光电图像处理第五章频域图像增强(精)

合集下载

频域图象增强

频域图象增强

•被钝化的图像被一种非常严重的振铃效果—— 理想低通滤波器的一种特性所影响
第6讲
第24页
6.2 低通滤波
90%
第6讲
第25页
6.2 低通滤波
3、巴特沃斯低通滤波器
物理上可实现(理想低通滤波器在数学上定 义得很清楚,在计算机模拟中也可实现,但在截 断频率处直上直下的理想低通滤波器是不能用实 际的电子器件实现的)
H
(u,
v)
1
1
D(u, v)
/
D0
2n
某个百分比的频率 在D(u, v) = D0时
• H(u, v) = 1/2 • H(u, v) = 1/21/2
H (u,v) 1
0
D (u,v) D0
第6讲
第30页
6.2 低通滤波
3、巴特沃斯低通滤波器 Butterworth低通滤波器截止频率的设计
•变换函数中不存在一个不连续点作为一个通过 的和被过滤掉的截止频率的明显划分
第6讲
第33页
6.2 低通滤波
3、巴特沃斯低通滤波器 图象由于量化不足产生虚假轮廓时常可用低
通滤波进行平滑以改进图象质量 效果比较(相同截断频率):图6.2.6
第6讲
第34页
6.2 低通滤波
3、巴特沃斯低通滤波器
第6讲
第35页
6.2 低通滤波
3、巴特沃斯低通滤波器
Butterworth低通滤波器与理想低通滤波器相比 •没有明显的跳跃; •模糊程度减少; •尾部含有较多的高频,对噪声的平滑效果不如 理想低通滤波器。
常用频域增强方法根据滤波特点,特别是消 除或保留的频率分量可以分为:1. 低通滤波; 2. 高通滤波;3. 带通和带阻滤波;4. 同态滤波 。

第5章频域图像增强20160801资料.

第5章频域图像增强20160801资料.

阶为1
阶为2
阶为5
阶为20
截止频率15下、不同阶巴特沃斯低通滤波器传递函数及其冲激响应函数
9
低通滤波器
截止频率为5
截止频率为15
截止频率为30
截止频率为50
截止频率为90
截止频率为180
不同截止频率下巴特沃斯低通滤波器的滤波结果
10
低通滤波器
– 指数低通滤波器:是一种物理可实现的低通滤波器, n阶指 数低通滤波器的传递函数定义为,
– 带通滤波器:带通滤波器允许某一带宽范围的频率成分通过,而
限制带宽范围以外的频率成分通过。
– 理想带通滤波器具有完全平坦的通带,在通带内没有增益或者衰 减,完全阻止通带之外的所有频率成分,通带与阻带之间的过渡 在瞬时频率完成,其传递函数定义为,
式中,W为带宽,半径 为频带中心,

分别
为下限和上限截止频率, 是点 到频谱中心的距离。
12
低通滤波器
截止频率为5
截止频率为15
截止频率为30
截止频率为50
截止频率为90
截止频率为180
不同截止频率指数低通滤波器的滤波结果
13
高通滤波器
高通滤波器:其目的是允许图像的高频成分通过, 而限制低频成分通过。
– 理想低通滤波器:最理想的低通滤波器是完全截断频谱中 的低频成分,传递函数定义为,
通过,并限制高频成分通过;高通滤波是指允许高频成 分通过,并限制低频成分通过。
– 频域滤波表示为频域滤波器的传递函数
频谱
乘积的形式:
与输入图像
– 最后,对频域滤波结果 空域中,可表示为,
进行傅里叶逆变换,转换回
输入图像
f (x;y)

ch5_频域增强

ch5_频域增强

5.1 频域增强原理
陷波滤波器
0, (u, v) ( M / 2, N / 2) H (u, v) 1, 其他


设置F(0,0)=0(结果图像的平均值为零),而保留 其它傅里叶变换的频率成分不变 除了原点处有凹陷外,其它均是常量函数 由于图像平均值为0而产生整体平均灰度级的降低 用于识别由特定的、局部化频域成分引起的空间 图像效果
2 12 2
5.2.1 理想低通滤波
理想低通滤波器的三维透视图、频谱图及径向剖
面图
说明:在半径为D0的圆内,所有频率没有衰减地通过滤波 器,而在此半径的圆之外的所有频率完全被衰减掉
5.2.1 理想低通滤波
ቤተ መጻሕፍቲ ባይዱ想低通滤波器截止频率的设计

先求出总的图像功率谱PT
M 1 N 1
P T
5.1 频域增强原理
5.1 频域增强原理
5.1 频域增强原理

频率域滤波的基本步骤
思想:通过滤波器函数以某种方式来修改图 像变换,然后通过取结果的反变换来获得处 理后的输出图像
5.1 频域增强原理
一些基本的滤波器:如何作用于图像?
陷波滤波器 低通(平滑)滤波器 高通(锐化)滤波器
人脸图像处理
原图像 D0=30的GLPF滤波 D0=10的GLPF滤波
5.3 高通滤波
频域高通滤波的基本思想
G u, v H u, v F u, v
F(u,v)是需要锐化的傅里叶变换形式 目标是选取一个低通滤波器H(u,v),通过它减少
F(u,v)低频部分来得到G(u,v) 运用傅里叶逆变换得到锐化的图像
透视图
滤波器
各种D0值的滤波器横截面

频域图像增强报告

频域图像增强报告

频域图像增强一、前言1.1背景和实际意义人类传递信息的主要媒介是语言和图像。

俗话说:百闻不如一见;图像信息是十分重要的信息传递媒体和方式。

在实际应用中,由于很多场景条件的影响,图像的视觉效果很差,使图像的信息无法被正常读取和识别。

例如,在采集图像过程中由于光照环境或物体表面反光等原因造成图像光照不均,或是图像采集系统在采集过程中由于机械设备的缘故无法避免的加入采集噪声,或是图像显示设备的局限性造成图像显示层次感降低或颜色减少等等。

因此研究快速且有效地图像增强算法成为推动图像分析和图像理解领域发展的关键内容之一。

图像增强从处理的作用域出发可分为空间域和频域两大类。

其中,频域增强是将原空间的图像以某种形式转换到其他空间,然后利用该转换空间的特有性质进行图像处理,最后在转换回到原空间,得到处理后的图像,是一种间接增强的算法。

法国数学家傅里叶最大的贡献就是傅里叶级数和变换,它被广泛地应用为基础工具学习,最初人们只在热扩散领域内使用;20世纪50年代随着数字计算的出现和快速傅里叶变换的出现在信号领域产生了巨大变革。

这两个核心技术允许对人类本身的特殊信号和工业的重要信号(从医学监视器和扫描仪到现代电子通信),进行实际处理和有意义的解释】1【。

1.2已有的研究成果数字图像处理发展的历史不长,但已经足够引起人们的重视,图像处理技术始于20世纪60年代,由于当时图像存储成本高,设备造价高,因而应用面较窄。

1964年美国加州理工学院首次对徘徊者7号太空飞船发回的月球照片进行了处理得到了清晰的照片,这标志着图像处理技术开始得到实际应用。

70年代,出现了CT和卫星遥感图像,这对图像处理的发展起到了很好的促进作用。

80年代,微机已经能够承担起图像处理的任务,VLSI的出现更使得处理速度大大提高,极大地促进了图像处理系统的普及和应用。

90年代是图像处理技术实用化时期,图像处理的信息量大,对处理速度的要求极高。

图像增强作为图像处理的重要组成部分,促进了图像增强方法研究的不断深入。

第5章 图像频域增强

第5章 图像频域增强
图像细节没有办法辨认,采用一般的灰度级线性变换法是不行的 图像的同态滤波属于图像频率域处理范畴,其作用是对图像灰度范围进行调整,通过 消除图像上照明不均的问题,增强暗区的图像细节,同时又不损失亮区的图像细节
我们人眼能分别得出图像的灰度不仅仅是由于光照函数(照射分量)决定,而且还与 反射函数(反射分量)有关: 反射函数反映出图像的具体内容。光照强度一般具有一致性,在空间上通常会有缓 慢变化的性质,在傅立叶变换下变现为低频分量 然而不一样的材料的反射率差异较大,经常会引起反射光的急剧变化,从而使图像 的灰度值发生变化,这种变化与高低频分量有关。 为了消除不均匀照度的影响,增强图像的高频部分的细节,可以采用建立在频域的 同态滤波器对光照不足或者有光照变化的图像进行处理,可以尽量减少因光照不足 引起的图像质量下降,并对感兴趣的景物进行有效增强,这样就在很大程度上做到 了原图像的图像增强。 同态滤波器能够减少低频并且增加高频,从而能减少光照变化并锐化边缘细节。
频域空间中,图像的信息表现为不同频率分量的组合。通过抑制某些频率分 量的输出,改变频率分布,达到不同的增强目的。 频域空间的增强有三个步骤: step 1:空域 频域 step 2:频域内增强 step 3:频域 空域
卷积定理
去除(抑制)图像中的高频分量而使低频通过,达到平滑和去除噪音 的效果。 (1)理想低通滤波器 截止频率 (5.2.1)
(3)带通和带阻滤波器的联系 两者是互补关系。
带通滤波器 带阻滤波器
陷波滤波器可以阻止或通过以某个频率为中心的邻域里的频率,所以本质上仍然是带 阻或带通滤波器 可分为陷波带阻滤波器和陷波带通滤波器 借助陷波滤波器可以消除周期噪声
理想陷波带阻滤波器
根据Fourier 变换的对称性,为了消除不是以原点为中心的给定区域内的频率,陷波带

数字图像处理之频率域图像增强

数字图像处理之频率域图像增强
易于分析和处理。
图像增强技术广泛应用于医学影 像、遥感、安全监控、机器视觉
等领域。
频率域图像增强的概念
01
频率域图像增强是指在频率域 对图像进行操作,通过改变图 像的频率成分来改善图像的质 量。
02
频率域增强方法通常涉及将图 像从空间域转换到频率域,对 频率域中的成分进行操作,然 后再将结果转换回空间域。
直方图规定化
直方图规定化是另一种频率域图像增强 方法,其基本思想是根据特定的需求或 目标,重新定义图像的灰度级分布,以
达到增强图像的目的。
与直方图均衡化不同,直方图规定化可 以根据具体的应用场景和需求,定制不 同的灰度级分布,从而更好地满足特定
的增强需求。
直方图规定化的实现通常需要先对原始 图像进行直方图统计,然后根据规定的 灰度级分布进行像素灰度值的映射和调
灵活性
频率域增强允许用户针对特定频率成 分进行调整,从而实现对图像的精细 控制。例如,可以增强高频细节或降 低噪声。
总结与展望 数字图像处理之频率域图像增强的优缺点
频谱混叠
在频率域增强过程中,如果不采取适 当的措施,可能会导致频谱混叠现象, 影响图像质量。
计算复杂度
虽然频率域增强可以利用FFT加速, 但对于某些复杂的图像处理任务,其 计算复杂度仍然较高。
傅立叶变换具有线性、平移不变性和周期性等性质,这些性质在图像增强中具有重 要应用。
傅立叶变换的性质
线性性质
傅立叶变换具有线性性质,即两 个函数的和或差经过傅立叶变换 后,等于它们各自经过傅立叶变
换后的结果的和或差。
平移不变性
傅立叶变换具有平移不变性,即 一个函数沿x轴平移a个单位后, 其傅立叶变换的结果也相应地沿
THANKS

第5章傅立叶变换与频域图像增强

第5章傅立叶变换与频域图像增强

1 F (u , v) N


x பைடு நூலகம் y 0
N 1
N 1
2(ux vy ) 2(ux vy ) f ( x, y )[cos( ) j sin( )] N N
F(u,v)通常是复数。
7
1 F (u , v) N

x 0 y 0
N 1 N 1
f ( x, y ) cos(
频谱图像|F(u,v)|特点:
低频部分集中了大部分能量;
F (0,0) N f
高频部分对应边缘和噪声等细节内容。

频域增强是通过改变图像中不同频率分量来实现的。 频域滤波器:不同的滤波器滤除的频率和保留的频率 不同,因而可获得不同的增强效果。
30

频域增强方法的三个步骤:
1.将图像从图像空间转换到频域空间(如傅里叶变换);

x 0 y 0
N 1
N 1
ux vy f ( x, y ) exp[ j2( )] N
2(ux vy ) 2(ux vy ) f ( x, y )[cos( ) j sin( )] N N

x 0 y 0
N 1
N 1
F (u, v) R(u, v) jI (u, v) F (u, v) exp j (u, v)

f (x,y)、h (x,y)均补零扩充为P×Q,
P=2N-1;
Q=2N-1.
G(u, v) H (u, v) F (u, v) g ( x, y) : N N

图像进行傅立叶变换,需将其看作周期函数的一个 周期;
周期函数进行卷积,为避免周期折叠误差,需对函 数进行补零扩展。

实验5 图像频域增强

实验5   图像频域增强

实验5 图像频域增强一、实验目的通过本实验使学生掌握使用MATLAB的二维傅里叶变换进行频域增强的方法。

二、实验原理本实验是基于数字图像处理课程中的图像频域增强理论来设计的。

本实验的准备知识:第四章频域图像增强中的一维傅里叶变换和二维傅里叶变换,频域图像增强的步骤,频域滤波器。

根据教材285页到320页的内容,开展本实验。

可能用到的函数:1、延拓函数padarray例:A=[1,2;3,4];B=padarray(A,[2,3],’post’);则结果为B =1 2 0 0 03 4 0 0 00 0 0 0 00 0 0 0 0使用该函数实现图像的0延拓。

Padarray还有其它用法,请用help查询。

2、低通滤波器生成函数首先编写dftuv函数,如下function [U,V]=dftuv(M,N)%DFTUV Computes meshgrid frequency matrices.% [U,V]=DFTUV(M,N] computes meshgrid frequency matrices U and V. Uand V are useful for computing frequency-domain filter functions thatcan be used with DFTFILT. U and V are both M-by-N.% Set up range of variables.u=0:(M-1);v=0:(N-1);% Compute the indices for use in meshgrid.idx=find(u>M/2);u(idx)=u(idx)-M;idy=find(v>N/2);v(idy)=v(idy)-N;%Compute the meshgrid arrays.[V,U]=meshgrid(v,u);然后编写低通滤波器函数function [H,D]=lpfilter(type,M,N,D0,n)% LPFILTER computers frequency domain lowpass filters.% H=lpfilter(TYPE,M,N,D0,n) creates the transfer function of a lowpassfilter, H, of the specified TYPE and size(M-by-N). To view the filter asan image or mesh plot, it should be centered using H=fftshift(H).% valid values for TYPE, D0, and n are:% 'ideal' Ideal lowpass filter with cutoff frequency D0. n need notbe supplied. D0 must be positive.% 'btw' Butterworth lowpass filter of ordern, and cutoff D0. Thedefault value for n is 1. D0 must be positive.% 'gaussian' Gaussian lowpass filter with cutoff (standard deviation)D0.n need not be supplied. D0 must be positive.%Use function dftuv to set up the meshgrid arrays needed for computingthe required distances.[U,V]=dftuv(M,N); %D=sqrt(U.^2+V.^2); % Compute the distances D(U,V)% Begin filter computations.switch typecase 'ideal'H=double(D<=D0);case 'btw'if nargin==4n=1;endH=1./(1+(D./D0).^(2*n));case 'gaussian'H=exp(-(D.^2)./(2*(D0^2)));otherwiseerror('Unknown filter type')end通过调用函数lpfilter可生成相应的滤波器掩膜矩阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档