概率中的递推

合集下载

2019高考概率真题解析概率问题中的递推数列

2019高考概率真题解析概率问题中的递推数列

概率问题中的递推数列一、a n =p ·a n -1+q 型【例1】 某种电路开关闭合后,会出现红灯或绿灯闪动,已知开关第一次闭合后,出现红灯和绿灯的概率都是12,从开关第二次闭合起,若前次出现红灯,则下次出现红灯的概率是13,出现绿灯的概率是23;若前次出现绿灯,则下次出现红灯的概率是35,出现绿灯的概率是25,记开关第n 次闭合后出现红灯的概率为P n 。

(1)求:P 2;(2)求证:P n <12 (n ≥2) ;(3)求lim n n P →∞。

解析:(1)第二次闭合后出现红灯的概率P 2的大小决定于两个互斥事件:即第一次红灯后第二次又是红灯;第一次绿灯后第二次才是红灯。

于是P 2=P 1·13+(1-P 1)·35=715。

(2)受(1)的启发,研究开关第N 次闭合后出现红灯的概率P n ,要考虑第n -1次闭合后出现绿灯的情况,有 P n =P n -1·13+(1-P n -1)·35=-415P n -1+35,再利用待定系数法:令P n +x =-415(P n -1+x )整理可得x =-919∴{P n -919}为首项为(P 1-919)、公比为(-415)的等比数列P n -919=(P 1-919)(-415)n -1=138(-415)n -1,P n =919+138(-415)n -1∴当n ≥2时,P n <919+138=12(3)由(2)得lim n n P →∞=919。

【例2】 A 、B 两人拿两颗骰子做抛掷游戏,规则如下:若掷出的点数之和为3的倍数时,则由原掷骰子的人继续掷;若掷出的点数不是3的倍数时,由对方接着掷.第一次由A 开始掷.设第n 次由A 掷的概率为P n ,(1)求P n ;⑵求前4次抛掷中甲恰好掷3次的概率. 解析:第n 次由A 掷有两种情况:① 第n -1次由A 掷,第n 次继续由A 掷,此时概率为1236P n -1;② 第n -1次由B 掷,第n 次由A 掷,此时概率为(1-1236)(1-P n -1)。

递推思想在概率中的应用

递推思想在概率中的应用

\/


1 1

1 1
的图像一致. < <旦 即一 m 一
下2 情况 : 种
/。

② 当te= , — ‘ 时 , 程有 — 即te= 方


() 3 函数 y l fx + ] 图像 与坐 标 轴 无 交 点 , 以分 以 =。 ( ) p 的 [ 可
\/


/ 厂

解 :
^ ,’ ^ 1
① 当函数y 1 fx + ] 图像与x =o () p 的 [ 轴无交点时 , 则必须有
J, 作 _

出fx 的示 意 图 , 图: () 如
1 2
当X 0 e 时 , X I 0 L ( ) ( , ] 为增 函数 ; ∈( ,) L ( ) , x 在 0 e 上 > 当x e + 。 时 , X ≤O L ( ) [ , 。 ) 为 减 函 数 ; E( , 。) L ( ) , x 在 e + 。 上

列 表 如 下
(一∞ ,一1 )
f( ) x
f ( x )
立; ) ( 试讨论关于x 2 的方程m一 一()) 2)t x g =3 e+【 x 【 【】 — 2 根的个数.

一1 (一1, ) 1



( ,) 1 2


( 2,+∞ )
解 : 1 m= =1 () n ( 方程 瑚】 一 ( = 32 x+ x ) 2) I一 【 g x) X- e t Z ̄ f2n : 32 x+x 1x x— e t
21 3 周刊 0 年第 3 2 期鼋 试

微考点7-2 递推方法计算概率与一维马尔科夫过程(数列与概率结合)(解析版)

微考点7-2 递推方法计算概率与一维马尔科夫过程(数列与概率结合)(解析版)

微考点7-2 递推方法计算概率与一维马尔科夫过程(数列与概率结合)【考点分析】①转移概率:对于有限状态集合S ,定义:)|(1,i n j n j i X X P P ==+=为从状态i 到状态j 的转移概率.②马尔可夫链:若ij i n j n i i n i n j n P X X P X X X X P n ==⋅⋅⋅==+==-==+-)|(),,,|(101101,即未来状态1+n X 只受当前状态n X 的影响,与之前的021,,,X X X n n ⋅⋅⋅--无关.③完备事件组:如果样本空间Ω中一组事件组},,{21n A A A ⋅⋅⋅符合下列两个条件:(1)n j i j i A A j i ⋅⋅⋅=≠∅=⋂,2,1,,,;(2)Ω==k nk A 1 .则称},,{21n A A A ⋅⋅⋅是Ω的一个完备事件组,也称是Ω的一个分割.④全概率公式: 设},,{21n A A A ⋅⋅⋅是一个完备事件组,则有)|()()(1knk kA B P A P B P ∑==⑤一维随机游走模型,即:设数轴上一个点,它的位置只能位于整点处,在时刻0=t 时,位于点)(+∈=N i i x ,下一个时刻,它将以概率α或者β(1),1,0(=+∈βαα)向左或者向右平移一个单位. 若记状态i t X =表示:在时刻t 该点位于位置)(+∈=N i i x ,那么由全概率公式可得:)|()()|()()(1111111+==++=-==+-==+⋅+⋅=i t i t i t i t i t i t i t X X P X P X X P X P X P 另一方面,由于αβ==+==+-==+)|(,)|(1111i t i t i t i t X X P X X P ,代入上式可得:11-+⋅+⋅=i i i P P P βα.进一步,我们假设在0=x 与),0(+∈>=N m m m x 处各有一个吸收壁,当点到达吸收壁时被吸收,不再游走.于是,1,00==m P P .随机游走模型是一个典型的马尔科夫过程.进一步,若点在某个位置后有三种情况:向左平移一个单位,其概率为a ,原地不动,其概率为b ,向右平移一个单位,其概率为c ,那么根据全概率公式可得:11+-++=i i i i cP bP aP P【精选例题】【例1】(2023·新高考1卷)甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==-===⋅⋅⋅,则11n ni i i i E X q ==⎛⎫= ⎪⎝⎭∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y .解析:(1)记“第i 次投篮的人是甲”为事件i A ,“第i 次投篮的人是乙”为事件i B ,所以,()()()()()()()21212121121||P B P A B P B B P A P B A P B P B B =+=+()0.510.60.50.80.6=⨯-+⨯=.(2)设()i i P A p =,依题可知,()1i i P B p =-,则()()()()()()()11111||i i i i i i i i i i i P A P A A P B A P A P A A P B P A B +++++=+=+,即()()10.610.810.40.2i i i i p p p p +=+-⨯-=+,构造等比数列{}i p λ+,设()125i i p p λλ++=+,解得13λ=-,则1121353i i p p +⎛⎫-=- ⎪⎝⎭,又11111,236p p =-=,所以13i p ⎧⎫-⎨⎬⎩⎭是首项为16,公比为25的等比数列,即11112121,365653i i i i p p --⎛⎫⎛⎫-=⨯=⨯+ ⎪ ⎪⎝⎭⎝⎭.(3)因为1121653i i p -⎛⎫=⨯+ ⎪⎝⎭,1,2,,i n =⋅⋅⋅,所以当*N n ∈时,()122115251263185315nn n n n E Y p p p ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭=+++=⨯+=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,故52()11853n n E Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.【例2】某公司为激励员工,在年会活动中,该公司的()3n n ≥位员工通过摸球游戏抽奖,其游戏规则为:每位员工前面都有1个暗盒,第1个暗盒里有3个红球与1个白球.其余暗盒里都恰有2个红球与1个白球,这些球的形状大小都完全相同.第1位员工从第1个暗盒里取出1个球,并将这个球放入第2个暗盒里,第2位员工再从第2个暗盒里面取出1个球并放入第3个暗盒里,依次类推,第n 1-位员工再从第n 1-个暗盒4.马尔可夫链是因俄国数学家安德烈·马尔可夫得名,其过程具备“无记忆”的性质,即第1n +次状态的概率分布只跟第n 次的状态有关,与第1,2,3,n n n ---⋅⋅⋅次状态是“没有任何关系的”.现有甲、乙两个盒子,盒子中都有大小、形状、质地相同的2个红球和1个黑球.从两个盒子中各任取一个球交换,重复进行()*N n n ∈次操作后,记甲盒子中黑球个数为n X ,甲盒中恰有1个黑球的概率为n a ,恰有2个黑球的概率为n b .(1)求1X 的分布列;(2)求数列{}n a 的通项公式;(3)求n X 的期望.解析:(1)由题可知,1X 的可能取值为0,1,2.由相互独立事件概率乘法公式可知:()11220339P X ==⨯=;()111225133339P X ==⨯+⨯=;()12122339P X ==⨯=,故1X 的分布列如下表:1X 012P295929(2)由全概率公式可知:()11n P X +=()()()()11111212n n n n n n P X P X X P X P X X ++==⋅==+=⋅==()()1010n n n P X P X X ++=⋅==()()()11222211210333333n n n P X P X P X ⎛⎫⎛⎫⎛⎫=⨯+⨯=+⨯=+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()522120933n n n P X P X P X ==+=+=,即:()15221933n n n n n a a b a b +=++--,所以11293n n a a +=-+,所以1313595n n a a +⎛⎫-=-- ⎪⎝⎭,又()11519a P X ===,所以,数列35n a ⎧⎫-⎨⎬⎩⎭为以132545a -=-为首项,以19-为公比的等比数列,所以132121545959n n n a -⎛⎫⎛⎫-=-⋅-=⋅- ⎪⎪⎝⎭⎝⎭,即:321559nn a ⎛⎫=+⋅- ⎪⎝⎭.(3)由全概率公式可得:()12n P X +=()()()()11121222n n n n n n P X P X X P X P X X ++==⋅==+=⋅==()()1020n n n P X P X X ++=⋅==()()()21111200333n n n P X P X P X ⎛⎫⎛⎫=⨯⋅=+⨯⋅=+⋅= ⎪ ⎪⎝⎭⎝⎭,即:12193n n n b a b +=+,又321559nn a ⎛⎫=+⋅- ⎪⎝⎭,所以11232139559n n n b b +⎛⎫⎛⎫=++-⎪ ⎪ ⎪⎝⎭⎝⎭,所以11111]1111[5593559n nn n b b ++⎛⎫⎛⎫-+-=-+- ⎪⎪⎝⎭⎝⎭,又()11229b P X ===,所以111121105599545b ⎛⎫-+⨯-=--= ⎪⎝⎭,所以1110559n n b ⎛⎫-+-= ⎪⎝⎭,所以111559nn b ⎛⎫=-- ⎪⎝⎭,所以()()20121n n n n n n n E X a b a b a b =++--=+=.5.足球是一项大众喜爱的运动.2022卡塔尔世界杯揭幕战将在2022年11月21日打响,决赛定于12月18日晚进行,全程为期28天.校足球队中的甲、乙、丙、丁四名球员将进行传球训练,第1次由甲将球传出,每次传球时,传球者都等可能的将球传给另外三个人中的任何一人,如此不停地传下去,且假定每次传球都能被接到.记开始传球的人为第1次触球者,第n 次触球者是甲的概率记为n P ,即11P =.(1)求3P (直接写出结果即可);(2)证明:数列14n P ⎧⎫-⎨⎬⎩⎭为等比数列,并判断第19次与第20次触球者是甲的概率的大小.解析:(1)由题意得:第二次触球者为乙,丙,丁中的一个,第二次触球者传给包括甲的三人中的一人,故传给甲的概率为13,故313P =.(2)第n 次触球者是甲的概率记为n P ,则当2n ≥时,第1n -次触球者是甲的概率为1n P -,第1n -次触球者不是甲的概率为11n P --,则()()1111101133n n n n P P P P ---=⋅+-⋅=-,从而1111434n n P P -⎛⎫-=-- ⎪⎝⎭,又11344P -=,14n P ⎧⎫∴-⎨⎬⎩⎭是以34为首项,公比为13-的等比数列. 则1311434n n P -⎛⎫=⨯-+ ⎪⎝⎭,∴181931114344P ⎛⎫=⨯-+> ⎪⎝⎭,192031114344P ⎛⎫=⨯-+< ⎪⎝⎭,1920P P >,故第19次触球者是甲的概率大6.(2019全国1卷).为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i = 表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i = ,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i )证明:1{}i i p p +-(0,1,2,,7)i = 为等比数列;(ii )求4p ,并根据4p 的值解释这种试验方案的合理性.解析:(1)由题意可知X 所有可能的取值为:1-,0,1()()11PX αβ∴=-=-;()()()011P X αβαβ==+--;()()11P X αβ==-则X 的分布列如下:X1-01P()1αβ-()()11αβαβ+--()1αβ-(2)0.5α= ,0.8β=0.50.80.4a ∴=⨯=,0.50.80.50.20.5b =⨯+⨯=,0.50.20.1c =⨯=(i )()111,2,,7ii i i p ap bp cp i -+=++=⋅⋅⋅ ;即()110.40.50.11,2,,7i i i i p p p p i -+=++=⋅⋅⋅整理可得:()11541,2,,7ii i p p p i -+=+=⋅⋅⋅;()()1141,2,,7i i i i p p p p i +-∴-=-=⋅⋅⋅{}1i i p p +∴-()0,1,2,,7i =⋅⋅⋅是以10p p -为首项,4为公比的等比数列(ii )由(i )知:()110144i ii i p p p p p +-=-⋅=⋅78714p p p ∴-=⋅,67614p p p -=⋅,……,01014p p p -=⋅作和可得:()880178011114414441143p p p p p ---=⋅++⋅⋅⋅+===-18341p ∴=-()4401234401184144131144441434141257p p p p p --∴=-=⋅+++==⨯==--+4p 表示最终认为甲药更有效的.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为410.0039257p =≈,此时得出错误结论的概率非常小,说明这种实验方案合理.。

概率问题—递推数列(精华)

概率问题—递推数列(精华)

一、a n =p ·a n -1+q 型【例1】 某种电路开关闭合后,会出现红灯或绿灯闪动,已知开关第一次闭合后,出现红灯和绿灯的概率都是,从开关第二次闭合12起,若前次出现红灯,则下次出现红灯的概率是,出现绿灯的概率是;若前次出现绿灯,则下次出现红灯的概率是,出现绿灯的概率132335是,记开关第n 次闭合后出现红灯的概率为P n 。

25(1)求:P 2;(2)求证:P n < (n ≥2) ;12(3)求。

lim n n P →∞解析:(1)第二次闭合后出现红灯的概率P 2的大小决定于两个互斥事件:即第一次红灯后第二次又是红灯;第一次绿灯后第二次才是红灯。

于是P 2=P 1·+(1-P 1)·=。

1335715(2)受(1)的启发,研究开关第N 次闭合后出现红灯的概率P n ,要考虑第n -1次闭合后出现绿灯的情况,有 P n =P n -1·+(1-P n -1)·=-P n -1+,133541535再利用待定系数法:令P n +x =-(P n -1+x )整理可得x =- 415919∴{P n -}为首项为(P 1-)、公比为(-)的等比数列 919919415P n -=(P 1-)(-)n -1=(-)n -1,P n =+(-)n -1 919919415138415919138415∴当n ≥2时,P n <+=91913812(3)由(2)得=。

lim n n P →∞919【例2】 A 、B 两人拿两颗骰子做抛掷游戏,规则如下:若掷出的点数之和为3的倍数时,则由原掷骰子的人继续掷;若掷出的点数不是3的倍数时,由对方接着掷.第一次由A 开始掷.设第n 次由A 掷的概率为P n ,(1)求P n ;⑵求前4次抛掷中甲恰好掷3次的概率. 解析:第n 次由A 掷有两种情况:① 第n -1次由A 掷,第n 次继续由A 掷,此时概率为P n -1; 1236② 第n -1次由B 掷,第n 次由A 掷,此时概率为(1-)(1-P n -1)。

马尔科夫链(与数列结合的概率递推问题)(解析版)

马尔科夫链(与数列结合的概率递推问题)(解析版)

马尔科夫链(与数列结合的概率递推问题)如果要评选出 2023 年各地模拟题中最“成功”的题目,我想非“马尔科夫链”莫属了,尽管2023 年新高考I 卷出乎了很多“命题专家”的意料,但第 21 题考察了马尔科夫链,可谓为广大“专家”“名卷”“押题卷”挽回了一些颜面。

2023年新高考I 卷第21题的投篮问题是马尔可夫链;再往前的热点模考卷中,2023年杭州二模第21题的赌徒输光问题是马尔可夫链,2023年茂名二模的摸球问题是马尔可夫链;再往更前的2019年全国I 卷药物试验也是马尔可夫链,在新人教A 版选择性必修三 P91 页 拓展探索中的第10题是传球问题,是马尔科夫链的典型模型,可以看出自从新教材引入全概率公式(新人教A 版选择性必修三 P49 页),可想而知,未来会有越来越多的递推型概率难题出现模考试题中!因此,在复习备考中全概率等系列内容需要格外关注马尔科夫链作为一种命题模型出现了,马尔科夫链在题中的体现可以简单的概括为全概率公式+数列递推,对于高中生而言,马尔科夫链其实也不难理解。

本文主要介绍了马尔科夫链和一维随机游走模型在高考中的几种具体的应用情形,希望对各位接下来的复习和备考有一些帮助。

基本原理虽然贝叶斯公式不做要求,但是全概率公式已经是新高考考查内容了,利用全概率公式,我们既可以构造某些递推关系求解概率,还可以推导经典的一维随机游走模型,即:设数轴上一个点,它的位置只能位于整点处,在时刻0=t 时,位于点)(+∈=N i i x ,下一个时刻,它将以概率α或者β(1),1,0(=+∈βαα)向左或者向右平移一个单位. 若记状态i t X =表示:在时刻t 该点位于位置)(+∈=N i i x ,那么由全概率公式可得:)|()()|()()(1111111+==++=−==+−==+⋅+⋅=i t i t i t i t i t i t i t X X P X P X X P X P X P另一方面,由于αβ==+==+−==+)|(,)|(1111i t i t i t i t X X P X X P ,代入上式可得:11−+⋅+⋅=i i i P P P βα.进一步,我们假设在0=x 与),0(+∈>=N m m m x 处各有一个吸收壁,当点到达吸收壁时被吸收,不再游走.于是,1,00==m P P .随机游走模型是一个典型的马尔科夫过程.进一步,若点在某个位置后有三种情况:向左平移一个单位,其概率为a ,原地不动,其概率为b ,向右平移一个单位,其概率为c ,那么根据全概率公式可得:11+−++=i i i i cP bP aP P2023·新高考Ⅰ卷T211.乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投籃,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5. (1)求第2次投篮的人是乙的概率; (2)求第i 次投篮的人是甲的概率; (3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==−===⋅⋅⋅,则11n ni i i i E X q == = ∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y . 【解析】(1)记“第i 次投篮的人是甲”为事件i A ,“第i 次投篮的人是乙”为事件i B ,所以,()()()()()()()21212121121||P B P A B P B B P A P B A P B P B B =+=+()0.510.60.50.80.6×−+×.(2)设()i i P A p =,依题可知,()1i i P B p =−,则()()()()()()()11111||i i i i i i i i i i i P A P A A P B A P A P A A P B P A B +++++=+=+,即()()10.610.810.40.2i i i i p p p p +=+−×−=+, 构造等比数列{}i p λ+,设()125i i p p λλ++=+,解得13λ=−,则1121353i i p p + −=−,又11111,236p p =−=,所以13i p−是首项为16,公比为25的等比数列,即11112121,365653i i i i p p −−−=×=×+. (3)因为1121653i i p − =×+,1,2,,i n =⋅⋅⋅, 所以当*N n ∈时,()122115251263185315nnn n n E Y p p p − =+++=×+=−+ − ,故52()11853nnE Y=−+.2019·全国Ⅰ卷2.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1−分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1−分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列.(2)若甲药、乙药在试验开始时都赋予4分,)0,1,2,,8(i p i =⋅⋅⋅表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11()127i i i i p ap bp cp i ==++…-+,,,,其中)1(a P X ==-,(0)b P X == (1)c PX ==. 假设0.5α=,0.8β=. ①证明:1)0{,1,2,,}7(i i p p i−=⋅⋅⋅+为等比数列; ②求4p ,并根据4p 的值解释这种试验方案的合理性. 【解析】(1)X 的所有可能取值为-1,0,1.11()()P X αβ=−−=,()()()011P X αβαβ=+−−=,()1(1)P X αβ=−=, 所以X 的分布列为X -11P(1)αβ− )1((1)αβαβ+−− ()1αβ−(2)①证明 由(1)得0.4a =,0.5b =,0.1c =.因此110.40.50.1i i i i p p p p −+=++,故()()110.10.4i i i i p p p p −=−+-,则()114i i i i p p p p −=−+-.又因为1010p p p −≠=,所以1)0{,1,2,,}7(i i p p i−=⋅⋅⋅+为公比为4,首项为1p 的等比数列. ② 由①得()()()88877610087761001413p p p p p p p p p p p p p p p p −=−+−+…+−+=−+−+…+−+=⋅. 由于81p =,故18341p =−, 所以()()()()444332*********3257p p p p p p p p p p p −=−+−+−+−+==. 4p 表示最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为410.0039257p =≈,此时得出错误结论的概率非常小,说明这种试验方案合理.课本原题:人教A 版数学《选择性必修三》P913.甲、乙、丙三人相互做传球训练,第1次由甲将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人.求n 次传球后球在甲手中的概率. 【解析】记第n 次传球后球在甲手中的概率为n P ,则第1n −次传球后球在甲手中的概率为1n P −, 开始时球在甲手中,则01P =.若第n 次传球后球在甲手中,则第1n −次传球后球不在甲手中,即第1n −次传球后球在乙或丙手中, 所以第1n −次传球后球不在甲手中的概率为11n P −−,又乙或丙在第n 次把球传到甲手上的概率为12, 于是有()1112n n P P −−=,即1111323n n P P − −=−− ,1n ≥, 于是数列13n P−是首项为0213P −=,公比为12−得等比数列, 所以121332nn P −=×−,所以()*211323nn P n =×−+∈ N .1.(2024届·武汉高三开学考)有编号为1,2,3,...,18,19,20的20个箱子,第一个箱子有2个黄球1个绿球,其余箱子均为2个黄球2个绿球,现从第一个箱子中取出一个球放入第二个箱子,再从第二个箱子中取出一个球放入第三个箱子,以此类推,最后从第19个箱子取出一个球放入第20个箱子,记i p 为从第i 个箱子中取出黄球的概率. (1)求23,p p ; (2)求20p . 【答案】(1)2815P =,33875P =;(2)201911652P =+⋅【分析】(1)分第一次取出黄球和绿球两种情况,再由互斥事件概率加法公式计算可得答案; (2)由题意可得()132155+=+−i i i P P P ,可得答案. 【详解】(1)从第二个箱子取出黄球的概率223128353515P =⋅+⋅=, 从第三个箱子取出黄球的概率3838238115515575P =⋅+−⋅= ; (2)由题意可知,()1321215555i i i i P P P P +=+−=+, 即1111252i i P P + −=− ,又123P = 1111111111,,,26265652i i i i P P P −− −=∴−=⋅∴=+ ⋅ 201911652P ∴=+⋅.重点题型·归类精讲【答案】(1)1942,1311776n n P −=−−(2)第二次,证明见解析【分析】(1)根据全概率公式即可求解2P ,利用抽奖规则,结合全概率公式即可由等比数列的定义求解, (2)根据1311776n n P −=−−,即可对n 分奇偶性求解.【详解】(1)记该顾客第()*N i i ∈次摸球抽中奖品为事件A ,依题意,127P =, ()()()()()22121121212119||1737242P P A P A P A A P A P A A ==+=×+−×= . 因为()11|3n n P A A −=,()11|2n n P A A −=,()n n P P A =,所以()()()()()1111||n n n n n n n P A P A P A A P A P A A −−−−=+,所以()111111113262n n n n P P P P −−−=+−=−+, 所以1313767n n P P − −=−−, 又因为127P =,则131077P −=−≠, 所以数列37n P−是首项为17−,公比为16−的等比数列,故1311776n n P −=−−.(2)证明:当n 为奇数时,1131976742n n P −<<⋅,当n 为偶数时,131776n n P −=+⋅,则n P 随着n 的增大而减小, 所以,21942n P P ≤=,综上,该顾客第二次摸球抽中奖品的概率最大.3.从甲、乙、丙等5人中随机地抽取三个人去做传球训练.训练规则是确定一人第一次将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人,每次必须将球传出. (1)记甲乙丙三人中被抽到的人数为随机变量X ,求X 的分布列;(2)若刚好抽到甲乙丙三个人相互做传球训练,且第1次由甲将球传出,记n 次传球后球在甲手中的概率为,1,2,3,n p n = ,①直接写出123p p p ,,的值;②求1n p +与n p 的关系式*()n N ∈,并求n p *()n N ∈. 【答案】(1)分布列见解析(2)①10p =,212p =,314p =;②111,1,2,322n n p p n +=−+=;11(1)132n n − −+ 【分析】(1)由离散型随机变量的分布列可解;(2)记n A 表示事件“经过n 次传球后,球在甲手中”,由全概率公式可求111,22n n p p +=−+再由数列知识,由递推公式求得通项公式.【详解】(1)X 可能取值为1,2,3,()1232353110C C p X C ===;()213235325C C p X C ===;()3032351310C C p X C === 所以随机变量X 的分布列为(2)若刚好抽到甲乙丙三个人相互做传球训练,且n 次传球后球在甲手中的概率为,1,2,3,n p n = , 则有10,p =2221,22p ==3321,24p == 记n A 表示事件“经过n 次传球后,球在甲手中”,111n n n n n A A A A A +++=⋅+⋅所以()()()11111n n n n n n n n n p P A A A A P A A P A A +++++=⋅+⋅=⋅+⋅ ()()()()()()111110122n n nn n n n n n P A P A A P A P A A p p p ++=⋅+⋅=−⋅+⋅=−∣∣ 即111,1,2,322n n p p n +=−+=, 所以1111323n n p p + −=−− ,且11133p −=− 所以数列13n p− 表示以13−为首项,12−为公比的等比数列,所以1111332n n p −−=−×−所以1111111132332n n n p −−=−×−+=−−即n 次传球后球在甲手中的概率是11(1)132n n −−+.2023届惠州一模4.为了避免就餐聚集和减少排队时间,某校开学后,食堂从开学第一天起,每餐只推出即点即取的米饭套餐和面食套餐. 已知某同学每天中午会在食堂提供的两种套餐中选择,已知他第一天选择米饭套餐的概率为23,而前一天选择了米饭套餐后一天继续选择米饭套餐的概率为14,前一天选择面食套餐后一天继续选择面食套餐的概率为12,如此往复. (1)求该同学第二天中午选择米饭套餐的概率 (2)记该同学第n 天选择米饭套餐的概率为n P(Ⅰ)证明:25n P −为等比数列;(Ⅱ)证明:当2n ≥时,512n P ≤. 【解析】(1)设1A =“第1天选择米饭套餐”,2A =“第2天选择米饭套餐”,则1A =“第1天不选择米饭套餐”,于是,()123P A =,()113P A =,()2114|P A A =,()2111122|P A A =−=, 由全概率公式()()()()()21211212111134323||P A P A P A A P A P A A =+=×+×=;(2)(Ⅰ)设n A =“第n 天选择米饭套餐”,则()n n P P A =,()1n n P A P =−,()14|1n n P A A +=,()11|1122n n P A A +=−=, ()()()()()()111111111424|2|n n n n n n n n n n n P P A P A P A A P A P A P P P A ++++==+=+−=−+, 所以1212545n n P P + −=−− ,25n P − 是以124515P −=为首项,14−为公比的等比数列。

与递推数列有关的概率问题

与递推数列有关的概率问题

一 向秒 后 ,带电粒子“ 同时在 点 次 左 动, 以 ,哥李合 移 所卜
处 ,必 须带 电粒 子
两 向一 , 带一粒 一 一 ”一 一 一 右’一卜李象一 孚 次向 ” 次 一 ,一 左、 向 故 孟 ,次 ,右 且 电 子 一 一 一 “ ‘
肺 二 掷 币出正 , 概 为 次 硬 均 现 面其 率 于 ②一 掷 币 现 面, 概 为 , 以 二十 第 次 硬 出 反 其 率 奇所 几奇奋
站的概率为 只
求 一汗 叼 其 证 卜 合一 , 中任, 一
解 解 棋子开始在第

秒 后 ,带 电粒子
处 ,必须经过 两次 向右 ,
站为必然事件 ,所以 户 ,
第 次 硬 出 正 棋 跳 第,站, 概 为 , 一 掷 币 现 面, 子 到 其率 合
所 李 ,当 子 到 站 下 两 情 以 棋 跳 第 有 列 种 况

【 邓 , 旧 阮 荀


叮,
凹 ,
张海波 、 童星 ,被动城市化群体城市适应性与现代性获得 中的自我认同 ,社会学研究 ,
李苏娟 《 , 吉登斯 自 我认同理论对我国成人教育的启示 》 ,
砰 孩 安东尼 吉登斯 现代性与自 我认同凹 赵旭东 , 方文
译 北京 生活 读书 新知三联书店 ,
湖北大学成人教育学院学报 , 管理干部学院学报
站 ,一枚棋子开始在第 站 ,棋手 每掷一 次硬币棋子向前跳动
一次 ,若掷 出正面 ,棋 子 向前 跳一站 从 到 若 掷出反 面 ,棋 子向前跳二站 从 到 ,直到棋子跳到第 站 胜
位, 向 移 的 率 奇, 右 动 概 为 设左 动 概为 向移 的率 哥


秒后 ,带电粒子

由一道概率题所引发的对递推数列的思考

由一道概率题所引发的对递推数列的思考

由一道概率题所引发的对递推数列的思考
如果你有一道概率题,可以引发对递推数列的思考,那么很可能这道题目要求你利用递推的方法来解决。

递推数列是一种数学工具,可以用来描述一个数列的形式。

它通常由一个初始值和一个递推公式组成,用于计算数列中后续项的值。

例如,你可能有一道概率题,要求你求出掷n次骰子后,每种点数出现的概率。

这道题目可以用递推数列来解决,具体方法如下:
•首先,你需要确定初始值。

在这道题目中,初始值为掷一次骰子后每种点数出现的概率,即1/6。

•然后,你需要确定递推公式。

在这道题目中,掷n次骰子后每种点数出现的概率等于掷n-1次骰子后每种点数出现的概率乘以1/6。

根据初始值和递推公式,你就可以求出掷n次骰子后每种点数出现的概率了。

总之,递推数列是一种非常有用的数学工具,可以帮助你快速解决一些求解数列的问题。

统计与概率背景下的递推数列

统计与概率背景下的递推数列

18
中学数学研究
2020 年第 4 期 (上)
解 答 设 该 队 员 投 进 第 n − 1 个 球 的 概 率 为 an−1,
投 失 的 概 率 为 1 − an−1, 则 投 进 第 n 个 (球 的 概 率 )为
2
2
11
1
an = 3 an−1 + 3 (1 − an−1), 即 an − 2 = 3 an−1 − 2 .
总之, 如何体现在核心价值引领下对知识的交叉、能力 的复合、素养的整合的全方位的考查, 是“四翼”的综合性对 高考试题提出的要求.
参考文献
[1] 教育部考试中心. 中国高考评价体系 [S]. 北京: 人民教育出版社. 2019.11.
[2] 教育部考试中心. 中国高考评价体系说明 [S]. 北京: 人民教育出版 社. 2019.11.
11 1
41
所以
an
=
2
+
2
×
3n ,
a4
=
. 81
评注 求解这类问题要求掌握互斥事件, 独立事件的概
率及递推数列的相关知识, 同时要具备分析、归纳、推理等
理性思维方法进行正确合理地判断、推理, 建立起递推数列
模型, 并能准确清晰有条理地进行表述. 由递推关系 an =
1
pan−1 + q, 可用待定系数法: 如例 2, 由 1 − pn = 2 pn−1,
1
1
即 pn = − 2 pn−1 + 1, 令 pn + x = − 2 (pn−1 + x), 整理解得
2
x = − . 将其转化为等比数列, 从而求得相应的通项公式.
3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档