能 [J], 李建生;刘炳光;王少杰;董学通
4.超声辅助介孔纳米TiO_2光催化剂制备与光催化性能 [J], 杨在志;傅小明;许新宇;朱良怀;周炎;张臻
5.载体SiO_2上纳米TiO_2膜的制备及光催化性能 [J], 颜秀茹;郭伟巍;宋宽秀;霍明亮;王建萍
因版权原因,仅展示原文概要,查看原文内容请购买。
北大考研-化学与分子工程学院研究生导师简介-杨 娟

爱考机构中国高端考研第一品牌(保过保录限额)爱考机构-北大考研-化学与分子工程学院研究生导师简介-杨娟杨娟博士,副教授纳米材料与纳米结构,分子光谱学电话:(010)62755357(办公室)Email:yang_juan@学术简历:1997-2001北京大学技术物理系,获理学学士学位;2001-2006TexasA&MUniversity,DepartmentofChemistry,获哲学博士学位(Advisor:Dr.JaanLaane);2006-2007TexasA&MUniversity,DepartmentofChemistry,博士后研究员(Supervisor:Dr.JaanLaane);2007-2008PacificNorthwestNationalLaboratory,博士后研究员(Supervisor:Dr.AllaZelenyuk);2009-2010北京大学化学与分子工程学院,讲师;2010-北京大学化学与分子工程学院,副教授。
研究领域和兴趣:采用分子光谱学研究方法,包括吸收光谱、拉曼光谱和荧光光谱等,对单壁碳纳米管的结构和性质进行表征,并结合分子动力学等理论模拟计算,获得有关碳纳米管电子性质与能带结构的信息。
具体研究项目如下:1)离子液体分散的单壁碳纳米管的本征光谱研究;2)离子液体分散的单壁碳纳米管与共轭分子等相互作用的光谱研究;3)单壁碳纳米管与生物大分子相互作用的表面增强拉曼光谱研究。
代表性论文:1.J.Yang,M.Stewart,G.Maupin,D.HerlingandA.Zelenyuk,Chem.Eng.Sci.,64,1625(2009);2.A.Zelenyuk,J.Yang,C.Song,R.A.Zaveri,andD.Imre,J.Phys.Chem.A,112,669(2008);3.J.Yang,M.Wagner,ane,J.Phys.Chem.A,111,8429(2007);4.J.Yang,J.Choo,O.Kwon,ane,Spectrochim.ActaPartA,68,1170(2007);5.ane,J.Mol.Struct.,798,27(2006);6.J.Yang,M.Wagner,K.Okuyama,K.Morris,Z.Arp,J.Choo,N.Meinander,O.Kwon,ane,J.Chem. Phys.,125,034308(2006);7.J.Yang,M.Wagner,ane,J.Phys.Chem.A,110,9805(2006);8.J.Yang,K.Okuyama,K.Morris,ane,J.Phys.Chem.A,109,8290(2005);9.J.Yang,K.McCann,ane,J.Mol.Struct.,695-696,339(2004).。
可见光响应的BiVO4/TiO2纳米复合光催化剂
按摩尔 比 B : i V一1: 分别溶于 2 0mo ・ 叫硝酸 中, 1 . l L 混合 得黄色溶液 。用氨水将 溶液 的 p 值调 至 1 ,再加入 0 6g H O .
称 0 4g偏钛酸( Ti ) . H2 O3细粉 ,与 3 0mo ・ 0mL 1 l L
Na OH溶 液混合 , 10℃反应 3 ,自然冷却后制得 白色 于 8 4h 沉淀 物 , 过滤 , 1mo ・ _ 硫酸溶液和去离子水洗涤 至中 用 l L1
性 , 到 具 有 层 状 结 构 的 前 驱 体 钛 酸 盐 纳 米 线 ( 称 得 简
OLJ M 8 0型带有能 谱仪 的扫描 电子 显微镜 ;HI AC -S 5 0 T HI H80 型透射 电子显微 镜 ;G C Uv Vi c t n a
可见 吸 收 光谱 仪 。 12 BV 4TO 纳 米 复 合 材 料 的 制 备 . i O / iz
性不高 。 若将 BVO 与 Ti2复合 ,将 可能获得 较好 的可见 i 4 ( )
光催化材料。
1 2 2 BVO4Ti2 米复 合 物 的 制 备 . . i / o 纳
第一种纳米复合物 的制备 :首先 ,将硝酸铋 和偏钒酸 铵
本文使用具有层状结构的钛酸盐 纳米线 , 通过水热 法合 成 了两种新 型 的 BVO / O i 4Ti2纳 米 复合 物 ,并 对其 物 质 结 构、 形貌 以及光催 化性 能进行 了研究 。 果表 明,这两种 半 结
1 1 试 剂 与 仪 器 .
使用试 剂 有 :偏 钛 酸 ( P ,氢氧 化 钠 ( C ) AR) ,硝酸 铋 ( AR) 偏钒酸铵( ) 硝酸( . l ) 氨水 ( 8 ~ , AR , 2 0mo ・L , 2
纳米La2O3/TiO2复合薄膜的制备及光催化性能研究
2 - L 2 厂i 复合薄膜 的制备 . 3 aO3 O2 2 r
将 陶瓷基体分 别在 3 %的 H O 混合液和无水 乙醇 0 22 中超 声清洗 ,以去除表面 杂质 及氧化层 。 清 洗烘干后 ,使用 浸渍提拉 法制备 A 2 3 1 底膜,每 0
关键词 :溶胶一 凝胶法 ; aO 门i 纳米复合 薄膜; 1 3 L 2 3r O2 A2 0 底膜 ;光催 化性能 中图分类号 : O6 3 4 文 献标 识码 :A 文章编号: 10 .7 120 ) 刊.4 30 0 19 3 (0 7增 2 3— 4
2j h 92 ui i 和 H n a 以 TO2 电 s ma o dT M i 为
极成 功地 进行 了水 的光 电解 以来,有关 TO 半导体光 i2 催化 剂的研 究受到 了人们 的广泛 关注 。 i 2 TO 以其光化学 性质 稳定 、无毒 、价廉 ,具有广 谱 、环保等优 点,在 治 污 、净化空气 、自清 洁、杀 菌等方面得 到广泛应用 【 。 2 】 利用 TO 粉末对废水 中的有毒物 质进行处理 的研 究发 i2 现 , i2 TO 不仅 能把多种有机 污染物 降解 为无毒 的小分子 化合物【 ,而且能将溶液 中的重金属 离子还原 为无 毒的 l, o 金属…J 。但 TO 粉末光催 化剂存 在易失活 、易凝 聚 、 i2 难 以回收等 缺点 ,因此 ,高效 负载 型 TO 光催化 剂的 i2
分对薄膜 光催化活性 的影响具有现 实意义 。 本 实验 以 A 2 薄膜 作底膜 ,L 2 3 l O3 aO 作复合 相,采
A23 l 底膜对 L 2 3 i 2 O a0 / O 复合 薄膜 形貌的影响 ,利用亚 T 甲基 兰溶液 紫外光 降解 实验研 究 了 L 2 3 i 2复合 薄 a0 / O T
ZnTiO_3_TiO_2纳米复合材料的光催化性能
2010-04-09 收稿,2010-06-18 修回 国家自然科学基金( 20963008) 、甘肃省自然科学基金( 0710RJZA119) 、甘肃省教育厅研究生导师基金( 0901-02) 资助项目 通讯联系人: 苏碧桃,教授; Tel: 0931-7975055; E-mail: subt0608@ sina. com; 研究方向: 纳米半导体材料与光催化
摘 要 通过溶胶-凝胶 ( Sol-Gel) 法制备了 ZnTiO3 -TiO2 纳米复合光催化剂,利用透射电子显微镜、X 射线衍 射、紫外-可见吸收光谱和 ζ 电位等测试技术对其形貌、晶体结构及其光谱响应特性进行了表征。以亚甲基蓝
( MB) 溶液的脱色降解为模型反应,考察了光源和焙烧温度对该纳米复合材料光催化性能的影响。结果表明,
2. 2 样品的 XRD 图 2 为不同温度焙烧 3 h 得到的样品的 XRD 图。分析该 XRD 中衍射峰可知,它们分别与金红石型
第1 期
苏碧桃等: ZnTiO3 -TiO2 纳米复合材料的光催化性能
35
TiO2 和钙钛矿型 ZnTiO3 的标准图( JCPDS Card No. 26-1500 和 JCPDS Card No. 21-1276) 一致,因此该样 品由金红石型 TiO2 和钙钛矿型 ZnTiO3 两相组成。该结果表明,利用 Sol-Gel 法,在不同温度下焙烧可以 得到不同结晶度的 ZnTiO3 -TiO2 复合材料。众所周知,普通的锐钛矿型 TiO2 要在较高的温度( 如 600 ℃ 以上) 才能转化为金红石型结构,而本实验中,却能在 400 ℃ 焙烧 3 h 即可实现金红石型 TiO2 的生成。 出现上述现象的原因可能是: 钙钛矿型的 ZnTiO3 与金红石型的 TiO2 有相似的密堆积结构,前者为立方 密堆积,后者为畸变的立方密堆积,而在这 2 种结构中,Ti—O 八面体均以棱相交堆积,且二者的 Ti—O 键长也相近。因此,体系中生成的 ZnTiO3 相,相当于引进了金红石 TiO2 晶种。在此基础上,金红石相 TiO2 的生成相对比较容易。即 ZnTiO3 相的存在,促进了金红石 TiO2 的生成[17]。
TiO_2基复合纳米材料的制备及其光催化性能研究
TiO_2基复合纳米材料的制备及其光催化性能研究面对日益严重的能源短缺问题和环境污染问题,寻找一种能够高效利用太阳能降解有机污染物的光催化剂成为当前研究的热点。
在众多光催化剂中,TiO<sub>2</sub>光催化材料表现出较高的催化活性,且其物理化学性质稳定、无毒副作用、费用低廉。
然而,传统的TiO<sub>2</sub>材料吸收光谱范围窄,禁带宽度较宽(3.2eV),只能被紫外光激发,对可见光的利用率较低。
因此,TiO<sub>2</sub>光催化材料的改性研究的重点在于拓宽其光响应范围,提高对可见光的吸收能力,使其充分利用太阳光。
基于此,本文将过度金属氧化物与TiO<sub>2</sub>复合,制备具有p-n结结构的复合纳米材料,并以典型有机污染物亚甲基蓝、邻氯苯酚以及可挥发性污染物(VOCs)的光催化降解实验考察各改性材料的光催化性能。
本文选取p型半导体NiO和Co<sub>3</sub>O<sub>4</sub>对TiO<sub>2</sub>进行改性,缩小TiO<sub>2</sub>的禁带宽度,提高对可见光的吸收能力,并通过构建p-n异质结形成半导体复合界面的内电场,抑制光生电子和空穴的复合,提高电子传输效率,从而提高纳米材料的光催化效率。
本文主要研究内容及结果如下:(1)水热法合成了NiO/TiO<sub>2</sub>复合纳米材料,通过TEM和HRTEM表征结果说明合成的NiO/TiO<sub>2</sub>光催化剂为平均直径180nm的棒状纳米材料,尺寸均匀且结构稳定,主要暴露晶面为锐钛矿型TiO<sub>2</sub>的101晶面和NiO的200晶面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
收稿日期:2010-10-08。
收修改稿日期:2010-11-25。
国家自然科学基金(No.51074067),河南省教育厅自然科学基金(No.2010B150009)资助项目。
*通讯联系人。
E -mail :yangjuan0302@Bi 2O 3/TiO 2复合纳米颗粒的可见光光催化性能杨娟*李建通缪娟(河南理工大学理化学院,焦作454003)摘要:采用溶胶与水热相结合的方法合成了具有可见光光催化活性的复合纳米颗粒Bi 2O 3/TiO 2,并对其进行了X 射线衍射、透射电镜、X 射线光电子能谱、紫外-可见漫反射谱、红外光谱、低温N 2吸附脱附及电子顺磁共振分析。
结果表明,复合少量的氧化铋可显著抑制TiO 2由锐钛矿到金红石的相转移过程,并将光吸收范围扩展到可见光区。
可见光照射下(λ>420nm),利用电子顺磁共振技术检测到明显的羟基自由基(·OH)信号。
铋的最佳掺杂量为Bi/Ti 质量比2.0%,适量铋的掺入能显著改善锐钛矿TiO 2的结晶度,抑制光生电子-空穴对的复合,提高光催化量子效率。
通过可见光照射下,4-氯酚的降解实验测试Bi 2O 3/TiO 2复合纳米颗粒的可见光光催化活性。
同时,利用气-质联用仪对4-氯酚降解过程的中间产物进行了测定,并提出可见光照射下的Bi 2O 3光敏化机理。
关键词:氧化铋;TiO 2;可见光;光催化;4-氯酚中图分类号:O643.3;O614.41文献标识码:A文章编号:1001-4861(2011)03-0547-09Visible Light Photocatalytic Performance of Bi 2O 3/TiO 2Nanocomposite ParticlesYANG Juan *LI Jian -TongMIAO Juan(Department of Physics and Chemistry,Henan Polytechnic University,Jiaozuo,Henan 454003,China )Abstract:Visible -light photoactive Bi 2O 3/TiO 2catalysts were prepared by sol -hydrothermal process.The as -prepared samples were characterized by XRD,TEM,XPS,UV -Vis diffuse reflectance spectroscopy (UV -Vis DRS),FTIR,N 2adsorption -desorption and pounding with low amounts of Bi 2O 3could effectively inhibit the phase transformation from anatase to rutile.UV -Vis DRS showed an extension of light absorption into the visible region.ESR results indicated that the active species (·OH)was generated with visible illumination (λ>420nm).It was found that the optimal dosage of bismuth was 2.0wt%.Proper amount of bismuth species compounded on the TiO 2surface could improve the anatase crystallinity,which could inhibit the recombination between photoelectrons and holes,leading to enhanced photocatalytic quantum efficiency.Meanwhile,the enhanced visible -light activity was tested by the photocatalytic degradation of 4-chlorophenol (4-CP).Furthermore,the generated intermediates were identified using gas chromatograph -mass spectrometer and Bi 2O 3-photosensitization mechanism under visible light illumination was proposed.Key words:bismuth oxide;TiO 2;visible light;photocatalysis;4-chlorophenolPowdered titania have been proven to be excellent photocatalytic materials for degradation of organic pollutants under UV irradiation [1-2].However,the wide band gap of TiO 2(anatase of 3.2eV,rutile of 3.0eV)limits the absorption wavelength to less than 387nm,which is only 3%~5%of the sunlight energy.Therefore,the development of visible -light photocatalysts is indispensable to be able to utilize the major portion of第27卷第3期2011年3月Vol .27No .3547-555无机化学学报CHINESE JOURNAL OF INORGANIC CHEMISTRY第27卷无机化学学报the solar spectrum and to realize indoor application of photocatalysts.Thus far,a lot of efforts have been devoted to modify the photocatalyst[3-5].Among the studies,an important strategy to extent the light absorption property of TiO2is the formation of heterojunction between TiO2and a sensitizer semiconductor with a narrow bandgap[6-8].In the heterojunction structure,the sensitizer is excited by visible light irradiation,and some of the photogenerated electrons and holes will then be transferred to TiO2.Bi2O3,with a direct band gap2.8eV,thus will be able to absorb some portion of visible light(λ<440nm)and decompose the organic pollutants[9-10].But alone,its photocatalytic activity is very low,owing to the high electron-hole recombination rate in Bi2O3[11].On the other hand,Bi2O3can act as an effective photosensitizer and form the coupled semiconductor with TiO2.Rengaraj and Li[12]reported that Bi3+-TiO2could improve the photocatalytic reduction of nitrate in aqueous solution under UV illumination. Jing et al.[13]demonstrated that Bi2O3-compounded TiO2 could improve the photocatalytic decomposition of dyes pollutant rhodamine B(RhB).Bian et al.[14]synthesized active Bi2O3/TiO2visible photocatalyst with ordered mesoporous structure and highly crystallized anatase by evaporation-induced self-assembly method.However,to the best of our knowledge,there has been no reports of systematic studies on effects of the bismuth content on the TiO2phase transformation and the photoinduced charge properties by ESR technique,together with their relationships with the enhanced photocatalytic activity and degradation approach of4-CP under visible-light irradiation.In the present work,we prepared Bi2O3/TiO2photo-catalysts by sol-hydrothermal method with different contents of bismuth.The prepared materials were characterized by XRD,TEM,XPS,UV-Vis DRS,FTIR and ESR spectroscopy.The enhanced photocatalytic activity was tested in the degradation of4-CP under visible illumination,which was chosen as probe molecule,due to its environmental importance as priority toxic pollutant[15].The promoting mechanism on the activity from the high anatase crystallinity,the optical response extent,the increasing surface OH group density and the effective photosensitizating effect of Bi2O3were examined.Meanwhile,by the examination of the intermediates with GC-MS,the photocatalytic mechanism and the possible approach of visible-light degradation for4-CP were also discussed.1Experimental1.1Reagents and materialsTitanium tetra-n-butoxide(Ti(O-Bu)4)and bismuth nitrate with analytical grade were obtained from Aldrich Chemical Co.Glycolic acid,succinic acid,fumaric acid,malic acid,1,1,1,3,3,3-hexamethyldisilazane, Chlorotrimethylsilane and anhydrous pyridine were purchased from J&K chemical Ltd.4-CP,hydroquinone and all other chemicals were of analytical grade used without further purification.1.2Photocatalysts preparationThe Bi2O3/TiO2samples with different percentages of bismuth(0.5%,1%,2%,4%and5%,(w/w))were prepared by sol-hydrothermal method,using Bi(NO3)3 and Ti(O-Bu)4as precursors.In a typical process,10 mL of Ti(O-Bu)4was dissolved in10mL of ethanol by stirring vigorously to produce Ti(O-Bu)4-C2H5OH solution.Meanwhile,10mL of water,2mL of16mol·L-1HNO3and the desired amount of Bi(NO3)3were added to another40mL of C2H5OH to form an ethanol-nitric acid-water solution.Consequently,the Ti(O-Bu)4-C2H5OH solution was slowly added dropwise to the latter solution under vigorous stirring to carry out a hydrolysis.The obtained semitransparent sol was transferred to a100mL Teflon autoclave and kept at 140℃under authigenic pressure for6h for hydrothermal treatment.Then,the autoclave was cooled to room temperature and the precipitates obtained were separated by centrifugation,washed thoroughly with deionized water and ethanol,dried at90℃overnight, and calcined in air at500℃for2h.A TiO2sample was also prepared by the same procedure except without the addition of the bismuth precursor.1.3Photocatalyst characterizationThe crystallographic properties were investigated by a Philips X′Pert PRO X-ray diffractometer using548第3期杨娟等:Bi2O3/TiO2复合纳米颗粒的可见光光催化性能Cu Kαradiation(λ=0.15418nm),in which an accele-rating voltage of40kV and an emission current of30 mA over the2θrange of10°~90°.The settings for XRD examination were as follows:divergence slit,1mm; graphite monochromator;anti-scatter slit,2mm; receiving slit,0.15mm;scintillator detector.The particle size was estimated using the Scherrer equation. The morphologies were observed by a transmission electron microscopy(TEM,JEOL JEM-2010).N2 adsorption-desorption isotherms were collected at77K by using Micromeritics ASAP2020Surface Area& Pore Size Analyzer.IR spectrum was recorded as KBr pellets on Bruker Fourier transform infrared(FTIR) spectrometer.The ultraviolet-visible diffuse reflectance spectra(UV-Vis DRS)of the samples in the wavelength range250~750nm were recorded using a spectrophoto-meter(Hitachi U-3010),with BaSO4as a reference. Surface electronic states were analyzed by X-ray photoelectron spectroscopy(XPS,Axis Ultra,Kratos analytical Ltd.)with Al KαX-ray source.All binding energies were calibrated by using the contaminant carbon(C1s284.6eV)as a reference.The electron spin resonance(ESR)signals of radicals trapped by3,4-Dihydro-2,2-dimethyl-2H-pyrrole1-oxide(DMPO,CAS No:[3317-61-1])were detected at ambient temperature on a Bruker(E500)spectrometer.The irradiation source was the same as used in the degradation of4-CP. The settings for the ESR spectrometer were as follows: center field,3480G;sweep width,100G;microwave frequency,9.64GHz;modulation frequency,100kHz; power,10.05mW.1.4Photocatalytic reactionThe photocatalytic degradation of4-CP was carried out at25℃in an75mL self-designed glass photochemical reactor containing0.050g of catalyst and50mL of1.0×10-4mol·L-14-CP aqueous solution. Prior to photoreaction,the suspension was magnetically stirred in dark for30min to establish an adsorption/ desorption equilibrium.The suspension was vertically irradiated from the top by a300W Xenon lamp (Changtuo Instrumental Corporation of Beijing)at constant stirring speed.All the UV lights with wavelength shorter than420nm were removed by a glass filter(JB-420).At the given time intervals,the analytical samples were taken from the suspension and immediately centrifuged at4000r·min-1for10min, then filtrate through a0.22μm Millipore filter to remove particles.The filtrate was analyzed by HPLC for the degree of4-CP degradation.The concentrations of4-CP were measured by HPLC using an Agilent1200HPLC with a diode-array detector(G1315C)and a1200series binary pump.An Intersil ODS-3C-18,5μm4.6×250mm column was used.Substances were routinely quantified from their absorbance at280nm.The eluent was60%aqueous methanol and40%phosphate buffer solution(0.1%,V/ V).GC-MS data were obtained on an Agilent6890gas chromatograph using a25m0.20mm×0.33μm DB-5 column,coupled with an Aglient5985mass spectro-meter.The temperature program was as follows:at50℃,hold time=6.5min;from50to200℃,rate=10℃·min-1.The injector port was set for split operation at 250℃.The samples after irradiation were filtered,and the filtrate was then concentrated by a rotary evaporator and freeze-dried overnight.The residue was finally redissolved in0.1mL anhydrous pyridine,followed by the addition of0.1mL hexamethyldisilazane and0.05 mL of chlorotrimethylsilane[16].The silylated sample was further analyzed by GC-MS.Total organic carbon was measured by a Tekmar Dohrmann Apollo9000TOC analyzer.The concentra-tion of the chloride ions produced was determined using a chloride ion selective electrode.The K2HPO4was used for the buffer solution and to adjust the ionic strength.2Results and discussion2.1XRD,TEM and XPS characterizationXRD peaks at2θ=25.28°and2θ=27.40°are often taken as the characteristic peaks of anatase(101)and rutile(110)crystal phase,respectively.Fig.1shows the XRD patterns of pure TiO2and modified samples with different bismuth contents.The percentage of anatase in the samples can be estimated from the respective integrated XRD peak intensities using the quality factor ratio of anatase to rutile(1.265),and the crystal sizes549第27卷无机化学学报can also be calculated using the Scherrer equation [17].From Fig.1,it can be seen that pure TiO 2have significant diffraction peaks representing the character -istic of anatase phase around 2θof 25.2°,37.9°,47.8°,53.8°,55.0°,62.1°,62.7°,68.8°,70.3°and 75.1°,respectively.However,about 19.6%of rutile was also detected,implying that there is some phase transforma -tion in the present experimental pared with pure TiO 2,the modified TiO 2with 0.5%or 1.0%bismuth exhibits lower rutile characteristic peak.These two samples contained about 12.4%and 5.5%rutile phase.When the bismuth content increases to 2.0%,or more than 2.0%,no rutile phase is detected in the bismuth -compounded TiO 2samples.These results demonstrate that the surface -modification with Bi can inhibit effectively the phase transformation from anatase to rutile,which is favorable to the improvement of the anatase crystallinity.The high crystallization degree of anatase facilitates the rapid transfer of photoelectrons from bulk to the surface,which could effectively inhibit the recombination between photoele -ctrons and holes,leading to enhanced photocatalytic quantum efficiency [18].However,the crystallization degree and sizes of Bi 2O 3/TiO 2decrease slightly with the increase of bismuth contents,as mainly evidencedby the intensity and the full width at the half maximum (FWHM)value of their characteristic XRD peaks.The reason may be that the presence of bismuth disturbs the crystallization process during calcination [19].TEM images of TiO 2nanoparticles uncompounded (A)and compounded with 2.0%Bi (B)are shown in Fig.2.The dispersion of TiO 2nanoparticles is markedly improved by compounding Bi.It can be also seen that the both samples display similar spherical form,with the particle size of 20~25nm and 10~15nm,respecti -vely,demonstrating that compounding Bi can inhibit the growth of TiO 2nanoparticles.Additionally,indivi -dual particles sizes in Fig.2are comparable with those obtained by the Scherrer equation (Table 1),which demonstrates the particles are mainly mono -disperse and non -agglomerate.The XPS spectrum of 2.0%Bi -modified TiO 2and the high -resolution XPS spectrum of Bi4f are shown in Fig.3.The peaks centered at 158.6and 163.9eV could be assigned to Bi4f 7/2and Bi4f 5/2region [20].The presence of Bi 2O 3exerts no significant influence on the XPS spectra in either the Ti2p or O1s orbitals.Moreover,the XRD peaks of Bi -compounded TiO 2do not shift much compared with bare TiO 2.These results demonstrateFig.1XRD patterns of the pure TiO 2and Bi -modifiedTiO 2calcined at 773KNote:0.5%,1.0%,2.0%,4.0%and 5.0%represent the weight percentage of Bi -compounded TiO 2,respectively.Table 1Crystallite size,anatase phase composition and apparent rate constants of the as prepared TiO 2samplesSamplePure TiO 20.5% 1.0% 2.0% 4.0% 5.0%Crystallite size,D /nm Anatase (101)22171412109Rutile (110)231815———Anatase phase composition /%80.487.694.5100100100Apparent rate constant,K app /min -10.00010.0090.00170.00310.00280.0026Regression relative coefficient,R 20.9840.9900.9860.9920.9840.986Fig.2TEM images of TiO 2(A)and 2.0%Bi -compoundedTiO 2(B)powder550第3期that the Bi2O3is present m ainly as a separate phase, which is ascribed to the larger size of Bi atom(103pm) than that of Ti atom(61pm)[12].2.2Optical absorption properties ofphotocatalystsThe surface hydroxyl groups on titania have been recognized to play an important role on the photocatalytic reaction.Fig.4shows the FTIR spectra of different TiO2samples diluted and pressed in KBr dics. The strong and broad IR band of curve a and b between 400~850cm-1correspond to the Ti-O stretching vibration modes in crystal TiO2[21].With the increase in bismuth content,the additional peak around489cm-1 appears due to the vibrations from Bi-O bonds[22],as displayed in curve c,d,e and f.The IR peak at1630 cm-1is ascribed to the bending vibration of O-H bonds of adsorbed water strongly bound to the catalyst surface[23-24].The broad absorption peaks near3400cm-1are attributed to the stretching mode of O-H bond, which is related to water molecules and crystal surface hydrogen bonding.Obviously,as the bismuth content of modified TiO2samples increases,the amount of surface hydroxyl gradually increases.The larger surface hydroxyl group density will lead to the enhancement of the photocatalytic activity.Because the larger surface hydroxyl group can interact with photogenerated holes, giving better charge transfer and inhibiting the recombination of electron-hole pairs.As shown in Fig.5,the UV-Vis DRS spectra demonstrate that the pure TiO2displays no significant absorbance in the visible region due to the big energy gap(3.2eV).With the introduction of Bi ions,the absorption edge shifts towards longer wavelengths(400~ 600nm).The absorbance of Bi2O3/TiO2has similar intensity with the Bi content from0.5%~2.0%.Mean-while,further increase of the Bi content is bene-ficial to the light absorbance.The absorbance of Bi2O3/TiO2 increases with Bi content,suggesting that the spectral response in the visible region mainly results from Bi2O3 photosensitization[9].Briefly,the Bi2O3photo sensitizer with narrow energy gap(2.8eV)could be easily activated by visible lights and induce photoelec-trons and holes.The photo-holes in bismuth oxide could easily transfer from the valence band(VB)of Bi2O3to the neighboring VB of TiO2[25].Thus,the Bi2O3-TiO2 heterojunctions formed in the composite TiO2could effectively inhibit the recombination between photoele-ctrons and holes,leading to the strong response in visible area.Inset:the high-resolution XPS spectrum of Bi4f Fig.3XPS spectrum of2.0%Bi-compounded TiO2(a)Pure TiO2,(b)0.5%Bi-TiO2,(c)1.0%Bi-TiO2,(d)2.0%Bi-TiO2,(e)4.0%Bi-TiO2,(f)5.0%Bi-TiO2,respectively Fig.4FTIR spectra of the prepared photocatalysts Fig.5UV-Vis DRS spectra of the pure TiO2and Bi-modified TiO2calcined at773K杨娟等:Bi2O3/TiO2复合纳米颗粒的可见光光催化性能551第27卷无机化学学报2.3ESR signal analysis of DMPO-·OHSpin-trapping ESR technique was employed to identify the possible short-lived reactive oxygen species involved in the photocatalytic systems.For this study, all the ESR spectra were recorded by the same irradiation as used in the photocatalytic degradation using DMPO as the radical trapping agent,and the ESR signals at different irradiation time are shown in Fig.6.It can be seen from Fig.6,no ESR signals are observed when the photocatalysis is performed in the dark in the presence of catalyst and DMPO.Under visible light illumination,it is evident that in the pure TiO2system,no signal(1∶2∶2∶1signals)of the DMPO-·OH radical adducts is observed during the degradation process(Fig.6A).Whereas,the generation of·OH species is confirmed by ESR technique when irradiated with visible light for the2.0%Bi-TiO2system(Fig. 6B)[26].The results may reveal why 2.0%Bi-TiO2 exhibits much higher activity than bare TiO2.Moreover, the intensity of the peaks further increases with the increase of irradiation time and reaches stable state in 15min,therefore the intensity of DMPO-·OH adduct peak produced in20min irradiation is similar to that in 15min irradiation.Fig.6DMPO spin-trapping ESR spectra of(A)pure TiO2and(B)2.0%Bi modified-TiO2aqueous solutions2.4Photocatalytic degradation of4-chlorophenolIn order to evaluate the photocatalytic activity of the prepared catalysts and find out the optimum content of Bi species,a set of experiments for4-CP degradation under visible-light irradiation was carried out in and the results are shown in Fig.7A.The pure TiO2is rather inefficient since it could not be activated by visible lights due to a big energy band gap(3.2eV). Modification of TiO2with Bi2O3results in abrupt increase of the photocatalytic activity owing to the Bi2O3-photosensitization.It is found that pseudo-first-order kinetics is obeyed for the photocatalytic degradation of4-CP.Therefore,the apparent first order kinetic Eq.(1)is used to fit the experimental data in Fig. 7A.lnCC=k app t(1) Where k app is the apparent rate constant,C is the concentration of4-CP remaining in the solution at irradiation time of t,and C0is the initial concentrationFig.7(A)Photocatalytic kinetics of4-CP degradation for pure TiO2and Bi-modified TiO2;(B)Variations in ln(C0/C)as a function of irradiation time and linear fits of pure TiO2and Bi-compounded TiO 2552第3期at t=0.The variation in ln(C0/C)as a function of irradia-tion time are given in Fig.7B.The calculated data are given in Table1.The results of Fig.7B and Table1show that the effectiveness of the catalyst is strongly dependent on the amount of dopant ions.The4-CP degradation efficiency after7h follows the order:2.0%Bi-TiO2> 4.0%Bi-TiO2>5.0%Bi-TiO2>1.0%Bi-TiO2>0.5%Bi-TiO2.The experimental results are also related to BET specific surface area of Bi-modified TiO2.For instance, the BET specific surface area of2.0%Bi-TiO2is130 m2·g-1,which is much higher than33m2·g-1of bare TiO2.The larger specific surface area provides larger contact area and will lead to higher photo-degradation efficiency.Among the Bi-compounded TiO2,2.0%(wt) Bi-TiO2catalyst exhibits the highest activity under visible illumination.However,very high Bi content(> 2.0%)is harmful for the photocatalytic activity because of the agglomeration of the Bi2O3particles.The high Bi contents facilitates charge transport and reduces charge recombination,the large nanoparticles may act as the centers of electron-hole recombination and reduce quantum efficiency[27].2.5Mineralization and dechlorinationFrom an application perspective,analysis of degradation products is useful to estimate the efficiency of the photocatalytic technique,and it also may help reveal details of the chemical process taking place during the degradation and mineralization.To identify the intermediates of4-CP degradation,GC-MS analysis was used.The unfunctionalized degradation mixture is not suitable for GC-MS analysis,so the mixtures were silylated with TMS groups.The GC-MS results demonstrate the hydroxylated intermediates,such as catechol,hydroquinone,4-chlorocatechol and4-chlororesorcinol,were firstly generated during the photodegradation of4-CP.The primary products mainly involves the addition of HO·to aromatic ring and substitution of chlorine by HO·.Subsequently,under the effect of HO·radicals,the hydroxylated intermedia-tes were further oxidated and resulted in the formation of a series of low molecular weight carboxylic acids through the cleavage of benzene rings,which were also analyzed by GC-MS.The aliphatic intermediates are mainly dicarboxylic acids and substitutional dicarboxylic acids,such as oxalic acid,glycolic acid, malonic acid,maleic acid,succinic acid,fumaric acid, tartronic acid,malic acid and tartaric acid.In most instances,these structural assignments were confirmed with samples of authentic material that was processed in the same way that showing the same chromatographic and MS behavior.However,other reasonable pathways also maybe exist to get to these compounds.Meanwhile,during the photocatalytic degradation of4-CP,the attack of HO·to4-CP may replace chlor-ine atoms and produced organic dicarboxylic acids before complete mineralization.To examine the extent of mineralization of4-CP under visible light illumination,both removal yield of TOC and the quantity of inorganic chloride ions released were determined.Temporal changes of TOC and variations in the concentration of Cl-are shown in Fig.8.The initial4-CP contains13.9mg·L-1of TOC.After the adsorption of4-CP on the2.0%Bi-TiO2surface,the TOC values in the supernatants drop to12.6mg·L-1.The rate of TOC reduction is remarkably slower than that of4-CP.About 62%of TOC still remains after13h irradiation when the release of Cl-occurrs to a greater extent during the degradation of4-CP.The maximum extent of dechlorination is ca.76%(1.52×10-4mol·L-1),which is close to the theoretical quantity of about1.60×10-4mol·L-1(the quantity of4-CP degradation).It can be concl-uded from this result that dechlorination of4-CP is completed but about half of4-CP is mineralized intoFig.8Change in4-CP concentration and TOC and theformation of Cl-during the degradation of4-CP(2×10-4mol·L-1)in the presence of2.0%Bi-TiO2杨娟等:Bi2O3/TiO2复合纳米颗粒的可见光光催化性能553第27卷无机化学学报CO2and H2O.2.6Cyclic experimentsBased on the above results,one could conclude that2.0%Bi modified-TiO2exhibit the highest activity under visible irradiation.Besides the high activity,the 2.0%Bi-TiO2also displays strong durability.As shown in Fig.9,only3%decrease in activity is observed even after being used repetitively for8times,which demonstrates that this catalyst is quite stable during liquid-phase photocatalytic degradation.2.7Proposed mechanism and possibledegradation pathwayIn the absence of Bi2O3,the titania cannot be directly excited by visible light.Modification of TiO2 with Bi2O3could prevent phase transition from anatase to rutile and lead to the strong spectral response in visible region,as indicated in Fig.1and Fig.5.The abrupt increase of the photocatalytic activity of4-CP degradation ascribes the Bi2O3-photosensitization. Briefly,the Bi2O3photosensitizer with narrow energy gap(2.8eV)could be easily activated by visible light and induce photoelectrons and holes.In the absence of TiO2,these electrons and holes might recombine rapidly,leading to the quenching of spectral response.In Bi2O3/TiO2system,the heterojunctions formed in the composite catalyst would promote the photo-generated holes in bismuth oxide to be transferred to the upper lying valence bands of titania,because the valence band of Bi2O3is lower than that of titania(as shown in Fig.10).The process is thermodynamically feasible[28].Therefore,the recombination between photo-electrons and holes could be effectively inhibited and much more holes are captured to generate hydroxyl radicals and/or further induce photocatalytic reactions. Accordingly,the distinct difference of ESR signals observed between the2.0%Bi-modified TiO2and pure TiO2dispersions is understandable.As a result,the photocatalytic activity of Bi2O3/TiO2composite photoca-talyst enhances a lot compared to the pure TiO2.Based on the identification of intermediate products,the degradative process of4-CP firstly undergoes the hydroxylation or dechlorination reaction induced by active hydroxyl radicals.After that,these hydroxylated intermediates are oxidated and a series of dicarboxylic acids or substitutional dicarboxylic acids are generated.3ConclusionsBi2O3/TiO2composite photocatalyst was synthesiz-ed by the sol-hydrothermal method and characterized by XRD,TEM,XPS,FTIR,UV-Vis DRS and ESR techniques.The promoted activity of such Bi2O3/TiO2 mainly derives from the high anatase crystallinity,the optical response extent and the strong photosensitizing effect of Bi2O3.The enhanced photocatalytic activity of the material was evaluated on the visible light photodegradation of4-CP.TOC analysis shows that the mineralization of4-CP over Bi2O3/TiO2photocatalyst is feasible.The analyses of degradation intermediates by GC-MS and the ESR signals reveal the possible pathways during the4-CP photodegradation.Acknowledgements:We are grateful to key Lab for Special Functional Materials,Ministry of Education,Henan University for the XPS and TEM measurement.Reaction condition:50.0mL solution of1.0×10-4mol·L-14-CP,1g·L-1catalyst,visible light illuminationFig.9Recycling tests of the2.0%Bi-TiO2photocatalystFig.10Bi2O3-photosensitizating mechanism of2.0%Bi-TiO2under visible light irradiation554第3期References:[1]Hoffmann M R,Martin S T,Choi W,et al.Chem.Rev.,1995,95:69-96[2]Fujishima A,Rao T N,Tryk D A.J.Photochem.Photobiol.C:Rev.,2000,1:1-21[3]ZHANG Xia(张霞),MENG Hao(孟皓),CAO Xiang-Hui(曹向会).Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2009,25(11):1947-1952[4]REN Ling(任凌),YANG Fa-Da(杨发达),ZHANG Yuan-Ming(张渊明),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao), 2008,24(4):541-546[5]Kisch H,Sakthivel S,Janczarek M,et al.J.Phys.Chem.C,2007,111:11445-11449[6]Paola A D,Palmisano L,Venezia A M,et al.J.Phys.Chem.B,1999,103:8236-8244[7]Zhang H,Ouyang S,Li Z,et al.J.Phys.Chem.Solids,2006,67:2501-2505[8]Liu H,Yang W,Ma Y,et al.Appl.Catal.A,2006,299:218-223[9]Bessekhouad Y,Robert D,Weber J.Catal.Today,2005,101:315-321[10]Zhang L S,Wang W Z,Yang J,et al.Appl.Catal.A,2006,308:105-110[11]Fox M A,Dulay M T.Chem.Rev.,1993,93:341-357[12]Rengaraj S,Li X Z.Chemosphere,2007,66:930-938[13]Wang J,Jing L Q,Xue L P,et al.J.Hazard.Mater.,2008,160:208-212[14]Bian Z F,Zhu J,Wang S H,et al.J.Phys.Chem.C,2008,112:6258-6262[15]Marc P T,Verónica G M,Miguel A B,et al.Appl.Catal.B,2004,47:219-256[16]YANG Juan(杨娟),DAI Jun(戴俊),MIAO Juan(缪娟),et al.Acta Chim.Sinica(Huaxue Xuebao),2009,67(17):1973-1980[17]Dohnal V,Fenclova D.J.Chem.Eng.Data,1995,40:478-483[18]Zhang Q H,Gao L,Guo J K.Appl.Catal.B,2000,26:207-216[19]Zhang J,Li M J,Feng Z C,et al.J.Phys.Chem.B,2006,110:927-935[20]Schuhl Y,Baussart H,Delobel R,et al.J.Chem.Soc.FaradayTrans.,1983,79:2055-2061[21]Lin Y H,Wang D J,Zhao Q D,et al.J.Phys.Chem.B,2004,108:3202-3206[22]Dimitrov V,Dimitriev Y,Montenero A.J.Non-Cryst.Solids,1994,180:51-54[23]Jing L Q,Fu H G,Wang B Q,et al.Appl.Catal.B,2006,62:282-291[24]Zhang M H,Shi L Y,Yuan S,et al.J.Colloid Interf.Sci.,2009,330:113-118[25]Gujar T P,Shinde V R,Lokhande C D.Mater.Res.Bull.,2006,41:1558-1564[26]Zhao J,Wu T,Wu K,et al.Environ.Sci.Technol.,1998,32:2394-2400[27]Xin J H,Zhang S M,Qi G D.React.Kinet.Catal.Lett.,2005,86:291-298[28]Ao Y H,Xu J J,Fu D G,et al.Sep.Purif.Technol.,2008,61:436-441杨娟等:Bi2O3/TiO2复合纳米颗粒的可见光光催化性能555。