湖北省随州市洛阳镇中心学校八年级数学上册《分式的加减1》教学案(无答案) 新人教版

合集下载

八年级数学上册《分式的加减》教案、教学设计

八年级数学上册《分式的加减》教案、教学设计
2.教学策略:
(1)针对学生的认知水平,由浅入深地设计教学内容,使学生在逐步掌握分式加减运算的过程中建立信心。
(2)注重培养学生的数学思维,引导学生从特殊到一般,发现分式加减运算的规律。
(3)关注学生的个体差异,实施分层教学积极参与课堂讨论,培养学生的表达能力和团队合作精神。
2.归纳总结:教师强调分式加减运算的重点和难点,提醒学生注意运算顺序和符号规则。
3.拓展延伸:教师提出一些与分式加减相关的问题,激发学生的思考,为下一节课的学习打下基础。
五、作业布置
为了巩固学生对分式加减运算的理解和应用,特布置以下作业:
1.基础练习题:完成课本第chapter页的习题1、2、3,这些题目涵盖了分式的基本概念和同分母分式的加减运算,旨在帮助学生巩固基础知识。
3.培养学生严谨、细致的学习态度,使学生养成认真审题、规范解题的好习惯。
4.培养学生运用数学知识解决实际问题的意识,让学生体会数学在生活中的重要作用,增强学生的应用意识。
5.通过分式加减的教学,引导学生认识到数学知识之间的内在联系,培养学生的整体观念和系统思维。
二、学情分析
八年级的学生已经具备了一定的数学基础,掌握了基本的代数运算,但对于分式的认识和使用还处于初级阶段。在学习本章节前,学生已经熟悉了整式的加减运算,但对于分式的加减运算可能还存在一些困难。因此,在教学过程中,我们需要关注以下几点:
3.教学评价:
(1)采用形成性评价,关注学生在学习过程中的表现,及时发现并解决学生的问题。
(2)设计多元化的评价方式,如课堂提问、小组讨论、课后作业、阶段测试等,全面评估学生的学习成果。
(3)注重评价学生的数学思维和解决问题的能力,鼓励学生创新思考,提高学生的数学素养。
4.教学资源:

最新人教版八年级数学上册《分式的加减》精品教案

最新人教版八年级数学上册《分式的加减》精品教案

15.2.2 分式的加减第1课时 分式的加减一、教学目标:(1)熟练地进行同分母的分式加减法的运算.(2)会把异分母的分式通分,转化成同分母的分式相加减.(3)渗透类比转化的数学思想方法.二、重点、难点1.重点:熟练地进行异分母的分式加减法的运算.2.难点:熟练地进行异分母的分式加减法的运算.三、教学过程1、课堂引入1.出示问题3、问题4,教师引导学生列出答案.引语:从上面两个问题可知,在讨论实际问题的数量关系时,需要进行分式的加减法运算.2.下面我们先观察分数的加减法运算,请你说出分数的加减法运算的法则吗?3. 分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则?4.请同学们说出2243291,31,21xyy x y x 的最简公分母是什么?你能说出最简公分母的确定方法吗?2、例题讲解例6.计算(1)ba ab b a b a b a b a 22255523--+++ (2)96312-++a a [分析] 第(1)题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比较简单;(补充)例.计算(1)2222223223y x y x y x y x y x y x --+-+--+ (2)96261312--+-+-x x x x 解:96261312--+-+-x x x x =)3)(3(6)3(2131-+-+-+-x x x x x =)3)(3(212)3)(1()3(2-+---++x x x x x =)3)(3(2)96(2-++--x x x x =)3)(3(2)3(2-+--x x x =623+--x x 3、随堂练习计算(1)m n m n m n m n n m -+---+22 (2)ba b a b a b a b a b a b a b a ---+-----+-87546563 4、小结谈谈你的收获5、布置作业6、板书设计四、教学反思:作者留言:非常感谢!您浏览到此文档。

八年级数学教案《分式的加减》

八年级数学教案《分式的加减》

八年级数学教案《分式的加减》一、教学内容本节课的教学内容选自人教版八年级数学上册第二章《分式》的第三节《分式的加减》。

本节内容主要包括分式的加减法则、分式的加减运算步骤以及分式加减运算中容易出现的问题。

二、教学目标1. 让学生掌握分式的加减法则,能正确进行分式的加减运算。

2. 培养学生的逻辑思维能力和运算能力。

3. 通过对分式加减运算的练习,提高学生解决实际问题的能力。

三、教学难点与重点1. 教学难点:分式加减运算中正确处理分母、分子之间的关系。

2. 教学重点:掌握分式的加减法则,能熟练进行分式的加减运算。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。

2. 学具:练习本、铅笔、橡皮、圆规、直尺。

五、教学过程1. 实践情景引入:假设有一瓶溶液,其中含有A、B两种物质,其质量比为3:2。

现在向溶液中加入另一种物质C,使得A、B、C的质量比变为4:5:3。

问加入的物质C的质量是多少?2. 例题讲解:例1:计算分式 (3/4) + (2/5)。

解:分式的加法运算,先找到分母的最小公倍数,即20。

然后分别将分子乘以相应的倍数,得到 (15/20) + (8/20) = 23/20。

例2:计算分式 (2/3) (1/6)。

解:分式的减法运算,先找到分母的最小公倍数,即6。

然后分别将分子乘以相应的倍数,得到 (4/6) (1/6) = 3/6 = 1/2。

3. 随堂练习:(1) 计算分式 (5/8) + (3/8)。

答案:(5+3)/8 = 8/8 = 1。

(2) 计算分式 (2/9) (1/3)。

答案:找到分母的最小公倍数,为9。

分别将分子乘以相应的倍数,得到 (6/27) (3/27) = 3/27 = 1/9。

六、板书设计板书题目:分式的加减板书内容:1. 分式的加法:找到分母的最小公倍数,分别将分子乘以相应的倍数,然后相加。

2. 分式的减法:找到分母的最小公倍数,分别将分子乘以相应的倍数,然后相减。

《分式的加减》教案

《分式的加减》教案

一、教学目标:1. 让学生理解分式的加减法概念,掌握分式加减法的运算规则。

2. 培养学生运用分式加减法解决实际问题的能力。

3. 提高学生分析问题、解决问题的能力,培养学生的逻辑思维能力。

二、教学内容:1. 分式的加减法概念及运算规则。

2. 分式加减法的实际应用问题。

三、教学重点与难点:1. 重点:分式的加减法概念、运算规则及实际应用。

2. 难点:分式加减法在实际问题中的运用。

四、教学方法:1. 采用案例分析法,让学生通过实际例子理解分式的加减法。

2. 运用小组讨论法,培养学生合作解决问题的能力。

3. 采用问答法,激发学生思考,引导学生深入理解分式加减法。

五、教学过程:1. 导入新课:通过生活实例引入分式的加减法概念。

2. 讲解与演示:讲解分式的加减法运算规则,并通过多媒体演示分式加减法的运算过程。

3. 案例分析:分析实际问题,让学生运用分式加减法解决问题。

4. 小组讨论:学生分组讨论,分享各自解决问题的方法。

5. 问答环节:教师提问,学生回答,巩固所学知识。

6. 课堂练习:布置练习题,让学生巩固所学内容。

8. 作业布置:布置课后作业,巩固所学知识。

9. 课后辅导:针对学生作业中的问题进行辅导。

10. 教学评价:对学生的学习情况进行评价,为下一步教学提供参考。

六、教学准备:1. 准备PPT课件,展示分式的加减法运算过程。

2. 准备实际应用问题案例,用于课堂讲解和练习。

3. 准备课后作业,巩固学生所学知识。

七、教学步骤:1. 回顾上节课的内容,复习分式的加减法概念和运算规则。

2. 通过PPT课件,展示分式加减法的运算过程,让学生跟随步骤进行学习。

3. 讲解实际应用问题,让学生运用分式加减法解决问题。

4. 分组讨论,让学生分享自己解决问题的方法和思路。

5. 问答环节,教师提问,学生回答,巩固所学知识。

八、课堂练习:1. 布置练习题,让学生独立完成,巩固分式的加减法运算。

2. 挑选部分学生的作业进行讲解和点评,指出其中的错误和不足。

分式的加减法教学设计一

分式的加减法教学设计一

分式的加减法
教学过程
(一)引入
(二)新课
1.类比分数的通分得到分式的通分:
把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.
2.通分的依据:分式的基本性质.
3.通分的关键:确定几个分式的公分母.
通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.
例1 通分:
解:∵最简公分母是12xy2,
小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数.
解:∵最简公分母是10a2b2c2,
例2 通分:
解:∵最简公分母是2x(x+1)(x-1),
小结:当分母是多项式时,应先分解因式.
解:
将分母分解因式:x2-4=(x+2)(x-2).4-2x=-2(x-2).
∴最简公分母为2(x+2)(x-2).
练习:教材P.79中1、2、3.
(三)课堂小结
1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.
2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.
3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.
(四)作业
略。

人教版八年级数学上册《分式的加减(1)》教学设计

人教版八年级数学上册《分式的加减(1)》教学设计

教学设计
15.2.2分式的加减(1)
4.1.1教学目标
1.目标
(1)理解分式的加减法法则,体会类比思想.
(2)会运用法则进行分式的加减运算,体会化归思想.
(3)在探究法则及运用法则解决问题的过程中,提高观察、分析、归纳及概括能力.
2.目标解析
达成目标(1)的标志是:学生能类比分数的加减法法则得出分式的加减法法则,通过分数的加减法体会分式的加减法,能用文字语言和符号语言表示分式的加减法法则.
通过分数的加减运算法则抽象得到分式加减运算法则,使学生经历从特殊到一般的研究问题的过程,体会从特殊到一般的研究问题的方法.
达成目标(2)的标志是:学生能对两个或三个分式进行加减运算(含整式与分式的加减运算),明确异分母分式必须化为同分母分式才能进行加减运算,体会化归思想在异分母分式加减运算中的作用.
达成目标(3)的标志是:在探究分式的加减法法则的过程中,通过学生独立思考、互相交流,引导学生归纳概括出分式加减的法则,提高学生的归纳及概括能力;在学生自主完成练习后,通过订正习题、交流不同解法,提高学生观察及分析能力.
4.1.2学时重点
教学重点:分式的加减法法则和简单运算,以及本节课所蕴含的数学思想方法.
4.1.3学时难点
教学难点:异分母分式的加减运算.
4.1.4教学活动
活动1【导入】(一)创设情境,提出问题
活动2【活动】(二)类比探究,解决问题
活动3【活动】(三)归纳小结,反思提高
活动4【作业】(四)分层作业,巩固提高。

人教版数学八年级上册《分式的加减》教学设计1

人教版数学八年级上册《分式的加减》教学设计1

人教版数学八年级上册《分式的加减》教学设计1一. 教材分析人教版数学八年级上册《分式的加减》是学生在掌握了分式的概念、性质、运算规律的基础上进行学习的内容。

本节课的主要目的是让学生掌握分式的加减运算法则,能够熟练地进行分式的加减运算。

教材通过具体的例题和练习题,引导学生理解和掌握分式加减的运算方法,培养学生的数学思维能力和解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了分式的基本概念和性质,具备了一定的数学基础。

但是,对于分式的加减运算,学生可能还存在一定的困难,需要通过具体的例题和练习来进一步巩固和提高。

此外,学生可能对于分式的运算规律和运算技巧还不够熟悉,需要通过教师的引导和讲解来进行进一步的学习和掌握。

三. 教学目标1.让学生理解分式的加减运算法则,掌握分式的加减运算方法。

2.培养学生的数学思维能力和解决问题的能力。

3.提高学生的数学学习兴趣和自信心。

四. 教学重难点1.重点:分式的加减运算法则的理解和掌握,分式的加减运算方法的熟练运用。

2.难点:分式的运算规律和运算技巧的掌握,解决实际问题的能力的培养。

五. 教学方法1.讲解法:教师通过讲解分式的加减运算法则和运算规律,引导学生理解和掌握分式的加减运算方法。

2.例题教学法:教师通过具体的例题,让学生理解和掌握分式的加减运算方法,培养学生的数学思维能力和解决问题的能力。

3.练习法:教师通过布置练习题,让学生进行分式的加减运算练习,巩固和提高学生的数学能力。

六. 教学准备1.教学PPT:教师需要准备教学PPT,内容包括分式的加减运算法则的讲解,例题的展示和分析,练习题的布置等。

2.练习题:教师需要准备一些分式的加减运算练习题,用于学生在课堂上进行练习和巩固。

七. 教学过程1.导入(5分钟)教师通过一个实际问题,引导学生思考和探讨分式的加减运算方法。

例如,给出一个实际问题:某商店进行促销活动,有两件商品A和B,A商品的价格为20元,B商品的价格为30元,现在有一张80元的优惠券,问如何购买这两件商品才能使得优惠券最大化利用?让学生思考和探讨如何进行分式的加减运算来解决这个问题。

2022年《分式的加减》教案 (省一等奖)

2022年《分式的加减》教案 (省一等奖)

15.2.2分式的加减〔一〕一、教学目标:〔1〕熟练地进行同分母的分式加减法的运算.〔2〕会把异分母的分式通分,转化成同分母的分式相加减. 二、重点、难点1.重点:熟练地进行异分母的分式加减法的运算. 2.难点:熟练地进行异分母的分式加减法的运算. 三、教学过程:〔一〕板书标题,呈现教学目标:〔1〕熟练地进行同分母的分式加减法的运算.〔2〕会把异分母的分式通分,转化成同分母的分式相加减. 〔二〕引导学生自学:阅读P15-16练习,并思考以下问题:1. 分数的加减运算法那么是什么?分式的加减运算法那么又是什么? 2. 异分母的分式加减法的一般步骤是什么?8分钟后,检查自学效果〔三〕学生自学,教师巡视: 学生认真自学,并完成P16练习 〔四〕检查自学效果:1.学生答复老师所提出的问题 2.学生答复P16练习〔五〕引导学生更正,归纳: 1.更正学生错误;2.P16例6. 第〔1〕题是同分母的分式减法的运算,分母不变,只把分子相减,第二个分式的分子式个单项式,不涉及到分子是多项式时,第二个多项式要变号的问题,比拟简单;第〔2〕题是异分母的分式加法的运算,最简公分母就是两个分母的乘积.[分析] 第〔1〕题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参加运算,结果也要约分化成最简分式.[分析] 第〔2〕题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式. 3.进行异分母的分式加减法的运算是难点,异分母的分式加减法的运算,必须转化为同分母的分式加减法,,然后按同分母的分式加减法的法那么计算,转化的关键是通分,通分的关键是正确确定几个分式的最简公分母,确定最简公分母的一般步骤:〔1〕取各分母系数的最小公倍数;〔2〕所出现的字母(或含字母的式子)为底的幂的因式都要取;〔3〕相同字母(或含字母的式子)的幂的因式取指数最大的.在求出最简公分母后,还要确定分子、分母应乘的因式,这个因式就是最简公分母除以原分母所得的商.4.异分母的分式加减法的一般步骤:〔1〕通分,将异分母的分式化成同分母的分式;〔2〕写成“分母不变,分子相加减〞的形式;〔3〕分子去括号,合并同类项;〔4〕分子、分母约分,将结果化成最简分式或整式. 〔六〕课堂练习 1.计算:〔1〕 〔2〕 〔3〕2.计算:〔1〕 〔2〕 111---x x x b a ab b a a +++2329122---m m aa a a a a a a a 2444122222--÷⎪⎭⎫ ⎝⎛+----+)225(423---÷-+x x x x作业:1.习题15.2第4,5题〔A本〕2.?感悟?P8-9分式的加减〔一〕3.预习P17-18练习[教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

过程与方法:经历探索分式加减运算法则的过程,理解其算理.
情感态度价值观:在活动中培养学生乐于探究、合作学习的习惯,培养学生“用数学”
的意识和能力
重点:分式的加减运算.
难点:异分母的分式加减法运算.
学习方法:自学与讲练相结合
学习过程:
一,导入新课:
问题1 甲工程队完成一项工程需n 天,乙工程队要比甲队多用3天才能完成这项工程,
两队共同工作一天完成这项工程的几分之几?
二,自主学习:
学习书本:P15-16内容
法则归纳:
式子表示为:
三,学生展示(P16练习)
计算:1、(1)x x x 11-+ (2)13121+-+++b a b a b a (3)x
x x 11+-
2、2222235y x x y x y x ---+ q
p q p 321321-++ b
a b b a -++2
四,教师点评。

五,当堂检测:
1、计算 (1)b a a b b a b a b a b a 22255523--+++ (2)m n m n m n m n n m -+---+22
(3)96312-++a a (4)b
a b
a b a b a b a b a b a b a --
-+-----+-87546563
(5)222x x x +--2144x x x --+. (6)2
1x x --x-1
2,先化简,再求值:3a
a --263a a a +-+3a ,其中a=3
2。

相关文档
最新文档